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Recent work on the derivation of the nucleon-nucleon potential from
interacting solitons is discussed. Solitons emerge from chiral effective the-
ories which represent QCD at low energy. A general introduction is given
to such theories, their classical solutions and the inclusion of quantum
effects. Results from various studies of the two-soliton interaction are
discussed which are largly based on numerical evaluation. After semiclas-
sical quantization via a restricted number of collective coordinates the
resulting nucleon-nucleon interaction compares well with phenomenologi-
cal potentials.

PACS numbers: 13.75.Cs

1. Introduction

More than fifty years ago Yukawa proposed that the force between two
nucleons is mediated by a meson whose Compton wavelength is sufficiently
small to explain the short-range nature of the nucleon-nucleon (NN) inter-
action [1]. That meson was later identified as the pion. Yukawa’s idea has
proven an extremely successful starting point for understanding many phe-
nomena in nuclear physics. Inclusion of multi-pion exchange and massive
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vector mesons in modern meson-exchange potentials has led to a quantita-
tively accurate description of two-body scattering observables over a wide
range of energies [2].

As we know now, however, baryons and mesons are not elementary par-
ticles and the meson-exchange picture cannot explain their internal struc-
ture. The fundamental theory of the strong interactions is quantum chro-
modynamics (QCD), and the basic building blocks are colored quarks and
gluons. For the past decade it has therefore become a major challenge in
intermediate-energy physics to understand the meson-exchange picture from
these fundamental degrees of freedom. This is far from trivial since at low
energies quarks and gluons are strongly coupled and thus evade a pertur-
bative treatment. For further progress an observation by ’t Hooft [3] has
proven very useful. He argued that, in spite of strong coupling, QCD has
an expansion parameter 1/Ng, where N¢ is the number of colors. This has
led to the hope that the theory simplifies in the large- Ng limit. It turns out
that such a limit indeed exists, and that for large V¢ QCD may be regarded
as a local theory of mesons and glueballs with effective interactions of order
1/N¢ [4]. To date no large-N¢ Lagrangian has been derived directly from
QCD; nevertheless, any candidate theory is greatly limited by the restric-
tions that it respects the symmetries and anomaly structure of the QCD
Lagrangian and reproduces meson phenomenology. The simplest version of
such a theory is realized by a non-linear chiral Lagrangian of interacting pi-
ons. It shares an important property of the non-perturbative QCD vacuum,
namely, the spontaneous breakdown of chiral SU(2); X SU(2)g symmetry.
Another feature of the vaccuum is the spontaneous breakdown of scale in-
variance due to the presence of a gluon condensate. This introduces an
effective gluonium field whose coupling to the pions is determined by the
trace anomaly.

In large-Ng effective theories baryons will appear as solitonic excita-
tiens of the meson field as was already realized by Skyrme around 1960
[5, 6]. These field configurations are stabilized by the geometrical proper-
ties of maps from ordinary space into the group space of internal symmetry.
The characteristics of these maps lead quite naturally to the concept of a
conserved baryon number B. Thus a baryon is described as classical soliton
which is stabilized geometrically: a topological soliton. In honor of Skyrme
such solitons have been dubbed “skyrmions.” The nucleon is a fermion and
its identification is made complete since spin and isospin are acquired by
the soliton through the quantization of collective coordinates, a well known
procedure from the many-body theory of finite quantum systems [7].

Starting from a solitonic picture of the nucleon as the proper realiza-
tion of QCD in the large-N¢ limit, the description of the nucleon-nucleon
potential needs to consider soliton interactions. Such studies are interesting
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non-linear dynamics problems in their own right with applications in many
branches of physics. To obtain the the NN potential is particularly inter-
esting since the internal baryon structure and interactions are put on an
equal footing. This is not possible in conventional meson-exchange models.
As one can imagine, however, a solitonic description is quite challenging.
First of all, the classical field equations are non-linear and one has to apply
advanced numerical techniques to deal with this properly. Secondly one
needs to account for the quantum nature of the interaction which is even
more difficult. Part of the problem arises from the fact that the interaction
energy at large and intermediate distances is small compared to the nucleon
mass.

I shall try to introduce the complexity of the problem and to display
some attempts to deal with it. Section 2 starts by introducing effective chi-
ral Lagrangians as a minimal realization of QCD at low energy. Solitonic
solutions corresponding to a single baryon, B = 1, and its semiclassical
quantization will be discussed in Section 3. Having discussed the basic
concepts I then move on to the B = 2 sector. Section 4 starts with a discus-
sion of collective coordinates necessary for semiclassical quantization [8] and
their specific choice for the problem at hand. This leads to an adiabatic in-
teraction hamiltonian whose exact treatment requires nontrivial numerical
evaluation. . A particular approximation, known as the “product ansatz”,
will be discussed in some detail since it guides such evaluations. It has
a serious deficiency, however, the missing of the medium-range attraction,
which is vital for the binding of nuclei. This problems can be traced back to
inadequacies at shorter distances. For a quantitative assessment I discuss
in Section 5 exact classical B = 2 configurations obtained through numeri-
cal analysis. First some time-dependent simulations of soliton collisions are
presented which help guide intuition on the complexity of such events as
well as the proper choice of collective coordinates. Time-dependent solu-
tions are very difficult to quantize, however. Static methods via collective
coordinates are more developed at present. These require exact static so-
lutions with Lagrange constraints from which classical potential energies
and inertial masses for selected configurations are extracted. From a lim-
ited number of such configurations, a relatively straightforward quantization
scheme can be implemented. Such calculations represent the state-of-the-
-art for the solitonic description of the NN-potential, and they begin to
make quantitative contact with phenomenological potentials.

2. Effective low-energy Lagrangians

The exact form of the large-N¢ effective Lagrangian is not known. At
present, one has to rely on models which are guided by the symmetries
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and the anomaly structure of QCD. The most relevant symmetry in this
connection is chiral symmetry. In the limit of massless quarks the QCD
Lagrangian is invariant under a SU(Ng)1, X SU(Ng)g chiral transformation,
where N; is the number of flavors. For the case of two flavors this symme-
try is respected in nature to a good approximation. At low energies it is
spontaneously broken, giving rise to nearly massless pions.

2.1. The non-linear ¢ model

A natural starting point is therefore the o-model [9]
Lo =07 0¥x + Ou00*a) + V(x? + 0%). (1)

For spontaneously broken symmetry the potential V(c?) acquires a mini-
mum not for ¢2 = 0 but at some finite value ¢? = #? + ¢2. The constant
c is to be identified with the pion weak decay constant (fr = 93 MeV) .
When the fields are restricted to lie on a 3-sphere in the space of internal
symmetry as

w*(z) + o(z)’ = f7, (2)
we can combine the four-vector (w, o) at each space-time point z = (,t)
into an SU(2)-matrix

U(z) = exp (3_1_'_;15(_:0)) . (3)
Then Eq. (1) becomes
_1f2 eyt
Ly = T'I‘I(BFU(? ul), (4)

which is the non-linear o model for massless pions [10]. The vacuum is
described by U = 1, that is, ¢ = fr and # = 0. Even though £, is
invariant under chiral transformations, the vacuum is obviously not. Chiral
symmetry is spontaneously broken. To be more realistic a pion mass term
should be added. A non-vanishing m, breaks chiral symmetry explicitly
and can be understood iri terms of small but non-vanishing current quark
masses together with a non-zero value for the chiral condensate of the QCD
vacuum. Expansion around the vacuum value, U =1,

. 2
U=1+iTJ;:-%(Tj;W") 4. (5)

gives
Lx= 30,7 87 - Imin? +0(x), (6)
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which describes a system of weakly self-interacting pions and is well founded
in low-energy xx-scattering phenomenology.

2.2. Inclusion of vector mesons

It has long been known from Vector Dominance that vector mesons
play an important role in strong interaction physics. They can be incorpo-
rated following the basic ideas of Sakurai [11], who attempted to model the
strong interaction as a massive gauge theory, before the advent of QCD .
Starting from the non-linear o-model (4) vector mesons are introduced as
gauge bosons of a local U(2)y, x U(2)gr symmetry by definiug the covariant
derivative as

8,U — DU = 8,U — igALU +igU ARy, (7

where Af“'R = r-A}"'R and g is the gauge coupling. From large N, counting
it is of order 1/\/Ng. The vector field V,, and the axial vector field 4, have
been expressed as the left- and right-handed gauge fields AL =iV, + A,)

an A, R = 1(V, - A4,). Kinetic energy terms are then added to the gauged
o as
Lkin = “I’I&(F;I:VFI‘:V FR F;w)‘ (8)

where
FiR =08,A;" — 8, ALR — ig[aLR, AR, (9)

In accord with the requirements of low-energy phenomenology, gauge
invariance is broken explicitly by further adding mass terms. Therefore
this theory is not a fundamental gauge theory. The mass parameters are
to be chosen so that the particular form of the Lagrangian conforms to
conventional theories of vector mesons.

There is a subtlety that needs to be taken into account. Witten [4]
observed that chiral effective Lagrangians of the type above possess an ex-
tra discrete symmetry that is not a symmetry of QCD. Consider £, (4)
for simplicity. Under parity transformation, QCD requires the pion to be
a pseudoscalar Pwx(z,t) = —n(—=,t). In the meson theory this is accom-
plished by defining the parity operator as

P:z—-z U-U (10)

The Lagrangian (4), however, is invariant under # —» —z and U — Ut
separately. This unwanted extra symmetry can be eliminated by adding
the so-called Wess—Zumino term Lwz, as Witten suggested. At the same
time, this term reproduces the non-abelian anomaly structure of QCD. The



1168 ’ J. WAMBACH

baryon current By, can be derived from it via Noether’s theorem. Witten
showed that for consistency the Wess—Zumino term must be proportional to
an integer and that this integer is to be identified with the number of colors
N¢ [13]. This term is present in any realistic extension of the non-linear
sigma model that includes heavier mesons and/or strangeness.

We are now in a position to write down a complete Lagrangian which
respects chiral symmetry and is in accord with vector dominance. For two
flavors the gauge bosons are the w,p and A; mesons and the vector fields
are given by V, =w, + 7-p, and 4, = 7- A,. Including the pion via the
non-linear o-model, the full xwpA; Lagrangian is then

2
Lrwpa, = i—"’l‘r(D“U'D“UT) +imif2 (U -1)

2
m
=3 Tr(wj, + Py + AL,) + —F Tx(w] + o} + A}) + NoLwz. (11)
where the kinetic energy terms are defined as

w“y = a“wy - ayw“ y

ppu =0OupPy — 3uP,4 + gP,; X Py

Substituting the covarinat derivative (7) one finds a cross term whereby the
pion and the A fields mix in the vacuum. A proper diagonalization yields
the physical fields

1 9fx -
A, =A, - =0, =Zn, 13
u u m?, um n (13)
where
. g2 f2 1/2
Jx =2 fx, z7' = (1 + —2") ’ (14)
my
and generates the A; mass difference my4 = Z~1my, that is,
- 1'n,2
-y = *Fa (2R)). (15)
my _

This Lagrangian fits the mesonic sector quite well.
2.3. Derivation of the “Skyrme term”

One can derive the so-called “Skyrme Lagrangian” [5] under certain
approximations. This Lagrangian consits of the £, supplemented by a
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term L4 which is of fourth order in ,U and has historically played an
important role. It is still used as a somewhat crude model. The strategy is
to eliminate the A, field by imposing a chiral constraint on the gauge fields.
This in turn allows the elimination of the p and w mesons by neilectmg their
kinetic energies. In order to eliminate the axial meson 4, = A as an
independent field, one can assume that the fields U and AL R are related
through a gauge transformation to a configuration with no pseudoscalar or
axial vector mesons present. This amounts to a gauge fixing or equivalently
to imposing the chiral constraint

A =vaRyt 4 iva,,vf. (16)

The effective chiral Lagrangian for 7, p and w mesons is now obtained by
the substitution of (16) into the Lagrangian (11), which yields

Lxpw = &-Tr(a Ua“Ut) + 2 FAm2 Te(U - 1) - l’I‘r(u."“,,, + p“,,)

+im}wl + my, Te[r-p, - ;(ftauf — 8,2 + NoLwz, (17)

where £ = U'/2. One can extract the prx interaction term by expanding
around the vacuum U = 1, which yields the coupling term

Ep';r‘;r = 4 fzpp. (1l' X al“’r) - 2gP‘l’1rpy. (ﬂ. X a“") (18)

The choice goxx = g leads to the KSFR relation [14], g2 = m?,/2fZ, which
is well fulfilled in nature.

For energies small compared to the vector meson mass, the vector fields
can be eliminated as dynamical fields as well. By taking the limit my — oo,
one can neglect the kinetic terms in the Lagrangian since

- p =—(£Ta“e a,t€hy,

0y _ gNc
wp =T, Do (19)

where the last equation follows from the explicit form of the Wess~Zumino
term [15]. When substituted back into Lxpu, the vector fields (19) yield
terms of higher derivatives in U. The lowest-order one is

L4 —-Tr(p“’). play) = 32 — T8, UUt,8,UU1?, (20)
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which is precisely the fourth-oder term in the Skyrme Lagrangian. It can
be seen that it arises from pxx coupling.

2.4. Gluonic degrees of freedom

The mesonic Lagrangians discussed above respect chiral symmetry and
the non-abelian anomaly structure of QCD, but they do not correctly reflect
the behavior under scale transformations. Classically, the QCD Lagrangian
(with massless quarks) is invariant under scale transformations z# — e*z#,
with A a real dimensionless constant. The corresponding conserved current
is the dilaton current §,, = T,,z", where T,, is the energy-momentum
tensor. At the quantum level, however, §, has a non-vanishing divergence
(16, 17]

oS, = (ﬂ(g)) Fo, Fev (21)

where 8 is the QCD beta function and g is the coupling constant. Since
d*#S, = Tf, the trace of the energy-momentum tensor, Eq. (21) is called the
“trace anomaly”. The anomalous scaling behavior of QCD can be restored
at the effective Lagrangian level. One introduces a singlet scalar field x(z)
[18) such that 8#S, = —Bx*, where B is a constant. According to Eq. (21)
its vacuum value xo directly relates to the gluon condensate in the non-
perturbative vacuum. Fluctuations in x around xo may be interpreted as a
scalar gluonium (or glueball) field.

A minimal model starts from the Skyrme Lagrangian and is given by
[19]

f‘x 1’ 1 T t 2
» 2 14 —
L=08,x0"x + = (XU) ™0,U8"U1) + 35 ™0, UV, 8,0T1)

m2 f2 3
+ ;f" (i";) THU - 1) - V(x). (22)

Apart from the small pion mass term the interaction between the gluonium

field and the pion is solely due to the (x/x0)? Tr(8,U8*UT) term, which
describes the restoration of the spontaneously broken chiral symmetry in
regions where x deviates from xo. The effective potential V() is uniquely
determined by the vacuum energy density Bxo/4 (U = 1) and the condition
that the minimum should occur at x = xo [19]

V(x) = BEX[1+ 4x* n(x/e*)]. (23)

The two parameters B and xo are obtained from the gluon condensate

(of (5"5) F2,FE¥|0) = — By} (2)
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and the glueball mass [20]

2 [0V
= o

which, together with fy and g, specify the parameters of the Lagrangian.

= 4BX% 3 (25)
X=X0

3. Finite energy confligurations

As was first noted by Skyrme [5, 6], effective chiral Lagrangians have
a much richer structure than suggested by the meson phenomenology. He
realized that there exist classical finite-energy field configurations with non-
trivial topology. The components of the ¢-field entering in (3) play the role
of angular variables which label points on the unit 3-sphere $° embedded
in the four-dimensional space of internal symmetry. For finite energy, the
field configurations must be such that U(z) approaches the identity matrix
at spatial infinity. This is most easily seen for the non-linear o model but
also holds for the other Lagrangians. The static energy

E=- /dszﬁa = %ﬁ/d%(VU)z (26)

is obviously finite for U(z) — 1 as || — oo. Thus all points at spatial
infinity are identified with a single point, and any finite-energy configuration
defines a map of the 3-sphere S3, onto the internal 3-sphere S3. The set
of all such maps falls into different sectors of equivalent maps which are
characterized by a topological index n. This index determines how often §3
is covered by a given mapping and is called the “winding number”. It is
a constant of the motion. One may define a“topological current” B* such
that n is equal to the space integral of its zeroth component. This current
has the form

B* = —

= e Triwte, vyuta,u)wta, vy, (27)

and the conservation law 9,B# = 0 is trivially fulfilled due to the antisym-
metric character of the Levi-Civita tensor ¢#¥??. It was Skyrme’s inspired
suggestion to identify the winding number with the baryon number

B = /d%sn(z) =n, (28)

an identification which was later put on firmer ground by Witten [12, 13].
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For B = 1, the static field U = cos(¢/fx) + iT+ @ sin(¢/ fx) constitutes
a map which covers $3 once. Then the unit vector ¢ = ¢/|@| as a function
of # must cover the unit sphere $? in isospace as z takes on all values in
3-space. The most simple choice to achieve this is

d(z)=2. (29)

Furthermore, a purely radial dependence ¢(z) = fxF(r) will result in min-
imal total energy. This then leads to the ansatz

Uy = exp(ir- &F(r)). (30)

Because of its peculiar geometrical structure it has been termed the (de-
fensive) “hedgehog”. By explicit construction of the baryon current one
immediately finds that

B = ~{F(0) ~ F(co)] (31)

which implies F(0) = x and F(oo) = 0 for B = 1.
The full profile function F(r) is determined by minimizing the static
energy with respect to F. For the Skyrme Lagrangian one has

2 02 2 .2

_ 2| . ;2 , 2sin® F 1 sin“F (sin® F 2
M[F]“‘"’/"" [7"(”' +T)+2_97_}2_ )]
(32)

which is to be interpreted as the mass of the hedgehog, My;. In the language
of large-Nc QCD, fr and 1/g are of order /NG, so the hedgehog mass
is of order Nc. Minimization with respect to F then yields a non-linear
differential equation

2
(f’ + 2 sin? F) F" + 27F' +sin2FF" — sin 2F(1 + s";zF ) =0 (33)

in terms of the dimensionless variable ¥ = g fxr. Numerical solution with the
proper boundary conditions results in a monotonically decreasing function
of 7 (Fig. 1).

When a finite pion mass is included, its large distance behavior is of the
familiar Yukawa form

F(r) - g(l + myr)exp(—-mxyr) as r— o0 (34)

for a point field from a baryonic source. Given F(r) it is then straightfor-
ward to calculate the static energy. With the empirical values fr = 93 MeV
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Fig. 1. Bag formation when gluonic degrees of freedom are included in the effective
Lagrangian via the trace anomaly. The B = 1 profile function F(r) and the
normalized glueball field x(r) are shown for several values of the gluon condensate
and for a glueball mnass m,, = 1.5 GeV. The largest local depression of x is found for
small condensate values as derived from mass fits in the MIT bag model. Lattice

gauge simulations and QCD sum rules predict smaller gluon effects (dotted and
dashed lines).

and g ~ 6, one obtains My ~ 1.1 GeV. The more sophisticated Lagrangians
give rather simialr results. One interesting feature emerges as meson-gluon
interactions are included so as to satisfy the trace anomaly. Then the for-
mation of a B = 1 soliton is accompanied by a local distortion of the gluon
condensate, a “bag”. The depth of this bag strongly depends on the value
of the gluon condensate as seen from Fig. 1. It has important consequences
for the nucleon-nucleon potential to be discussed below.

3.1. Time-dependence and quantization for B = 1

The static B = 1 soliton, the “skyrmion”, should not be identified with
the nucleon or the A-isobar since it does not have a well-defined spin or
isospin. Effects due to angular momentum require a quantum mechanical
treatment [21]. For quantization we must consider time-dependent solu-
tions. Only then can non-vanishing canonical momenta be constructed. In
general it is difficult to obtain time-dependent solutions in a non-linear field
theory. Some cases are obvious, however. One such case is the linearization
around U = 1, which leads to weakly interacting pions in the B = 0 sector,
as has been mentioned above. Similarly a linearization around the static
hedgehog Uy = exp(iT- ¢/ fx) for B = 1 can be performed which will
lead to small oscillations describing x N-scattering [22]. Due to the symme-
tries involved, there occur modes that are not confined to small amplitudes
since they have no restoring forces. Leaving the classical energy unchanged
there are six such “zero modes”: three corresponding to uniform translation
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and three to uniform rotations. The rotations are connected to spin and
isospin. Explicitly, the B = 1 zero modes are characterized by the following
transformation

U(z,t) = A(t)Uu(=z — R(t)Al(t), (35)

where A is a SU(2)-matrix which represents a global rotation in isospace.
Such a rotation causes an orthogonal transformation on the isovector ¢-
-field. For the hedgehog configuration (30), the same can be achieved by
an z-space rotation of the coordinate system. Thus we expect a correlation
between spin and isospin for the skyrmion.

Inserting (35) into the Lagrangian, one obtains kinetic energy contribu-
tions due to the time-dependence. For the rotational term it is convenient
to write A(t) as

A(t) = ao(t) + iT- a(t); (ag,a real functions) (36)

with the constraint 2?:0 a? = 1. Up to second-order in the time-derivatives
one then finds

3 3
L=—MH+%MHZR?+2AHE&?. (37)

t=1 =0

The translational kinetic energy involves the classical soliton mass, and Ag
denotes the moment of inertia in the rotational energy.

To construct the hamiltonian one now treats the functions R; and a; as
canonical variables. The conjugate momenta P; and p; follow immediately

as
8L . oL .
P; = bRT, = MuR;, bi= 5&: = 4/\}{(11, ’ (38)
and hence

3 3

. 1 1

H=PRi+piai-L=Mg+——> PP+ _—> p}. (39

iRi + pia; H+2MH 2 i +8AH izopg ( )

Imposing the usual commutation relations [P;, R;] = i§;; and [p;, a;] = i8;;
the quantum hamiltonian is

3 3
1 a2y, 1 9?
H=Mat o i=1(_azz§) T n zzﬂ('aa?) ' (40)

The wavefunctions for translations are plane-wave states. The construction
of the rotational wavefunctions is more involved. One should notice that
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due to the constraint Ei-’:o a? = 1, the rotational energy involves a four-
dimensional Laplacian constrained to §3. The corresponding rotation group
is O(4), which has six generators L;;. In analogy with ordinary rotations,
these may be written as

. 0 0
L;; = ﬂ(‘“é}; - a; 8_a,) . (41)

Then

3
82
Z(_'a_a_z') = (L3, + L3, + L3,) + (L3, + L3, + L3,) = L? + K?. (42)
=0 i

The combinations 1(L + K) and 3(L — K) form two independent SU(2)-
-representations which we identify as the angular momentum J and the
isospin T

=L +K); T=yL-K). (43)

Finally, in the center of momeritum frame of the skyrmion
H = Mg+ ——(ﬁ +T%). (44)
The eigenfuntions are labelled by |JM ;T Mr) with energies
Mjr = My + —(J(J +1)+ T(T + 1)). (45)

As expected, J and T are not independent. It can be shown from the
definition of these operators in terms of the generators L;; that JP_T? = 0.
Hence

Myr = My + —(J(J +1)) = My + ;HmT £1)).  (46)

A convenient parameterization of the eigenfunctions which will be useful
below is provided by the Euler angles of isorotations afy as Wigner D
functions -

2J +1 ]/2 (J)

(47)
where J = T can take any integer or half-integer value. The angles a3y are
defined here as

A =exp (—i%—a) exp (—i%zﬂ) exp (—i%a'y) . (48)

n(4) = (aBlJ = T, My, My) = (~1)7+Mr (
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Observed baryons have half-integer spin; for example, the nucleon has J =
T = 1/, and the A-isobar has J = T = 3/,. It can be shown in the context
of the SU(3)y, x SU(3)r extension of the model — where the strangeness
flavor is included — that the fermionic character of the quantized baryon is
indeed compulsory [13]. Given the wavefunctions, static baryon properties
like charge radii, magnetic moments, and so on, can be calculated. Such
observables involve vector and axial-vector currents whith are constructed
as Noether currents of the SU(2);, x SU(2)r symmetry. In general, the
agreement with experimet is quite satisfactory considering the small number
of parameters [21].

4. The two-soliton system

The basic problem is to extract from a description of interacting soli-
tons a nucleon-nucleon potential which depends on only a few coordinates
— namely, the positions, spins, and isospins of the two nucleons. In the
single baryon case I have indicated how semiclassical quantization allows a
truncation in the number of degrees of freedom of an isolated skyrmion to
six collective modes which generate the nucleon’s coordinates. It becomes a
much more difficult procedure to identify the relevant collective coordinates
when two solitons are interacting since interactions entail a distortion of
each soliton’s structure.

4.1. Collective coordinates

For two solitons there are three known unconstrained, time-independent
solutions to the equations of motion. First, there is a B = 2 hedgehog
solution

Unz(=z) = cos F2(r) + iT- & sin F(r), (49)

where the label 2 distinguishes this from the B = 1 solution. The boundary
conditions F2(0) = 27 and F(c0) = 0 guarantee the baryon number is
two. The energy of this solution is My, ~ 3My. Evidently, this hedgehog
is unstable. It has an “onion” structure, consisting of one spherical B =
1 object wrapped by another [23]. It represents an extreme in the two-
skyrmion interaction, and should be of little consequence for low energies.

Second, there is the minimum-energy solution, which may be obtained
from numerical relaxation of the full static equations of motion on a dis-
crete spatial lattice. This stable solution was discovered independently in
Refs. (24, 25]. In accord with a conjecture by Manton [27], which was mo-
tivated by studies of a two monopole system, the minimum-energy B = 2
solution has the shape of a torus. It will surely be significant for any semi-
classical study of the NN interaction. In particular, it is the leading-order
1/Ng contribution to the deuteron [26].
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The third static B = 2 solution is the trivial solution
Uoo(z) = A1Un(z — R1)AlA;Un(= - R3)AL, (50)

where Uy(z) is the B = 1 hedgehog solution, the A; ; are SU(2) matrices
giving the orientation of the first and second hedgehog in isospace, and the
relative separation |R; — R3] is infinite. This is an asymptotically stable
solution. Its energy is that of two hedgehogs.

Clearly, one may quantize the asymptotic solution by promoting the
collective degrees of freedom {A4; 2, R; 2} to dynamical variables — for these
twelve collective coordinates here describe zero modes of non-interacting
hedgehogs. In the limit of infinite separation, then, the quantized two-
skyrmion system consists of products of B = 1 wavefunctions

Y(N1, N2) = Yayn, (41, A2) exp(iPy - Ry)exp(iPz - Rz),  (51)

YA N5 (41, A2) =
JEITDERTD s, ), ). (62

As the skyrmions move together, however, the system will depend on the
variables C = A}Az —— the relative isospatial orientation of the skyrmions,
and R = |R; — R3] — the spatial separation between skyrmion centers.
It is natural to select the twelve asymptotic zero modes as the collective
coordinates {28-30]. Such a description is problematic, however, because it
cannot be based upon simple static solutions to the equations of motion.
At finite separation, R = |R; — R2| and C = AIAz become dynamical
variables which describe non-zero modes.

Instead of attempting a quantization in the twelve asymtotic zero modes
it is more useful to identify the true zero modes of a general B = 2 configu-
ration. It is clear that for all seperations the system is invariant with respect
to spatial translations R7, spatial rotations B, and isospatial rotations A
of the field U:

U(z,t) » AU(D(B)-(z — Rr),t)Al. (53)

which yields nine global collective variables. These describe zero modes.
They move the system from the body-fixed to the lab frame. When pro-
moted to dynamical variables, the canonical momenta corresponding to
these global variables will be conserved. These are the total momentum
P, the total angular momentum J, and the total isospin T. In general, spa-
tial and isospatial rotations of the field describe independent zero modes,
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and there will therefore be no relation between J and T as there is for a
single hedgehog. One can now move the body-fixed frame which may be
chosen so that the two skyrmions are separated along the z-axis and so that
the skyrmion in the z > 0 half of space (call it skyrmion 1) is unrotated. In
the body-fixed frame the pion field depends on only the relative coordinates
as Uz p(=; R,C). While the relative isospatial orientation C is easily iden-
tified in this frame the separation R is somewhat problematic. Intuitively,
one would like to define R as the distance between the soliton centers, and
this is certainly simple enough when the skyrmions are far apart. As they
approach each other, however, the solitons distort; and it becomes difficult
to tell where each center is. Indeed, for the minimum-energy toroidal solu-
tion, one cannot even identify the individual solitons. One choice is to take
the separation to be the distance between the topological centers — that
is, the points where the field U(z) = —1. Another choice is to define the
separation in terms of the baryon number density as twice the rms radius

r=2(} / dszzzBo(z))]/z. (54)

At large separations, where (50) is valid, these two definitions are equivalent.
At small separations, however, they are quite different. For instance, the
torus corresponds to coincident topological centers — that is, zero separa-
tion according to the first definition. According to the rms radius definition,
however, the torus corresponds to a separation of ~ 1fm. Clearly, if one de-
fines the separation as in Eq. (54), it will require an infinite energy to push
two skyrmions with any relative orientation on top of each other. '

Suppose now that we know the two-soliton field in the body-fixed frame
Uz(=z; R(t), ¥(t)), where C = exp(ir- ). If the field is only slowly changing
in time through the collective coordinates R and -y — that is, the motion
is adiabatic. It is then possible to derive the interaction Hamiltonian (see
Ref. [31]) for details as

H = LP.M;)(R,C)P; + U(R,C), (55)
where §L
P; = 0. - iQj (56)

are the canonical momenta of the nine zero-mode coordinates of global mo-
tion plus the body-fixed frame coordinates. The two-skyrmion potential is
simply the static energy in the body frame

U= / P2V(Uyp). (57)
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According to the 1/N¢ expansion, the mass tensor M(R,C) and the po-
tential U(R, C) are of order Nc, while the momenta P are of order 1. Thus
the nucleon-nucleon potential will have O(N¢g) “static” contributions from
U and O(1/Ng) “kinetic” contributions from PM ™! P. The rotational ki-
netic energy is characterized by 1/Ay, and the translational kinetic energy
is characterized by the smaller quantity 1/Mpyg; so C may be considered a
“fast” variable with respect to R [29, 30]. This amounts to calculating a gen-
eralized nucleon-nucleon potential for R under the Born-Oppenheimer ap-
proximation by diagonalizing H in a set of asymptotic basis functions (52).
Because the Hamiltonian depends upon the relative orientation C = AIA;,
however, the state (j1,52) = (Y2, }2) with the lowest asymptotic energy
will not be a good eigenstate of the system; there will be an admixture of
(%, 32)y (3, Y2), and (3/2, 32) states. In the language of perturbation
theory, these are intermediate delta states in the nucleon-nucleon interac-
tion.

In the next section I shall describe such calculations in the Skyrme
model where, for convenience, the product ansatz is chosen. This ansatz is
not a solution to the equations of motion, but its use can nevertheless be
quite instructive. In fact, only recently have calculations appeared which
go beyond the product ansatz.

4.2. The “product ansatz”

Because of the nonlinearity, the equations of motion are difficult to
solve. For an exact treatment one has to rely on numerical techniques
which, the B = 2 sector, become quite tedious. It would thus be a great
advantage if one could somehow guess an accurate analytic form for the
field U, g. In particular, if we knew how the field depended on the collective
coordinates — and therefore on the derivatives of U, g with respect to R and
C — the evaluation of the Hamiltonian (55) would be greatly facilitated.
There has therefore been a long history of ansatz use in skyrmion-skyrmion
calculations. The most widely used is the so-called “product ansatz” (32,
33, 35, 49]. Already in the early 1960’s Skyrme suggested employing this
ansatz in which U, g is the product of two B = 1 hegdehog fields

Up(z) = A1Un(z — R1)Al A;Un(z — R;)A} (58)

for all separations R = |R| = |R; — R2|. This is clearly a good approxima-
tion at large R, for then one soliton should not feel the presence of the other.
A main advantage is its compact form, which greatly reduces the numerical
difficulty in extracting a nucleon-nucleon potential from skyrmions.

After the initial work by Skyrme who first calculated the static poten-
tial between two hedgehogs [6] Yabu and Ando [32] repeated the calculation
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in more detail, showing how to project onto states of good spin and isospin.
One finds that the static potential I in (55) gives rise to a one-pion-exchange
potential in the limit in which the two skyrmions are well-separated. Since
the product ansatz must be accurate in precisely this limit, one is guaran-
teed that the long-range part of the nucleon-nucleon potential is correct. Of
course, this is to be expected since the model has been designed to repro-
duce low-energy pion phenomenology. Substituting the product ansatz into
the Lagrange density and integrating over space, one gets a Lagrangian for
the twelve collective coordinates Ay, A3, Ry, R;. Under the adiabatic as-
sumption, time-dependence will enter only through these coordinates which
leads to the Hamiltonian (55) where M; ; and U are evaluated from the
product field U,. Taking then matrix elements of I{ between asymptotic
two-nucleon states and defining

UNN(R) = (N{N}|U(R, A} 4,)|N1N2) — 2My, (59)

where from Eq. (52)

(1)1t (1 1/2
(A1A42|N1N;) = —T'Dgiﬁ,gl(ﬁh )'D(._i/z,zz(AZ) ) (60)
there are only a small number of relative isospin orientations C which can
contribute to the matrix elements. After some algebra it is found that

UNN(R) = UO(R) + (71 - 72)[(01 - 02)Uro (R) + S12Urr(R)], (61)

where S12 = 3(o - ﬁ)(az . ﬁ) — o1 - 02 is the usual tensor operator. In-
terestingly enough, these three terms are known from phenomenological
potentials to give the strongest contributions to the nucleon-nucleon inter-
action. From a computational standpoint it is useful to note here that the
potentials U(®)(R), U, (R), and U,7(R) can be evaluated easily by fixing
C at three different values and computing the classical potential U(R, C)
from these. A convenient choice of these three orientations is given in Fig. 2.

With relatively small numerical effort, the product ansatz can also be
used for any separation. Jackson, Jackson, and Pasquier [34] and Vinh Mau,
et al. [36] were the first to do this, finding the central, spin-spin, and tensor
channels from Eq. (61) by direct computation. A general agreement was
obtained with conventional phenomenological potentials such as the Paris
potential. A striking difference is that ne intermediate range attraction
was found in the central channel. Since in conventional potentials it is
this attraction which is responsible for the binding of nuclei, this could be
a major failure of the Skyrme model. In fact, much work has gone into
correcting for this supposed failure.
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- a

Fig. 2. The three relative isospin orientations which enter the evaluation of the
NN-potential in the product ansatz to leading order. The left most configuration
corresponds to C = 1, the next to C = irs and the right most to C = ir;. In an
exact treatment the latter leads to formation of a torus at small separation.

One improvement is to consider also the kinetic term in Eq. (55). Oka
[37] and Odawara, Morimatsu, and Yazaki [38] have considered the R-de-
pendence of the inertial nass resulting from the product ansatz, which im-
plies a momentuin dependence in the two-nucleon potential. Independently,
Nyman and Riska [39, 40] have considered the R- and C-dependence of
those terms in the mass matrix which give rise to central and spin-orbit in-
teractions. As described in Ref. [39], for example, when the two skyrmions
approach there is an enhancement of their moments of inertia; and this
translates into an attraction in the central channel. However, these terms
are in general small, and we cannot expect an O(1/N¢) attraction to over-
come an O(Ng¢) repulsion.

Another obvious improvement is to expand the basis used for the isoro-
tational variables. As mentioned above, the nucleon-nucleon states (60) are
not good eigenstates of the Hamiltonian (55) because U( R, C) mixes states
with different spin and isospin. Then the NN-potential becomes

(NN'|H'\NN'YNN'|H'|\NN') +
Z Eppr —2MN

VNN = (NN'|H'|NN') -
NN!'#£NN!

(62)

where A denotes the spin-isospin states as given by Eq. (52) and H' is the
“intrinsic” (body-fixed) part of H. The energy differences £,/ — 2Mn x
1/Ay are of the order 1/N¢, however, so one cannot expect a perturbative
expansion to work very well when the mixing becomes appreciable. Consid-
ering only nucleons and deltas,? it does not require a great deal of numerical

1 Witten [12, 13] has argued that the only allowed generalized nucleon states
are those with isospin t < N¢/2, which for N¢=3 means only the nucleon and
the delta.
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effort to simply diagonalize the matrix (MiA,|H|N3Ny). Such a calcula-
tion has been performed by Saito, et al. [33] and DePace, et al. [41]. One
important result is that all six allowed local terms in the nucleon-nucleon
interaction are generated, so that the potential is now

VNN = VC(R) + VU(R)Gl o2 + VT(R)Sn
TP (V,.(R) + Vyo(R)or - 02 + V,.T(R)Sn) . (63)

State mixing thus produces three new terms and corrections to the three
terms which already exist from first approximation. Considering Eq. (62),
one can expect that the inclusion of intermediate states will produce an at-
tractive contribution to the central channel; and in fact a significant attrac-
tive contribution was found in Refs. [33, 41]. It is not enough, however, to
overcome the repulsion found from the lowest-order term (N N;[U/|NN3).

There have also been many other suggested improvements. Kialbermann
and Eisenberg [42] considered coupling to the Roper resonance — the breath-
ing mode of the hedgehog — as a possible source of attraction. Jackson
and Jackson [35, 43] have considered one-loop corrections from pion fluc-
tuations about the product ansatz. Others have argued that one should
consider extensions of the Skyrme model, either by including new higher
derivative terms in the Lagrangian [44-46], or by explicitly adding vector
mesons [47, 48] or a scalar “gluon” field [50] as described in Section 3. Of
course, all this precludes the possibility that the product ansatz simply gives
inaccurate results at short and intermediate ranges and that the nucleon-
nucleon potential obtained from exact solutions might, in fact, be different.
This is indeed the case.

5. Exact calculations

From the discussion in the previous section, it seems clear that one
must analyze the equations of motion numerically. At the very least, this
is necessary to determine the reliability of the various ansitze. There have
been two sets of approaches in this direction. One method is to solve the full
time-dependent problem. This is quite a difficult task if one wants to include
all the important degrees of freedom. Nevertheless, some progress has been
made in this direction. A second approach is to introduce constraints so
as to fix the collective coordinates, and then to solve the resulting static
equations of motion. The numerical effort involved in this second approach
is considerably less. Its validity relies on the assumption of adiabaticity;
that is the time-dependent motion can be parameterized in terms of a few
collective variables.
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5.1. Time-dependent numerical simulations

Time-dependent solutions of the classical field equations are useful in
visualizing the dynamics as well as guiding suitable approximations to rep-
resent it. In a non-linear field theory, however, it is quite difficult to obtain
such solutions. In most cases one has to rely on numerical methods. To see
how these methods work I shall discuss the Skyrme Lagrangian for simplic-
ity. It is convenient to rewrite the Lagrangian by introducing a four-vector

().

involving the chiral o field and the three isospin components of the pion
field. The fields ¥,, are subject to the constraint

1
¥l = (o’ +7%) =1, (65)
x
at all space-time points and the boundary conditions ¥ =1, ¥; 2.3 = 0 at
spatial infinity. The Lagrangian density then takes the form [24, 52, 53]
L= %(apwa)z + I}(an!pa)z(avspb)z - I;l'(au!paap!pb)z + %#(Wf - 1) . (66)

The constraint (65) has been added via a Lagrange multiplier u. Further-
more, dimensionless variables have been defined through the transformation

z, - az,, L—ea 3L, (67)

where a, the characteristic length, and ¢, the characteristic energy, are
written in terms of the two parameters g and fr as a = (frg)~! and
€= fx/g9. With fx = 93 MeV and g = 6.0, for example, one finds a = 0.35
fm~! and € = 15.5 MeV. Introducing conjugate momenta Il, = §£/6(8:%,),
we obtain the Hamiltonian density as

M = FHa Mo Ty + §(8:%a)Cas(0:%5) + §(0:%a)? . (68)
From this follow the first-order equations of motion

8:%, = M1,
0uIl, = 0:(Cop0i¥y) + 1% , (69)

which are well-suited for numerical time evolution. The symmetric 4 X 4
matrices M and C are defined as

Mab = [% + (ai!pc)z] 6ab - (aispa)(aispb) )

Cas = [§ - (0u21 b3 + (8,2)0,0). (10)
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There are several methods for numerical solution of the field equations (69).
A common way to proceed is to discretize them on a equidistant spatial
lattice and express spatial derivatives by a finite difference scheme. Imposing
the boundary conditions at the outer edges of the lattice and specifying
initial conditions, the system is advanced in time — usually via leapfrog
methods [54]. In terms of the known fields at previous times t — At and
t one obtains them at t + At. The leapfrog method may also be used as
a relaxation method for finding static solutions. Then the time variable is
interpreted as pseudo-time, and the momenta are set to zero after each time-
step. The system thus relaxes to the minimum energy field configuration.

A way to study the short-distance behavior in the B = 2 sector and
thereby test the validity of the “product ansatz” is to collide two solitons at
high relative velocity and small impact parameter. From the solutions of the
field equations quantities such as the deflection function (b), energy and
momentum flows, soliton deformations, and so on, can be obtained. Explicit
visualization of the non-linear processes exhibited by such “observables”
may then guide systematic improvements of the product ansatz.

(a) 120.00 tmsc | () 1,12 tmic
Ecna 157 MeV Ep 885 MeV
1:2.10 tm/c t:1.68 tmic

_

1:4.20 tmic

®

1:2.24 tm/c

t26.30 tm/c

1:2.80 tm/c

)

Fig. 3. The time-evolution of the baryon density Bp(z) in a soliton-soliton collision
at an impact parameter of 0.8 fm and two initial velocities vg/c = 0.4 and vo/c =
0.75.

— F———nad
1 im 1 im

After initial work by Verbaarschot, et al. [24] in two space dimen-
sions, collision simulations have been extended to three spatial dimensions
by Allder, et al. [53] and more recently by Crutchfield, et al.[55, 56].
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Two events from Ref. [53] for “defensive” hedgehogs (relative orientation
C = 1) at impact parameter b = 0.8 fm and initial velocities vg/c = 0.40
(Eem = 157 MeV) and vg/c = 0.75 (E.p, = 885 MeV) are shown in Fig. 3.
At the lower energy, after the collision the solitons recede in a direction per-
pendicular to the incident directions. This “90° scattering” has also been
found for zero impact parameter in the calculation of Crutchfield, et al.
[55, 56] for the most attractive initial isospin configuration (C' = i72). Here
the scattering goes through the torus as an intermediate eonfiguration: the
skyrmions approach along the z-axis, form the torus at closest approach
(with the y-axis the axis of symmetry), and recede along the z-axis. Pre-
cisely the same result is found for collisions in the § 2 s model in 2 + 1
dimensions studied by the Durham group [57]. It seems to be a generic
feature of topological solitons. Indeed, studies of monopole scattering first
led Manton [58] to suggest such a behavior for skyrmions as well.

At higher-energies the Lorentz contraction of the baryon density is
clearly visible and the inelasticity increases. Systematic studies of colli-
sion trajectories as a function of impact parameter allow extraction of the
deflection angle 6(b) and thereby of the classical cross section. The energy
dependence of 8(b) is found to be very pronounced [53]. One can also infer
the inelasticity as measured by the ratio v¢()/v; of final and initial velocity.
As expected it depends strongly on b, being smallest at low energy and in-
termediate b, where both rotational and vibrational degrees of freedom are
excited. At higher energies vy /v; rapidly decreases as the impact parameter
decreases, indicating that most of the relative energy then goes into intrinsic
excitations of the individual skyrmions.

While these types of numerical studies of the scattering problem are very
useful in building one’s intuition it should be kept in mind that the simu-
lations are entirely classical and therefore render results of limited validity.
For example, there are no thresholds for pion radiation and shape oscilla-
tions of scattered solitons for the classical system. A semiclassical treat-
ment, on the other hand, is computationally non-trivial and not without
conceptual difficulty — as is well known, for example, from time-dependent
Hartree-Fock calculations for heavy-ion reactions.

5.2. Constrained static solutions

Static calculations are numerically more stable and easier to employ
than time-dependent simulations. Several relaxation algorithms have been
used for static B = 2 skyrmion calculations [52, 26, 30, 59]. To employ
techniques such as these which find minimum-energy static configurations,
one must introduce constraints that fix the collective coordinates of the
two skyrmions. In the body-fixed frame, the relative ions-orientation can
be fixed via boundary conditions at the z = 0 plane; and the separation
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can be fixed via Lagrange multipliers [52] or by “pinning down” the points
where U; g = —1, the topological centers {25, 59]. In this way an explicit
dependence of the two-skyrmion system upon the collective coordinates may
be obtained.

Fig. 4. The baryon density Bo(z) for different separations R of two interacting
skyrmions. The two relative isospatial orientations C = 1 (left) and C = i
(right) are shown.

Now, as discussed in Section 4.1, the truncated Hamiltonian (55) for
the interacting B = 2 system contains a potential U(R,C) which depends
on only the separation R, taken here to be along the z-axis, and the relative
isospatial orientation C. The latter can be expressed as Euler angles via the
SU(2) matrix C = AIAg (see Eq. (48)). The product ansatz, as was shown
in Section 4.2, generates a potential & which is essentially determined by
three functions of R — one function corresponding to an isospin-exchange of
zero and the other two to an isospin-exchange of one between the skyrmions.
It seems reasonable — and is certainly numerically expedient — to also as-
sume for the exact calculations that the potential contains only these terms.
They are generated from the three relative iso-rotations C = 1,173,173 de-
picted in Fig. 2. The potential for these orientations may be found from
the exact field solution obtained through constrained minimization of the
static Lagrangian which holds the distance R fixed [51]. Such a calculation
has been performed by discretizing the equations of motion (69) on a spatial
lattice and relaxing from an initial B=2 configuration via the pseuto-time al-
gorithm described in Section 5.1. Fig. 4 displays the evolution of the baryon
number density as the two solitons approach in a given isospatial orientation
[51, 60]. The cases C =1 and C = ity are shown; the situation for C = i73
looks much like that for C = 1. As the solitons come close together sig-
nificant distortions in shape are observed. Consistent with time-dependent
simulations they shrink on approach for C = 1. As expected, formation
of the torus, the lowest-energy B = 2 configuration, is found for C = in.
This leads to an attractive interaction energy and provides medium-range
attraction already in first approximation, and may resolve a long-standing
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problem [51]. Indeed, the central, tensor, and spin-spin potentials obtained
via Eq. (61) from the exact calculations compare much better with the Paris
potential [61], for example, than do the corresponding potentials calculated
using the product ansatz [51]. As indicated earlier these calculation can
be improved by allowing for mixing through intermediate states [33, 41,
62, 60], which corrects the potential (61) still to leading order in 1/Ng. If
we consider the separation R as a “slow” variable such that the isospatial
orientations C adjust instantaneously (see Section 4.1), this implies diag-
onalization of the intrinsic part of the Hamiltonian (55) in the space of
asymptotic (R — oo) NN, NA and AA states. This Born-Oppenheimer
approach is a familiar procedure in molecular and nuclear physics. Most
conveniently, the states are written in an LSJT-representation labeled by
the conserved (total) isospin T, the total angular momentum J as well as the
orbital angular momentum L and the spin §. The model space splits into
subspaces that are either symmetric or antisymmetric under the exchange
of identical particles. In accordance with the Pauli principle we must select
the antisymmetric ones, where the states satisfy the standard selection rule
L+ 5+ T = odd. Indeed, insistence on antisymmetry under exchange of
two skyrmions [52] leads to the so-called Finkelstein-Rubinstein constraints
[63, 64], which correspond to the above selection rule.

1S°

V{R}(MeV)

U0 100 | 120 | 1@ | 160 | 180 200 90 100 120 140 160 180 200
Ritm) R {tm)
Fig. 5. The nucleon-nucleon potential in the 1 So (T = 1) and 2S5, (T = 0) channels.
The dotted lines indicate the lowest-order results, while the full lines include mixing

through intermediate NN, NA and AA states. The RSC potential is indicated by
the dashed-dotted lines.

One may follow a state at large R, where it is made up purely of nucle-
ons, to small R, where there is mixing. The energy eigenvalue of this state
as a function of R then defines the adiabatic nucleon-nucleon potential. At
R ~ 1fm, the mixing amplitudes are typically 2-4%, which is similar to
results from conventional meson-exchange potentials with intermediate iso-
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bars. As with the product ansatz calculation this inclusion of intermediate
states generates the three remaining allowed local terms in the nucleon-
nucleon potential — nanely, V;(R)7m - 72, Vo(R)o2 - 02, and Vp(R)S12
— as well as corrections to the three other local terms in Eq. (61). Re-
sults [62, 60] are shown in Fig. 5 for the 'Sy channel (left part) and the
36, channel (right part). They indicate that mixing leads to a considerable
increase in the attraction, particularly for 1.5y, and hence an improvement
when compared with phenomenological interactions (here the Reid soft core
(RSC) [65] potential). Similar agreement is achieved in other channels.

As discussed in Section 4.1 there are also O(1/N¢) contributions from
the translational kinetic term. These give rise to non-local spin-orbit and
momentumn-dependent terms, as well as to higher order corrections to the
local potential. Evaluation of the mass matrix M, however, is not a simple
task since it involves derivatives with respect to the relative coordinates
R and C. This means one must find field solutions for many values of
these coordinates, which increases the computational effort needed. For R,
this increase is net too great; and it has been found that the inertial mass
of an interacting skyrmion does not differ much from its asymptotic value
My until it nears the separation where the torus forms. This results in a
short-range momentum-dependent contribution. Determination of the C-
dependence of M — and therefore the spin-orbit interaction — from exact
numerical calculations, however, remains a problem for future study.

0.9fm 0.9fm

Fig. 6. Contours of constant baryon density Bo(z) and constant gluonium field
x(x) for different values of R, the separation of two interacting solitons. The two
relative isospatidl orientations C = 1 (left) and C = ir; (right) are shown.

Since after inclusion of intermediate states the skyrmion results become
quantitatively comparable to empirical nucleon-nucleon potentials, one may
ask what the role of gluons is — especially since the scalar gluonium field
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X is expected to give additional attraction [50]. This question can be stud-
ied within the minimal model of Schechter [19] (Section 2.3), where the
Skyrme Lagrangian is supplemented by gluon degrees of freedom to ensure
anomalous scaling behavior. In the B = 1 sector this leads to more or less
pronounced bag formation (Fig. 1). With the numerical machinery for solv-
ing the equations of motion in hand, it is possible to include gluons also in
the B = 2 sector; and some results have recently been obtained [60]. Fig. 6
displays the baryon density together with contours of constant x field at
half of its smallest value for the two isospatial orientations C' = 1,ir;. At
large separation each soliton is embedded in its own “bag”. These bags
begin to merge, however, at distances of ~ 1.5 fm; and the two solitons
then reside in a common bag. This leads to considerable increase in the at-
traction, especially for V(; [60], and it then becomes a quantitative question
which values of the glueball mass and the gluon condensate are compat-
ible with phenomenological interactions. It seems that shallow bags with
large values of the gluon condensate are to be preferred over deep bags, in
agreement with constraints from glueball decay into two pions [67]. After
inclusion of intermediate state mixing, such shallow bags further improve
the agreement with empirical potentials such as RSC or the Argonne po-
tential [66]. In general, the deviations are of the order of the differences in
the phenomenological potentials themselves.

6. Concluding remarks

I have dicussed how a realization of baryons as topological solitons of
an effective chiral theory leads to a nucleon-nucleon interaction which com-
pares well with realistic potentials. Such theories are modeled on QCD
and incorporate 1/Nc as the natural expansion parameter which charac-
terizes the semiclassical quantization of their solitons. Calculations have
been presented under the assumption that only twelve zero and nearly-zero
collective modes of the two-skyrmion system need be considered for quan-
tization. From consideration of the product ansatz, it was shown that the
theory produces the correct long-range OPEP form for the nucleon-nucleon
interaction. At closer range one must resort to numerical calculations. Then
an intermediate-range attraction in the central channel and a short-range
repulsion was found. Depending on the definition of separation, the core is
of similar range to that of the Paris potential. When intermediate states
were included, all six allowed local terms in the nucleon-nucleon interaction
are present, with relative strengths which agree with phenomenological po-
tentials. This is all at order N¢. It was shown that when the order-1/N¢g
kinetic terms which contain the inertial masses and moments of inertia of
the two interacting skyrmions are considered, spin-orbit and momentum-
dependent terms are also generated. The picture of nucleons as solitons
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thus yields a natural derivation of a qualitatively accurate nucleon-nucleon
potential, and the use of extended Skyrme models seems likely to produce
quantitative agreement with phenomenology.

The author have benefitted greatly from discussions and collaboration
with J. Verbaarschot, T. Walhout and H.W. Wyld. I would like to especially
thank T. Waindzoch for help with some of the calculations and figures as
well as for providing his most recent results on gluonic effects.
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