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The metricity condition and Lagrangian of Moffat’s pure nonsymmet-
ric gravity are shown to be incompatible with the assumptions and defi-
nitions used. The correct metricity condition and Lagrangian are derived
and some conclusions are drawn.
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1. Introduction

General Relativity (GR) is the simplest theory of gravity in agreement
with all the present day experimental data. One may wonder why then one
should try to formulate alternative or generalized versions of this theory,
without the need of explaining some new predictions. The motivations have
a theoretical character, and they arise essentially if one compares general
relativity with the standard model. The latter consists of the strong, weak
and electromagnetic forces based on the gauge group SU(3)®SU(2)®U(1)
and described by quantum relativistic fields interacting in a flat Minkowski
space-time. On the contrary, the gravitational interactions modify the ge-
ometrical structure of space-time. In fact, they are represented by a new
field, associated with the deformation of the geometry itself. Therefore,
while three quarters of modern physics (standard model) acting at a mi-
croscopical level are successfully described at present in the framework of
a flat and rigid space-time structure, the remaining quarter (the macro-
scopic physics of gravity) needs the introduction of a curved geometrical
and dynamical background.
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To overcome this unsatisfactory situation it seems appropriate to try
to extend the geometrical principles of GR in order to establish a possible
connection between gravity and the other interactions.

One alternative, initiated first by Einstein, is to consider the metric
guv to be nonsymmetric [1]. The goal of this attempt was to unify gravi-
tation and electromagnetism. In spite of the failure of this idea, Einstein
successors were convinced that there is a part of truth in it. In particular,
Moffat revived the problem but as a purely gravitational one [2-8]. Moffat’s
classical nonsymmetric gravitation theory (NGT) has been developed in a
series of papers showing the consistency of the theory with the present day
observational data [7].

In Section 2, we present briefly Moffat’s formalism of NGT. In Section 3
we give our comments on the theory and show the non compatibility of the
metricity condition and Lagrangian (given by Moffat) with the assumptions
and definitions used. The ambiguities are shown explicitly, and the correct
metricity condition and Lagrangian are derived. In Section 4, we draw our
conclusions.

2. Formalism

In the Moffat’s NGT, formulated successfully in a hyperbolic complex
space [4, 6-8], the fundamental metric tensor g,, consist of symmetric and
antisymmetric parts g(,,) and gj,,,) respectively, and takes its values in the
ring of hyperbolic complex numbers

Iuv = I(pv) T €9[uv) (62 =1). (2.1)

The tensor g,, is hyperbolic complex Hermitian §,, = guu (§uv is the
complex conjugate of the hyperbolic complex tensor g,,) and its inverse
g*Y is defined by

g“ugpu = gy“gvp = 5;; . (2.2)

A displacement Hermitian field I'}, (I.’:,, = I),) was introduced, defining
the variation of a vector components A* in an infinitesimal parallel transport

§A* = -I'}, A¥dz*. (2.3)

The affine connection W’;\ is defined by

v
W2, =T, - 36W,, (2.4)

where
W, = W[?;a] = %(Wl?a - W:u) . (25)
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The action in the case of the vacuum takes the form (given in Refs [4, 7])

§ = — 5= J(191)/2g* Ry (W)d*z, (2.6)

where G is the Newton’s gravitation constant, g = det(g,,) and R, (W) is
given by

Ru(W)=W~ - Lwh, +wbh y-whwe+wlwe,. (27)

A hyperbolic complex vierbein ej, obeying the following orthogonality con-
dition was also introduced [8]

e,’,‘ez =8, e eq =8, . (2.8)

Thus, the sesquilinear form of the tensor g, is given by

Guv = €%Eonap, (2.9)

where 7., is the Minkowskian flat space metric and éf, is the complex hyper-
bolic conjugate of the vierbein e}. The vierbein satisfies the compatibility
condition [8]

e;,a + (wa)ge; - Wg,,e; =0, (2.10)

where w, is the NGT spin connection, defining the covariant derivative D, ,
Doel = dge® + (wo)ied, (2.11)

and satisfying the following condition:
(wo)ea = ~(@o)ac - (2.12)

The assumption of the hermiticity of the affine connection Wf}, (Wi‘y
W;\“, as it is the case in Ref. [8]) implies that the compatibility condition
(2.10) is simplified to the form

Juv,e — gPVW;fa - gﬂpwzfu =0. (2'13)

Moreover, the curvature tensor and scalar curvature expressed in the holo-
nomic coordinates are given respectively by

RAG#V = (RuV)gei‘—’g (2.14)

and
R =e"&"(Ru0)as, (2.15)
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where
(Ruv)y = ([Dm DV]): = (“’V):,“ - (“’u):,u + [wpy wulj - (2.16)
Finally, the action of NGT, in the absence of matter, is given in Ref. [8] by
Snat = —1oeg J lel(Ruy)sebérbdtz, (2.17)

where |e| = (€€)!/2, with e = det(e%).

3. Comments

Taking the definitions (2.4) and (2.5) of the affine connection W), to-
gether with the hypothesis f:v = F,f‘“ (4, 7], one deduces immediately that

W), + W, =W, + 26w, (3.1)

Now, if one takes into account the hermiticity of WA,, (as it is the case in
Ref. [8]), we end up with vanishing W, (defined in equation (2.5)), which
implies automatically that

It is worth to mention that the latter relation contradicts all the fundamental
relations in NGT. So, one cannot have the hermiticity of W2, and I'),
simultaneously. Moreover, the Moffat’s compatibility condition (2.10) (see
Eq. (2.2) of Ref. [8]), is not only inconsistent with the given action (2.17)
but with the following metricity condition (see Eq. (2.6) of Ref. [8]) as well

aagpu - gpuw;fa - gupwfa =0. (3'2)

Consequently, the simplified metricity condition, Eq. (2.13) (obtained
by assuming the hermiticity of W,:\,,) is incompatible with Eq. (2.10) and
the action (2.17).

In fact, to have the condition (3.2) and consistency with the proposed
action (2.17), one has to start with the compatibility condition

€uot (wa);‘ef‘ - W‘f‘,e;‘, =0 (instead of Wo‘?“) . (3.3)

Then, using .
aag;w = 30(8';53%1:) (3'4)

together with the assumed condition (2.12) and relation (3.1), one gets

aagl.w - gpv(W;fa - %Jﬁwﬂ) - g#P(WgV + %b.gWV) =0. (3'5)
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Choosing W, to be pure imaginary (i.e. W, = —W,) leads to the following
simplified form of Eq. (3.5)

aag;w - gpup;fo - gpproev =0 (3'6)

instead of Eq. (2.13). Here, I';, is given by Egs (2.3) and (2.4). It is
important to mention that in all Moffat’s papers about NGT, the chosen
action yields equation (3.6) and not (2.13). Moreover, these two equations
are incompatible except in the trivial case W, = 0 or equivalently W;‘\,, =
ry,.

At present let us examine the form of the action. If one uses our com-
patibility condition (3.3) as well as the covariant derivative definition (2.11),
the tensor (R,,)§ can be written as

(Ruv)} = W2, ,elet —WE, ebeld +WE WS, ebel —~WEWE, ehel. (3.7)
Thus the Lagrangian of the action (2.17) will have the expression
L = lelet® (R, )} = 9" *g** Run (W), (3.8)
where!
Ry (Wy=Wg,  -Wo,  +Wowe, - wowe,. (3.9)

In fact, the NGT Lagrangian (3.8) is the one proposed by Moffat in his
first paper (see Eq. (2.15) of Ref. [2] without the source term and taking into
account the definitions (2.7) and (2.16) of the same reference). Moreover, in
the recent papers [4, 5, 7], Moffat has adopted a different expression for the
Lagrangian, namely the one given in (2.6) with R,, (W) defined in (2.7).

It is to be noted that by using the constraint (3.3), it is possible to get
the Lagrangian (2.6) instead of (3.8), in terms of the hyperbolic complex
vierbeins e, and (R,,);. In fact, from Eq. (2.16), one has

(Buv)a = (wi)a,p = (wu)a,w - (3.10)
Moreover, Eq. (3.3) and the relation
eZel , = Tr([e™!)0,le]) = O, loge (3.11)

give
(w#)z = W:u - aﬂ loge ’
(@u)a = ng — O, logé, (3-12)

! The expression (3.9) was denoted by A,, in Ref. [4] and B,, in Ref. [7].
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where [e] is the matrix ej, and e = det[e]. Now the relation (3.1), together
with the choice W, = —W,, leads to

FrA by
Wo, =W, +360W, + 360w, . (3.13)
After a simple contraction of the indices u and A, we obtain
we, =wa, + 2w, (3.14)

Now, equating (ws)3 and (—@¢)%, (given by Eqs (3.12)), one ends up with
the expression
Wg, = 4W2, — 38, log(eé). (3.15)

With the help of (3.15) and if one substitutes (w,)3 (as given by Eq. (3.12))
in (3.10), one finally obtains

_%(RF»V) = _%(Wa - W:a,u) . (3'16)

vo,p

Thus, expressed in nonholonomic coordinates, the Lagrangian used by Mof-
fat in Refs [4, 5, 7] has to have the following expression

L= |e|((R“,,)‘;e{:é"b — 3(Ruv)zepe®). (3.17)

It is worth to stress that the compatibility condition (2.10) given by
Moffat (in Ref. [8]) is neither consistent with the Lagrangian (3.8) (with
(3.9)) nor with (3.17), and thus has to be replaced by Eqs (3.3) and (3.6).

Now, one may wonder if the hypothesis I-’:u = I’,f‘“ and the choice
W, = —W, will yield the hermiticity of the Lagrangian (3.17). To get the
answer, let us write the Lagrangian (3.17) in holonomic coordinates as

L =|g|*?g# [RS) - LR, (3.18)
where
Rgly) = R‘}L\V - ij’k - W:A,V + W:AW:‘, - WpAVW:A (3-19)
and @)
Ry =R\, =W3, ,-W3, .. (3.20)

From Egs (3.15) and (2.4) together with the relation I's, = I'7, (see the
Appendix), one obtains
IS, = 30, log(eé) (3.21)

which implies that

Iioy =Iha (3.22)

e
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The substitution of W, , given by (2.4), in (3.19) yields
R =), — TN, + IS = TATS + (Wi - W, ). (3.23)

A straightforward calculation using the hermiticity of I"i‘,, and the choice
W, = —W,,, together with the relation (3.22), gives

B2 = r(. (3.24)

On the other hand, and in order to show hermiticity of ng) , it is preferable
to write this tensor in terms of W,. In fact, equation (3.15) leads to the
relation

WS, = —3W, + 38, log(eé), (3.25)
which implies (together with expression (3.20)) that

yv) = "‘g’(Wv,u ~ W) (3.26)

Now, thanks to the property W, = 4, it is obvious from Eq. (3.26) that
ES) = rS). (3.27)

Thus, the tensors R( ) an R(z) are Hermitian, and consequently, the reality

condition of the Lagra.ngla.n (3 17) is verified.

4. Conclusion

Basing on the above analysis and comments, one can conclude the fol-
lowing:

(i) 1t is not possible to have the hermiticity of W" and I’,i‘ simultaneously,
but rather one can apply the hermiticity condltxon to one of them (e.g.

l’)‘ =T} ) together with another choice like W, =-W,.

(i) Both Lagrangians (2.6) and (2.7) or (3.8) and (3.9) chosen by Moffat in
papers [2, 4, 5, 7] are incompatible with"'Moffat’s own constraint (2.10).
Moreover, this constraint is inconsistent with both Moffat’s equations
(2.13) and (3.2): The correct compatibility condition is given by Eq.
(3.3) which yields the correct metricity condition (3.6) with the I'’s
rather than the W’s.
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(#1i) The compatibility condition (2.10) proposed by Moffat does not allow
one to write neither the Lagrangian (3.8) introduced by the author in
his first papers (Refs [2] and [3]) nor the one used recently (Refs [4],
(5] and [7]) as functions of the complex hyperbolic vierbein ef, and spin
connections (w,),s. However, our corrected compatibility condition
does.

We are grateful to Professor G. Clement and Drs M. Lagraa and M.
Tahiri for fruitful discussions, during the Autumn’s School of Theoretical
Physics held at the Constantine University. One of us (K.A.) would like to
thank Professor G. Clement for useful private communications.

APPENDIX
Let us start with the definition (2.4). The latter implies that I, = 0.

In fact, assuming just the hermiticity condition of P‘f,,, that is
I}, = Re(I},) - eIm(I'}),)
=TI), =Re(I),) +eIm(I}),) (£2=1), (A1)

one obtaines
Re(Ip,) = I,y
Im(Ip,) =el},,, (£=1), (A2)

where () (respectively [ ]) means the symmetric (respectively antisymmet-
ric) part. Now it is straightforward to show that I', = 0 implies

ImI, =ImIg, =0. (A3)
Thus )
F:u__'rguzr(o;u)em' (A4)

(R is the field of real numbers).
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