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Applying the paraquantization of order two to a non abelian gauge
theory, we show that the action is invariant under some non trivial BRST
transformations. The corresponding modified BRST charge and Slavnov—~
~Taylor identities are derived.

PACS numbers: 11.30. Ly

1. Introduction

Parafield theories differ from field theories in that the dynamical vari-
ables satisfy not bilinear but trilinear relations [1-6]. In the Hilbert space
A, associated with the parafield theory, the observables are determined by
the requirement of the locality condition {2, 3, 5]. Although it is, in prin-
ciple, possible to study various features of these theories within the Hilbert
space A, it is often convenient to put this space in correspondence with a
larger Hilbert space B, in which the operators satisfy bilinear relations (2, 3,
5]." Traditionally, for Fock-type irreducible representation of paraquantum
theories with an unique vacuum state

a;l0) =0 (1.1)

this is done by means of the Green ansatz [3-5):

Q
ap = Z agca),’ (1.2)
a=1
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where @ is the order of the parafield, a is the Green index and asca) are
Green components satisfying bilinear but anomalous (anti) commutation
relations:

[asca), a§°’] 4 = Skt
[aff‘), aff’)]i =0, a#p. (1.3)

(“4” (resp. “—?) sign is for parabosons (resp. parafermions)). One can
remove this anomaly by means of a Klein transformation {2, 5]. Thus, for

real fields, the Green components aia) will transform as a representation of
the group SO(Q). Once a parafield theory is formulated in the Hilbert space
A, one can put the states and observables of this space into correspondence
with a subset of the states and observables of the Hilbert space B, which
has a larger number of states and class of observables. Now, the structure
of observables in parafield theories is restricted by the requirement of the
locality. To be more specific, and as an example, for a parafermion theory of
od«i orderL the observables are limited to the functionals of the commutators
: [¥(=z1), ¥(22)) 4 ¢ ((“::” means the normal ordering), and of even order,
they may at most be functionals of this commutators and the symmetric

product 5[12(2:1) . ‘{/;(zQ)]:I:E defined as [2, 3, 5, 7]:

Hd(z1) .. P(z0)]Li= Q! Y $(z))... 90D (zq), (1.4)

aygye.q0Q

arFazFag

where Q is the order of the quantization and 1:/;("“')(2,-) is the Green’s com-
ponent of 12(2:,') ( the symbol “~ " means ¢t or ¥).

It is worth to mention that the above observables can be further re-
stricted by additional symmetries which the theory might carry. For exam-
ple, in most cases of interest, chiral or conformal invariance rule out the
symmetric product as a possible term in action.

Throughout this paper and to simplify matter, we restrict ourselves
to parafermion fields of order two and ordinary vector field. In Section 2,
we discuss our model and show that it is invariant under some nontrivial
transformations called paraquantum BRST transformations (PBRST). The
corresponding PBRST charge is constructed. Moreover, the violation of
the Lagrangian symmetry under the anti PBRST transformations is shown
explicitly. Finally, in Section 3, we derive the paraquantum Slavnov-Taylor
identities and draw our conclusions.
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2. The model
In our model, we take as a paraquantum Lagrangian Lo, the one

describing a massive Dirac parafermion 9 and a massless ordinary vector
boson A}, and verifying the strong locality condition [2, 3,5, 7}

4
Liot =Y Li,
i=1

where
L1 =3[, 0¥]_ + P AL(-1)W:[4,v*y] i+ F [$,9] _
+3(-1)™i[g, 9] i,
Ly =~— 'Cz'z' [aﬂA‘ua auAy]+ s
L3 =3 [8u0a, 00°)_ — 39 fapcA™ [0,0,0°] _
+ 2gbe gor(_1)Nei[g,0%, wb] i,
Ly=-3F/Fg,. (2.1)
and

F:u = 6#Az - avA:, + gfabe [Afu A$]+ .

Now, D is the usual covariant derivative, m the parafermionic mass, a the
gauge parameter, g the gauge coupling, w the parafield ghost and Ny, (resp.
N,,) the parafermion (resp. paraghost) number operator defined as [2, 3,
5, 7]:

Ny = [ #E ), v
and

N, = / BE[5,(z),w%(=)]_ . (2.2)
The couplings A, and A,;. are given by:

A% = /\]Ta
and
’\abc = AZ.fabc 3 (23)
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where the T%’s and f,;.’s are the generators and the structure constants

of the gauge group respectively. The symmetric forms :[y,7#¢]_: and
:[¥, 9] _: are defined as (2, 3, 5, 7):

] i =2 [y @ 4 FPyeg )]
and

9]t =2 [N e® + Py, (2.4)

One has to notice the presence of the symmetric form EW, f"«[;]f (f is
the Dirac or identity matrix) which is justified by the fact that in our model
the order of the quantization is even (two). Thus, according to Kamefuchi
and Ohnuki theorem concerning fields verifying the strong locality condi-
tion [2], the above mentioned symmetric form is allowed. This means that
extra terms will appear and therefore, the ordinary BRST transformations
will be altered. It is worth to mention that the non local factors (—1)™¥
and (—1)™~ do not cause any essential difficulty because the even and odd
sectors of the state vector space, which are defined with respect to the par-
ity of the eigenvalues of the number operators N an N, are completely
separated from each other [5)].

2.1. Paraquantum BRST transformations

Before one gets to the BRST transformations, it is more convenient to
work with ordinary fermions and bosons. This is essentially due to the com-
plicated parafermionic and parabosonic commutation relations. To get rid of
this, and as it is mentioned in Section 1, one has to transform corresponding
parafields to ordinary fields. This is done by means of the Klein transfor-
mations [1-6]. Moreover, and in order to deal with classical rather than
quantum fields, we use the paraquantum path integral formalism developed
in our Ref. [5]. Thus a straightforward calculation gives (Appendix A):

2
L= [770657 - (94 1) T AuaBi V40l

a=1

+(m+ )7l (2.1.1)

Ly = - a(9,4%)?, (2.1.2)
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2
Ly=y [6#87,0%)

a=1
- (g+ naAa)fabcAza“é“("’e“(“‘)] (2.1.3)
and
Ly =- JFL, F!, (2.1.4)
where
F;:V = aﬂA:’ - aVAz. + 2gfabcAz,Az (2.15)
and
_ 1 if a=1,
ma={_) i a2 (2.1.6)

Now, the ¢’s (resp. 8’s) are ordinary fermions (resp. ghost bosons) defined
as:

(@) — L[4 4 50 4(2)
Pl = 7 [¢ + inqd ] (2.1.7a)
and
() _ 1 (1, . (2)
0. = ﬁ[ﬂa + ina 2, ] (2.1.7b)

The ¢’s (resp. £2’s) are the Green components of the parafermionic (resp.
paraghost) field 3 (resp. w) given by [2, 5]:

¥ = ¢ — ik (D (2.1.8)
and
we = 28V — ikl 0D (2.1.9)

where k2 and k) are the parafermion and paraghost Klein operators respec-
tively whose expressions are [2, 5):

kg = (1) (2.1.10)
and
ky = (-1)M, (2.1.11)

where Ny and N, are given in Eq. (2.2).
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Now it is very important to notice that, if one sets \; = g and A = m,
the variation of £; under the following transformations:

5AS = —€[8°%0, — 291*% Ac,] £ (2.1.12)
6<p(1) ~2igeTS fa*V, (2.1.13)
57 = 2ige Ty, fap*Y, (2.1.14)
5p7 = 0 (2.1.15)
and
57 = G, (2.1.16)

gives (see Appendix B)
Ly =GP ppi®) (2.1.17)

The f’s and G are functions of 6s, ¢’s and the gauge field Af, whose ex-
pressions will be determined later. The only condition one ca.n impose on
the f's is:

fa‘P(l) — (p(l)fa (2.1.18)
(a similar condition holds for ¢, +H1) ). The parameter ¢ is a Grassmann

number (independent of the space-time coordinates) which anticommutes

with the 8’s, ¢’s and f’s. Now, using the transformations (2.1.12), (2.1.14)

we obtainl:

6Lz =20e(8,A%) [D fa — 29 fapc0* (A‘;fb)] , (2.1.19a)
5Ls = }: {[- D65 + (9 + nas) fased* (450%() ] 65(=)

+ [ = D8 + (g + naks) fabe AL 9467 60°()

+ (9 + 1aX3) fabe [6,uf° - 2gf°""A,mfd] a“é"(“)ob(a)}
+ a total derivative (2.1.19b)

and
L4 =0. (2.1.19¢)

! Using the antisymmetric property of the strength field tensor Fj, together
with Eq. (2.1.12) and the gauge field equation of motion one gets §£4 = 0.
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Setting:
2
ff=hd 6, (2.1.20)
a=1
where '
h= ¢§.’)p¢1(2) (2.1.21)
and choosing:
§6°(®) = ¢, (2.1.22)
56%(%) = —¢(g + nars) f24he(™ 6L (2.1.23)
and
2
G = - e{a[0(8,47) +20furc8,0, 4% 4] 3 6%
a=]
(94 23)F2 [ faae A 8,55D65D (136D — g0?)
2
- 3,,59)8"921) Z 9$°’] + similar terms with
a=1
(As — =23, 6 — 9(2))} (2.1.24)
we obtain:
4
D 6Li=6Li0t =0 (2.1.25)

=1

and therefore the Lagrangian L, is invariant under the paraquantum
BRST transformations (PBRST) (2.1.12)-(2.1.16) and (2.1.22)-(2.1.23). It
is to be noted that this PBRST invariance is a natural consequence of the
local gauge invariance of the original Lagrangian (before introducing the
gauge fixing and Faddev-Popov ghost terms) and the paraquantum sym-
metry [2-7].

Now the crucial point is that in ordinary non Abelian quantum field
theories and in spite of the drastic changes of the theory due to the intro-
duction of the Fadeev-Popov ghosts (FP) and gauge fixing terms (GF), the
difference between the original Lagrangian density (before the introduction
of FP and GF) and the total one is just a BRST coboundary term of the
form &(...) [8]. This fact is just a consequence of the nilpotency property
of the BRST anti derivation § i.e. §2 = 0 [9, 10]. However, and as it will be
clear in what follows, the nilpotency property is violated in our model. This
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is one of the fundamental differences between ordinary and paraquantum
theories. In fact, using Eqs (2.1.12) and (2.1.20) one gets:

2
6245 = —¢[DEM(Gf) + D (b Y 86(7)) + 269 1% £, (Dyeaf?)| # 0,
o= (2.1.26)

where 60,(,'1) is given by Eq. (2.1.23) and the covariant derivative D, 4 is

defined as:
Dp.cd = 6cdau- - 2gfcdaAz, . (2.1.27)

2.2. Paraquantum BRST charge Qpg

As in ordinary quantum gauge theories, one can construct a PBRST
charge Qpp as follows:

@en = [ #2385, (2.2.1)
where the PBRST current jl’,‘B is given by
jpB = 5X(")M (2.2.2)

8(9ux™)

and x(™ stands for A3, (,osca), ¢§c°‘), 0‘(,") and é,(la) (a = 1,2). With the help
of the PBRST Eqs (2.1.12)-(2.1.16) and (2.1.22)—(2.1.23), a straightforward
calculation gives:

ibn = e[2(D2 1) (6 0,48 + F2¥) + 2ig TR fug*Dyr gD

2
+h (g +nada) (D) £, 4 6% Dge()] | (2.2.3)

a=1
where D2 is given by Eq. (2.1.27) and D(@)#ab has the following expression:
pleuab [5'1"3# — (g + 7ars) fabCAg] . (2.2.4)

Now, and contrary to the usual ordinary quantum non abelian theories
where the BRST charge is nilpotent [8, 9], the PBRST charge Qpp does
not have this property. In fact, if one takes the expression (2.2.2) (x(’?)
stands for quantum fields) as well as the following equal time canonical
commutation relations:
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(@), )] _ = ~0,m%( - )

[x(n)(z),x(m)(y)k = [IIX(,,)(z),]Ix(m)(y)]:F =0, (225)

where Hx(") is the momentum variable conjugate to x{™) and the anticom-

mutators (with + sign) are taken only if both fields are fermions, one can
show easily that:

[@em, x(™] = —isx(™. (2.2.6)

Now, thanks to the relation (2.2.6), it is straightforward to deduce that
2 ple)]  _ (a)
[QPB’ fa ]_ = [QPB,59a ]+- (2.2.7)
Moreover, from the expressions of Qpg and h, one gets
[QpB, h]_ =0. (2.2.8)
Thus, Egs (2.2.7), (2.2.8), (2.1.23) and (2.1.24) imply that

[QPB, 50&")] L= 26(g + ads) fapch | — 186(2)g()e

+ g(a)bg(a)cQPB] (2.2.9)
and since
i56()bglale £ gla)bgla)eg
(@35, 6] #0
which yields

Qfp #0. (2.2.10)

Another important symmetry one can have from our Lagrangian (2.1), is
its invariance under a ghost phase transformation:
65%) — &g, (=)

and
0,00 = e—iPg, () (2.2.11)
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where  is a real parameter independent of the space time coordinates. The
corresponding Noether conserved current and charge are given respectively

by

Ty = —i0HB9(% _ (%) p{P)*tg, (=) (2.2.12)
Qg(a) = /d35J3(a) . (2.2.13)

(Df,,a)ab is given by Eq. (2.2.4).) Since Q /() generates the transformations

(2.2.11) on Fadeev—Popov (FP) ghost fields 8(°) and leaves the other fields
invariant:

[Qg(a)a oa(a)] = _iea(a)

and ) )
[Qoter» 0a()] = -8, (2.2.14)

we call it the paraquantum FP (PFP) ghost charge. The latter, and contrary
to the ordinary non abelian quantum theories [9, 10}, does not constitute
with the PBRST charge Qpp a closed algebra. In fact, it is obvious that

[@pB, QPB]+ =2Q%g,
[Qp(ers Qo] — =0,

but
[Qoter» Qpm] _ = 80 M, (o) + i{ 00 [H e, 8]
= 60 [T yay, 6™ }
# AlQo(ﬂ) (B=1,2)
or

# A2QpB, (2.2.15)

where A; and A, are complex numbers. Thus, from Eqs (2.2.15) Qpp and
Q () cannot constitute a closed algebra.

2.8. Anti-BRST transformations

As in ordinary non abelian quantum theories, we can define the para-
quantum anti-BRST transformations (PABRST) as follows:

5AZ = —€ [6aba,‘ - 2gf“b°Acp] fb ’
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6<p(1) —2igeT}, faell,
—(1)

8, = 2zgeTk,-fa<P,,
(_2) =0,
6_(2) G—(2)
6é$l»a) = —€(y + naA3)fabch0_(a)b§c(a) )
560,(%) =0, (2.3.1)
where
2
fo=h> 6. (2.3.2)
a=1

The PABRST § operation is defined as
5= Cpppﬁcl;ép, (2.3.3)

where § is the previous PBRST anti-derivation and Cpgp is the PFP charge
conjugation given by

CprAa = A"’
Cprpd™ = <P(°') y (P=poryp)
Cprpba® = 6,(*)
and
Cprpfa(® = -0, (2.3.4)

For ordinary non abelian gauge theories, the invariance under the anti-
BRST transformations follows immediately from the invariance under the
BRST transformations and the FP charge conjugation (8, 11}. However, it
is not the case here. In fact, working in the Landau gauge (a = 0) (to keep
our proof transparent) it is easy to show that:

§Lior = Crp[Gh ~ 6L3], (2.3.5)

where

L3 = L3 (ea(“) — ﬁa(a)) . (2.3.6)

Moreover, and from Subsection 2.2., we have found that

6L3 = —-Gh.
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Thus Eq. (2.3.5) becomes
8L3 = —-Cpp 6 (L3 + ﬁ_3] . (2.3.7)
Now, using Egs (2.1.3) and (2.3.6) we obtain

2
5{£3 + 53] = - Z [2 Do_a(“)

a=1

(9 + 7aAs) fape B DPO# A5 8600 (2.3.8)

Hence, it is clear from Eq. (2.3.8) that §[L3 + L3) # 0 and therefore
§Liot # 0. (2.3.9)

This is a striking result! It implies that the PBRST invariance does not
imply the PABRST one and vice-versa. As a consequence, the fundamental
relation

§56+86=0, (2.3.10)

which holds in ordinary non abelian theories [8, 11] is violated in our model.
In fact, using the definition of § as well as Eqs (2.1.16) and (2.1.25) we obtain
(in the Landau gauge):

(35 + 88)75? = { CorpdG - 6G + (G, G-} # 0, (2.3.11)

where

G= G(Ga("‘) — 0_,,,(“)) .

3. Paraquantum Slavnov—Taylor identities

As we know, any symmetry of a given quantum field theory is manifested
through some relations between various Green’s functions called Slavnov-
~Taylor identities [12]. It is the purpose of this section to derive such rela-
tions for a paraquantum field theory of order two (our present model).

. Now, from the invariance of the vacuum under the PBRST transforma-
tions 7.e. from

QpBl0) =0
we obtain
(0]6L¢ot|0) = 0. (3.1)

It is convenient to formulate the identities (3.1) as equations for the gener-
ating functional I" (effective action) of one particle irreducible (or proper)
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Green’s function as follows: to define I', we need a source functional §
defined by

Sls,,y,1,J] = /d‘*z “A“+Z (0022 + Gy

a=1
er(® Ik + ¢k(a)I§)] ,» (3:2)
where s’s, z’s, y’s j’s and I's are the Schwinger sources (z’s, y’s, j’s and I’s

are Grassmann C-numbers). As it is developed in our Refs [5] and (7], one
can write the partition function Z as

= / DA,D6M) . exp [i / diz Lyt +i5] (3.3)

since

6£tot = 0 .
Then, the invariance of the partition function under PBRST implies that

2
i / Pz (0|T [szo4k + 3 (66,8 + 60,y
a=1

+8pe(MjE + 63, 1k) | expisio) = 0. (3.4)

(T is the time ordering product). Defining the functional I' as the Legendre
transform of the partition function W of the connected Green’s functions
as follows [13, 14]

Wi(s,z,y,1,J] = I'(A,8,0) + (0|TS|0), (3.5)

one can show that
a §'r a §'r e

&'r
S, =——o—F— 24 = ——— =

BT Az T Tpg YT g

and
e OW L W
Ja = 6"Pk(a) ’ a = 6'¢k(a) .

Moreover, from Eq. (3.5) we obtain

(3.6)

§'wW %%
<0|A |0> 6'5; ) (0'0 IO> = 6' a b
_ 6 W
(016210) = (0] (®]0) =

§'ya’
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and -
(0l (*0) = SIE

“§' means the functional variation. A straightforward calculation using Eqs
(3.2), (3.6) and (3.7) as well as Eqs (2.1.12)—(2.1.16) and (2.1.22)-(2.1.24),
gives

(3.7)

§'r 2., &r
4 1 2,
/ d'z [6'A°'Q + Z; (6'04("‘)0"":
a=

W 34, O'W _,
Ho @I ) [ =0, (39)
6(pk 6

where
2
§W §'W _§'W
1
n#,a - E [a“(é‘lza 6IIkp6‘I )
a=1
W §'W §'W [ §'W
2yfa686'3a 6'2“' 6’Ika6'12 ] ] (3-93)
SW §W §W _§'W
2, _
O“g —(g + naA3)fabc6, b 6'zc 6'Ik p6le 9 (3-9b)
W6'W s'wW
3,1
nl‘ _219 51 k Z &'zs 5111 6']; ’ (3.9¢)
ﬂi’,ﬁ =0, (3.9d)
'w W&'W 6'W
4, l
s'w
4,2
0’ =Fop (3.96)
and

e (o005 s a0, S S 5 50
a=1 o

8'spa/ 8's,c

'w IWN &'W s'w s'w
+ (9 + )‘3).fabc [fmd(f’sﬂd (3,,, 8'y e) J’zb ( 3 6'2:" - g&lzg)

- (6,; 2::2:) (au ‘;:r;) i I ] + similar terms with
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(A3 e =23, z1e—> 22, Y1 yz)} . (3.10)

Thus, Eq. (3.8) is our paraquantum Slavnov-Taylor identity.

4. Conclusions

We conclude from the previous study of our simple model (a simple ex-
tension of ordinary quantum field theory) that the transition from ordinary
to paraquantum field theory (of order two or more) yields:

(i) The modification of the PBRST transformations.
(i) The violation of the nilpotency property 62 # 0 and Q%5 # 0.
(iii) The violation of the closure of the PBRST algebra.
(iv) The violation of the anti-PBRST invariance and therefore the funda-
mental relation 6§ 4 86 = 0.
(v) The modification of the Slavnov-Taylor identity.

Hence, a simple extension of a non abelian gauge theory through the
paraquantization changes drastically all its fundamental properties. More
details are under investigation and study [16).

We are grateful to Drs M. Lagraa and M. Tahiri for useful discussions
during the Autumn School on Theoretical Physics held at Constantine Uni-
versity.

Appendix A

The Klein operator ko_ (o) (or K;_p(a)) (where @ = 1,Q and Q is
the order of paraquantization) is defined as [5, 6]

a—p(a)
ko— p(a) = €XP (i1r E N(m) for 2> a-p(a)>Q (A.1)
B=1

and
ko =1,

where N(8) is the number operator for the corresponding paraquantum
field Green’s component X(¥)(z) (x(#) stands for @(B)’s and 5(A)’s and “%”
means X or x) given by

N = / #25P (2)xP)(z), (A.2)
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where
ﬁﬂ“§:4m
This Klein operator has the followmg properties:
=kt -
ka—p(o:) - ka—p(a) ka*p(oz) ’ (A'3)
[ka—p(a) ‘(p)(z)] =0 for a-p(a)<p (A.4)
and
[ka-p(a), ”(’3)(2)] =0 for a-pla)<B, (A.5)
with 0 if )
_ if a iseven
pla) = { 1 if a isodd (A.6)
Now, the Klein transformed fields are given by [5, 6]:
Q -~
f(z) = Z (—l)l—p(a)ka—p(a)e(a)(z) ’ (A7)

a=1

where in this case the £(2)’s obey the ordinary canonical commutation re-
lations namely
[, 6B =0 if a#p. (A.8)

In our present case we have @ = 2 which implies that p = 0. Moreover, the
resulting Klein transformed fields (see Eq. (2.1.7) are given by:

20 = 3

A(l) =
1/,(2) = +ik, ¥ (4 for b= ¥),
o = ikl (4 for &, = @,) (A.9)
with
= (—1)N¢
and
By = (-1)Ne, (A.10)

Now, Eq. (A.3) implies that:
kaOu k2 = k58,ky = 0. (A.11)
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By using Eqs (A.8)-(A.11) as well as Eq. (1.4) we obtain:

=1 Z ¢(a) p¢(a) +iXg A% - VP 4 $(Z)D¢(1)]

a=1

+m Z [3(®), $@] 4+ iA[-gWg@ 4 D],

a=1
(A.12)
setting
o o ED D ey 6" + o)
\/-2- ;] a \/5 9
and
o e =D ey o - o
vzl V2
One gets thus
2
L1=3 3 (7 Do) + dady [ - 5 + 5]
a=1
2
+ Z (a) ] +A[- —¢(1)¢(1)+¢{2)¢(2)] . (A13)

Using the path integral formalism of Ref. [5] we get the classical Lagrangian
L, of Eq. (2.1.1). Similarly, following the same procedure one can get the
expression (2.1.3) of Lj.

Appendix B

Starting from the expression (2.1.1) of £; with A\; = g and A = m (our
model) one gets:

2
61 =Y {67065 + B0\ ~ (1 4 ma)o T3 [AuaP 04 6007

a=1

+6A aa('a)a“‘bok(a) + A 6—(“)81“0(“')]
+(1+72)m[55500(™) + 7Dsp(] ], (B.1)
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where 7, is defined in Eq. (2.1.6).
Now, using the transformations (2.1.12)—(2.1.16) together with the re-
lation

eg{™ = —p§e
and
fa‘)"(a) ‘Pga)fa ’ (B.2)
we obtain: .
8Ly =Y T; (B.3)
=1
with

Ty = 2igeTHpL P far* ],

T; = 2igeT5 fF7 Pkt

Ty = 2195Tjkapfa90](1)7“‘ﬁk(l) ,

Ty = —4ig%e TS fapcAS fo/ Dy o*(1) |

Ts = 4g%eTH Apa T} f47 Nyt o* ) |

To = 4% TH Apa THE Dy fae'™) (B.4)

Notice that with the help of Eqs (B.2) we get:
Th+ T, = —2igeT;'k3,,fa¢j(l)7»"<pk(l) + a total derivative,

thus .
ZT,- = a total derivative (negligible). (B.5)
=1
Thanks to the Lie Algebra

(T2, T%] = fobeT.. (B.6)
We deduce that: .
Y Ti=0: (B.7)
=4

Finally,
6L1 = 8[75967P] = GV 9™, (B.8)
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which is Eq. (2.1.17).
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