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A new method of calculating two-loop Feynman integrals, proposed
by Broadhurst et al., is discussed. As an example of its application the
calculation of the anomalous magnetic moment of the electron is carried
out. The renormalization procedure is illustrated in detail.
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1. Introduction

Theory and experiment are in excellent agreement as to the value of
the electron magnetic moment [1]. This has been achieved on the theory
side by computing radiative corrections to the interaction of an electron
with a constant magnetic field up to the eighth order in the electromagnetic
coupling constant e. These corrections can be expressed as a power series

in h/‘l’ =€ /4#3:

g—2 a a\? a3 a\4
=a(3)+a(3) +a(3) +a(3) + W
The first correction, C; = /2, has been computed by Schwinger [2] and
the second, C2, by Sommerfield {3] and Petermann [4]. Ref. [5] contains a
detailed description of a calculation of C from which one can get an idea
of the enormous effort one has to make in calculating C; using traditional
methods. Matters get even worse when one proceeds to C3 [6]. A large
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part of the diagrams in this order has been calculated analytically but there
are still 8 which have to be integrated numerically. This is also the only
known method to obtain Cy4 [1]. Error in the numerical calculation is one
of the sources of uncertainty in the theoretical prediction for ¢ — 2. It
is therefore important to look for new algorithms which will enable us to
calculate multi-loop corrections analytically.

One such method has been proposed recently by Gray, Broadhurst,
Grafe and Schilcher (GBGS) [7]. It is based on the idea of the integra-
tion by parts pioneered by Chetyrkin and Tkachov [8] in the context of
massless Feynman integrals. The GBGS method can be applied to massive
propagator-type integrals. In the previous paper [9] we have discussed how
this can be extended to the calculation of the anomalous magnetic moment
where we have to deal with vertex diagrams at zero momentum transfer.

The purpose of this paper is twofold. First, we want to give a practical
summary of the GBGS method in order to facilitate its applications. Second,
we believe that the example of the two-loop calculation of the anomalous
magnetic moment illustrates well the renormalization of QED and, once the
computational burden is taken care of by a computer, it is of significant
pedagogical value.

The essence of the GBGS method is the observation that in the frame-
work of dimensional regularization all integrals needed to compute two-loop
on-shell propagator diagrams are of two types: M (ai, az,as,aq,as) and
N (a1, a2, a3, a4, as) (this notation will become clear in the next section).
Both types can be reduced to 3 known integral structures with the help
of a set of recurrence relations. In Sections 2, 3, and 4 we discuss these
two classes of integrals, show how the recurrence relations are derived, and
present formulas for the three basic integral structures. In section V we
show how this apparatus can be applied to the calculation of two-photon
corrections to the magnetic moment.

2. Integrals M (a;, az, a3, a4, as)
The integral M (a3, az, a3, ag, as) is defined by

M (a1, a2, 03,04, 5) = I_D(pz)_D+Z°‘i

« / / dPkydPk, @)
k3O (ky — k2)?%2 k293 (k2 4 2p - kq )74 (K2 + 2p - k) ™®

where D = 4 — 2¢. There are 6 recurrence relations for the integrals M
which can be derived from the identity:

/ deldezb% (g f (K1, k2,9, {2i})] = 0, (3)
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where f is the integrand on the RHS of (2), k € {k1, k2} and g € {k1, k2, p}.
These relations will be labeled according to Table I. Two more relations can
be obtained by expressing integrals:

[[ PradPrakss (s kapdad), =12, (4)

in terms of M (a1, az,as, a4, as) and then differentiating such expressions
with respect to p#. We will label these relations My and Mj for j in Eq. (4)
equal to 1 and 2 respectively.

TABLE 1
Notation used for labeling the recurrence relations

k q

ky ka2 Y4
k1 M, M, M,
kz M, M; M,

Before we derive the recurrence relations, we write down formulas for
the derivatives needed in the identity (3). We adopt the operator notation
(7): 1% f (a1, a2,++) = f(a1 + 1, a3, --). Using this notation the action of
the derivative operator can be expressed as follows:

(—;Z—fglo; = ‘2"“’““‘;?(7117?5 = —2a1k1#1+;—§a—l— s
a7 & — ey = 2 424 2;.,“)% ,
d 1 1
op* (K2 +2p-ky)* ~2ask, 4t (k2 +2p- k)"
0 1 _ —2a5k2u5+ 1 5)

ap# (k% + 2p. kz.)as (k% + 2P . kz)as .
The above formulas contain four-vectors which we will contract with kj,,
k2, and p,. The resulting scalars in the numerator of the integrand can
be cancelled with similar scalars in the denominator, so their appearance is
equivalent to the action of following operators:
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k2~ 17
k3 ~ 37
2k1cp ~ 47 —17
%y -p ~ 5~ — 37
2ky k2 ~ 17 +37 —-27. (6)

In the following we derive relations M; and M7. The relations M;
and M3 can be found in the same way, and the remaining ones — by a
change of indices 1 « 3, 4 & 5, which is a consequence of a symmetry of
M (a3, az, a3, as, as).

2.1. Relation M,

For this relation equation (3) reads:

0
0= [ [ dPksdPhagz [ b b, ()]
1
=DrP(p*)P~L %M (a1, a2, a3, 04, 5)
7]
+ /deldezkfg;crf(kl,kz,P, {ai}) . (7
1
The action of k{'3/dk{ is equivalent to

kf’ [~2a1k1“1+ - 2a3 (k],,, - kzp) 2+ - 204 (kll" + p“)4+]
~=2011717 — a2t (217 - 17 - 374+ 27) —agdt (217 +47 -17) .

Thus we obtain:

[D - 20:1 —Qz — a4 — 022+ (1— - 3_)
—a44+1_]M(a1,az,ag,a4,a5) =0. (9)

2.2. Relation My
This time we begin with

/ / dPydPkykb £ (k1 k2, p, {ai})

= pPrP(p? )P~ L % OM (o, az, a3, agy a5), (10)
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where O is an operator which we determine by contracting both sides of
(10) with 2p,,:
O=3(4"-17). (11)

Now we differentiate (10) with respect to p* and get:
ki‘ (—2k1“a44+ - 2k2pa55+) M(al, a2, 3,04, a5)
= %‘ (D+2D—2Zai) (4— - 1—)M(a1,az,a3,a4,a5) (12)

or

[-20a4a%17 —ass* (17 +37 - 27)

_3D-2Eai

3 (4~ - 1")]M(a1,a2,a3,a4,a5) =0. (13)

3. Integrals N(aj,az,as,a4,a5) and a summary of recurrence
relations

Another class of integrals which we have to consider is defined by

_ _ _ [ [ dPkydPk
N(al’a% as, ay, (15) =7 D(p2) D+Z * /./ k2a:k2a22
1 2

1
X .
(k2 + 2p- k1) ™® (k2 + 2p - k2)™* (k1 + k2)2 + 2p - (k1 + k2))*®

In a manner similar to the one described for integrals M (a;, az, a3, ag, as)
we can derive eight recurrence relations Ny . s.

It turns out that it is convenient to use certain linear combinations of
the recurrence relations. Below we summarize these combinations which in
our opinion are the most useful:

Ny [D —2a; - a3 —as —az3t1™
+as5t (4~ -17)]N =0,
N1+ N2+ N3:[D-a3—az—2as+a;1% (47 - 57)
+a33% (27 - 57 -2) — 2055t N =0,
N1+ N3+ N5 :[2D — ay — 2az — 203 — a4 — 2a5 — a; 1173~
—a4d4¥27 - 20331 - 20557 [N =0,
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N4+N5+N5:[D—ag-a4~2a5+a22+ (37 -57)
+agdt (17 -5 —2) —2a557 [N =0,
Ns : [D—2az — a4 —as —agat2”
+as5t (37 -27)]N =0,
Ny + N5 + Ng :[2D - 2a; — az — a3 — 2a4 — 2as

- a2t47 —a3371” — 20447 — 20587 |N =0,
N7 — 2N, :[ - 2D + 4a; +2ag+a4+a5—a44+ (5——3_)

+as87 (37 -47)
N3—2N5:[-2D+4az+a3+2a4+a5 —a33+ (5_'-4_)

+as5T (47 -37) -

M,

M; - M,

M; + M3

Mg + Mg :

My — Ms

My + M :

My

3D-2) a;
2

3D-2% «a;
2

:[D—2a1 - ag -—C!4+C!22+ (3_ - 1_)

—aqdt17| M =0,

: [—D + o1 + 20 + a4 + a11+(2_ -37)

+agat (-5 +27)|M =0,

: [D —a; —az — 2a4 — ay1t4~

+a2t (57 - 47) - 20447 | M =0,
[D —as; — a3z — 2as + a22+(4" - 5_)
~a3573% - 2a557| M =0,

:[~D +2a2 + a3 + as + az3T(-17 + 27)

+asst (27 -47) M =0,
[2D - 2a; - 2a; —2a3 — ag — as — agat1-
-as375T|M =0,

[ - 2044%17 — 0557 (17437 - 27)

3D-2)Y «;

5 (4‘—1’)]M=0,

:[ - 20s5%37 —aua* (37 +17-27)

_ 3ID-2Y a;

~=% (57 -37) M =0.

(3" -17)]N =0,

(4=-27)]N=0,
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4. Analytic formulas for some of the integrals

It turns out that the recurrence relations described so far are sufficient
to reduce all the integrals of the type (2) and (14) to products of one-loop
integrals and three types of two-loop integrals for which we have closed
formulas:

M(0,@,0,8,7) = (-1)}FoFh+y
F(a+ﬂ+7—D)F(§Q—a)I‘(a+[3—%)1‘(,”_7_%)
r@rmr(2)rea+p+y-0)
M(a,B,7,6,0) = (-1)1+a+ﬁ+1+sr (% —ﬂ);é)%r—(;y)):(gf +q- %)
XI‘(2D—2a—2,3—27—5)p(a+ﬂ+7+6_p)
I’(D~ﬁ_7)p(§_22_a_ﬂ_7_6) ’
N(1,1,1,1,1) = I(¢), -

X

)

where in the last formula we will only need the value of I(0) at D = 4
dimensions, for which this integral has been calculated by Broadhurst [10].
For completeness we also give a formula for a single-loop integral:

dPk
k2« (k2 + 2k - p)P

S(a,B) = /

r(a+ﬁ-€)r(p—2a-ﬁ)

= ir ¥ (-1)* P (p?) §—o—F FTAT(D-p-a) O

5. Calculation of the anomalous magnetic moment

To fourth order in the coupling constant e the contribution to the
anomalous magnetic moment of the electron comes from diagrams shown in
Fig. 1. Diagrams (1lc-f) should be accompanied by their mirror reflections,
not shown in the figure. We will not consider here the effect of the vacuum
polarization effect on the photon propagator which we have discussed in a
previous paper [9].

The GBGS method has been designed to compute propagator type di-
agrams. In order to use it for the anomalous magnetic moment we note
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P
q
(a) (b) (c)
(d) (e) $)]

Fig. 1. Feynman diagrams for the two-loop correction to the magnetic moment of
the electron

that we only need values of diagrams in Fig. 1 for an infinitesimally small
external momentum g, for which we can expand the propagator:

1 _prdthim . Bt itm
P+ 4+ Fr—m K242k -p VIR ¥ 2k p)?

so that all the denominators depend only on one external momentum p.
Since the electron is on-shell we can express all the integrals in terms of N—
and M —functions discussed in the previous section. We are now going to
discuss the treatment of divergences in the loop integrations convenient for
this calculation.

Diagrams of the types (1b-d) contain infinite one-loop corrections to the
propagator and vertex functions. In order to get a sensible finite result we
carry out the renormalization procedure [12]. In the case of the vertex this
consists in subtracting from it its value with electron legs taken on-shell
and momentum transfer equal to zero. For example, the unrenormalized
amplitude corresponding to the diagram (1c) is, in the Feynman gauge (for
simplicity we drop the four-spinors representing the electron):

Pk 1 1 w1
137 v
(2m)P k2" Pt ftg-m’ prE-m
where the unrenormalized vertex function is defined by:
dPk; 1 1 1
A ki k1) = 2/-—-———. B "
Pt hib) = | P B Rt Bom F B om

(18)
and the renormalized one is obtained by making the following subtraction:

AR (p,p+ k3 k) = Aa (p,p + k5 k) — Ao (o, P03 0) , (19)

(16)

M, = e Ao (P’p + k; k) ’ (17)
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with p2 = m?.

Similarly, the renormalized propagator is defined by:

oy
I™(p) = 2(0) - (o) - ($-m) 22 (20)
P=Po
Thanks to the Ward-Takahashi identity:
oy
Ao (porpo;0) = -220)| (21)
0P ip=po

part of the infinities cancels after adding diagrams (1¢,d) and their mirror
counterparts to the diagram (1b). What remains are the mass counterterms
Z(po), represented by (1le), and half of the divergences of the vertex func-
tions (1c), for which the subtraction is depicted by (1f). We now explain
briefly how these two diagrams are conveniently evaluated.

The mass counterterm is

1—253 — 2¢ F(G)

Z(po) = e*m 1-2¢ (4#)9‘
- dPk
= e2m3 26/ 1 5 (22)
1-2¢J (2x)Pi (k2 + 2k-p)

which corresponds to a tadpole diagram inserted in place of the cross in the
figure (le), and this is just a product of one-loop integrals (15). The contri-
bution symbolized by (1f) is a product of the wave-function renormalization

constant:
32(;)) F(l + e)
08 Lo (4m)% (€ ¥ 4) )

and the one-loop correction to the magnetic moment, which in (4 — 2¢)-
dimensions is:

142
~Ci() = —

T ra+ ok (24)

2] —2¢
After this discussion it is clear how diagrams (la-e) are expressed in
the form of integrals (2) and (14). To perform this calculation we have used
symbolic manipulation programs. FORM [13] was used to carry out the
Dirac algebra, and the integrals were calculated using Mathematica [14].
In Table IT we have summarized the results of the calculation for each di-
agram in Fig. 1 (together with their mirror counterparts, where applicable),
in the limit ¢ — 0. We have used the value of the integral N(1,1,1,1,1) =
I(0) = #%In2 — 3((3), computed in [10]. For the sake of completeness we
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TABLE II
Contributions of diagrams in Fig. 1 to the anomalous magnetic moment of the
electron.

Diagram Coefficient of (%)2

la 3 - 21(0) + B«?

1b e+ 3+ L

1c - v -1+ 11(0) + Ln?
id % -+ % - 1‘—81’

le L+ -1

if —&+3y-2

Vac. pol. M ix?

Total B+ &7 +3¢@) - j=*In2

have added in Table II the contribution from the vacuum polarization dia-
gram calculated in [9]. The total correction is the same as the one computed
by Sommerfield (3] and Petermann [4].

It can now be seen that the GBGS method greatly simplifies the calcu-
lation of the two-loop correction to the magnetic moment of the electron. In
principle it can also be extended to calculations of three-loop diagrams and
first steps in this direction have been taken [11]. Calculation of two-loop
corrections to the decay of a heavy quark can become another important ap-
plication. This is worth studying both in the effective field theory approach
[15] and in the exact QCD in the limit of the very large quark mass.

Note added: After this work had been completed we learned about
Ref. {16}, in which two loop contribution to the anomalous magnetic moment
of the electron is evaluated using the FORM program SHELL2.
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