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Using the complex hyperbolic formalism, a model of nonsymmetric
supergravity is constructed. It is shown that in order to have in four
dimensions and with one supersymmetric charge, the same fermionic and
bosonic degrees of freedom, one has to introduce a real scalar field. The
local supersymmetric transformations are derived and the equations of
motion are shown explicitly.

PACS numbers: 11.30. Pb

1. Introduction

The gravitational force is the oldest one known to man and the least
understood. It is the dimensionful character of the gravitational constant
which destroys the predictivity of the theory. That is, it is impossible to
have a renormalizable theory! Since all the present day experimental data
confirm General Relativity (GR), any future quantum or other kind of a
gravitation theory should be an extension rather than a replacement of GR.

While things do not work as it should be in GR, the nongravitational
forces seem to describe nature remarkably. They are described by renormal-
izable quantum field theories and are based essentially on the electroweak
theory of Weinberg, Salam and Glashow, and the theory of strong in-
teractions (QCD) within the framework of the so-called Standard Model
SU(3) ® SU(2) ® U(1). In spite of the remarkable unified scheme of these
interactions, gravity is absent!

It is one of the main objectives of science to bring order in chaos and
explain the many diverse physical phenomena by one underlying theory.

* This work is supported by the Algerian Ministry of Education and Research,
under contract No D2501/18/90.
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Thus, it becomes clear that a unification of the gravitational and non grav-
itational forces, based on the same general principles, is needed. This is the
most outstanding problem of our century!

Supergravity is proposed as such a theory. It is based on a new sym-
metry principle between fermions and bosons. The remarkable thing is that
the local version of this symmetry can be achieved only if space is curved
and thus gravity is present. However, this dream was stopped before it grew
up! Supergravity was shown to be a nonrenormalizable theory! [1].

To solve this delicate problem, many other attitudes were considered.
One alternative is to treat GR as a special case of an extended (or general)
theory, namely nonsymmetric gravitation theory (NGT) [2]). It was Ein-
stein’s idea first to consider the metric g,, not as a symmetric but rather
as a general (consisting of symmetric and antisymmetric parts) tensor. The
Einstein’s goal was to unify gravity with electromagnetism. However, this
dream has also remained unfulfilled.

Despite this failure, Einstein’s successors were convinced that there is
a part of truth in the idea. It was Moffat [3-8] who revived Einstein’s
dream, but in the context of the gravitation itself, the so-called NGT. The
most appealing feature of this theory, the corrected formulation of which,
using the tetrad formalism, is given in Ref. [9], is that all its theoretical
predictions are compatible with the existing classical experimental tests
which have confirmed the validity of GR. Moreover, the recently proposed
fifth force [10], can be contained naturally in the NGT formalism [6]. On
the other hand, and from the gauge theory point of view, the gravitational
field g,, of GR represents a spin 2 massless particle (graviton) in which the
bosonic degree of freedom is 2. In NGT, however, the field g,, represents
two particles: the graviton (spin 2) and a massless spin 0 (scalar) particle
with one degree of freedom called the skewon and related to the skew part
of the tensor g,, [8].

These differences between GR and NGT are definite proofs that the
supersymmetric versions of these theories (supergravity and nonsymmetric
supergravity) will have different structures and phenomenology.

In Section 2, we give a brief review of the Moffat’s pure NGT and the
revised formulation of the theory. In Section 3, we describe our supersym-
metric model of NGT and derive the corresponding equations of motion. In
Section 4, we deduce the supersymmetric transformations for the graviton
and the skewon. Finally, in Section 5, we draw our conclusions.

2. Revised pure NGT formalism

In the Moffat’s pure NGT, formulated successfully in a hyperbolic com-
plex space [11], the fundamental tensor g,, is Hermitian (§u, = g, ., where
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“~" means hyperbolic complex conjugate) and consist of symmetric and
antisymmetric parts g(,,) and 9[uv) Tespectively:

Juv = G(uv) + jg[p,u] (.72 = 1) . (2'1)

A Hermitian contravariant tensor g*" is also defined, and verifies the fol-
lowing relations:

9" 9up = 9" 900 = 6.

The affine connection W,f,, is defined by [3-8]:
W), =T, - 36w, (22)

with
WV = %(W:‘a - W:u) ] (2'3)

where the displacement Hermitian field I’,;\,, defines the variation of a vector
A? in an infinitesimal parallel transport:

§A* = -T), A¥dz". (2.4)

It is worth to mention that, according to reference [9], it is not possible to
have the hermiticity of W;‘\,, and F‘f‘y simultaneously, but rather one can

apply the hermiticity condition to one of them (e.g. f‘;}y = 1"’3‘“) together
with another choice like W, = —-W,, .
A hyperbolic complex vierbein e

sesquilinear form of the tensor g, is:

a

% Wwas also introduced and thus, the

Juv = ezég’?ab (2.5)

(nap is the Minkowski flat space metric). The proposed pure NGT action
is: ‘

1
§= m/ﬁgd"z, (2.6)
where G is the Newton’s gravitation constant!and
Lg = —1(e&)/2er& Y (R, )op(w), (2.7a)
where
(Ruv)ab(“’) = (wv)ab,p. - (w#)ab,u + [w#awv]ab . (2'7b)

! From Eq. (2.7a) and on, and in order to simplify our formulas, we work in

the system where 877G = 1.
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Here (w, )45 is the spin connection, assumed to verify the property [7]

(Wp)ab = —(@p)ba (2.8)

and e (respectively €) is the determinant of e}, (respectively &} ). The correct
compatibility condition (see Ref. [9]) is given by:
e;“,a + (wa):ez - Wlfae'; =0. (2.9)
Now, the most appealing characteristic of NGT, and contrary to general
relativity, is that the tangent space is the GL(4,R) group manifold [7-11], in-
stead of the SO(3,1) Lorentz group manifold (Minkowski space). Of course,
the latter is a subspace of the former.

3. The NGT supersymmetric model

To get a realistic model we have taken as a tangent space (locally),
the Lorentz group manifold (Minkowski space). In other words, our start-
ing point is the special relativity. It is important to note that this choice
does not contradict the well known general properties and features of NGT,
namely the compatibility condition (2.9) and reality (in the sense of hyper-
bolic complex numbers) of the Lagrangian (2.7a). Moreover, and as it will
be seen later, it simplifies matter in constructing a supersymmetric model
of NGT and deriving the supersymmetric transformations. In fact, one
immediate consequence of this choice is the reality of the spin connection:

(Wu)bs = (@u)s - (3.1)

Now, one part of our total Lagrangian is the one given by (2.7a) together
with the relation (3.1). It describes the spin 2 and spin 0 particles related
to the symmetric and antisymmetric parts of the metric and called graviton
and skewon, respectively [7-8].

In the context of N = 1 supersymmetry (SUSY), one has to associate to
each bosonic particle a fermionic partner. This means that one has to have
a SUSY doublet of a graviton (respectively skewon) and a fermionic spin 3/2
(respectively 1/2) fields. However, since the vierbein e}, does not represent
directly the graviton and skewon, our strategy consists of first constructing
in the same manner as for the bosonic part of the Lagrangian (hyperbolic
complex formalism) the fermionic part, then deriving the corresponding
local SUSY transformations and finally, identifying the fields combinations
representing the real particles in the model.

The fermionic part of the Lagrangian is:

cy=cP+ L, (3.2)
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where ) ) o
E¢ = -%ﬂ“”""¢y757pDa¢p V (3.3)

and the massless fermionic field v, is of Majorana type and hyperbolic
complex, t.e.
Yo=%1+i%2, (°=1) (3.4)
(Y1, and 92, € C, C being the ring of complex numbers). The tensor
Neved is given by:
nrver — (eé)]/znicjkefeze?éz . (3.5)
Here ni°/* is the totally antisymmetric tensor (the Latin (respectively

Greek) letters are used as a flat (respectively curved) space-time indices)
and D, is the covariant derivative defined as:

Da'f’p = aoz@/’p + %waabdabd’p (3'6)

with the Lorentz group (SO(3.1)) generators o,; given by:

Ogb = %[70’ 76] (3'7)

(7’s are the Dirac matrices).

The Majorana condition as well as the hyperbolic complex structure al-
low the fermionic field ¥, to have just four degrees of freedom. This is sim-
ilar to the Schwinger term in the ordinary supergravity theories (SUGRA),
where the fermionic field (the gravitino in this case) is a spin 3/2 particle
and has two degrees of freedom. Here, our massless fermionic field is hyper-
bolic complex and thus has four degrees of freedom. Now, if one takes as a
supersymmetric Lagrangian:

L= Eg + £¢ s (3.8)

it turns out that in d = 4 dimensions the bosonic and fermionic degrees
of freedom mismatch. In fact, we have three bosonic and four fermionic
degrees of freedom corresponding to the graviton, skewon and the hyperbolic
complex Majorana fermionic field ¥,.

To overcome this unwanted difficulty, one has to introduce another
spin 0 particle (one bosonic degree of freedom). This is done by adding
to the Lagrangian (3.8) another part:

L‘P = (eé)llzg(uu)apvau(ﬁ’ (3.9)

where
I(puv) = %(euaéﬁ + ép,a.eg . (310)
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The Lagrangian (3.9) contains the kinetic and interacting terms of the scalar
field ¢ with the graviton. It should be noted that ¢ is a dynamical and not
an auxiliary field. This is similar to the case of N = 1, d = 11 supergravity
of Cremmer, Julia and Scherk {12], where in order to match the bosonic and
fermionic degrees of freedom, an antisymetric tensor of order three was
introduced.

One may wonder whether one can formulate the theory in higher dimen-
sions (a la Kaluza—Klein). It turns out that it is possible in d = 5 dimensions
[13]. This is a very interesting result! In fact, in “d” dimensions, one has
the graviton (symmetric part of g,,) and the skewon (antisymmetric part of
guv) with 2d(d - 3) and 3(d — 3)(d — 2) bosonic degrees of freedom, respec-
tively. This gives a total of (d — 1)(d — 3) bosonic degrees of freedom. For
the Majorana spinorial field 1, and by taking into account its hyperbolic
complex structure, one has 2 x 2%~ fermionic degrees of freedom, where:

d .
g if d even
a= { 2 ’

21 if d odd.

Thus, in order to have the same bosonic and fermionic degrees of freedom
(as it is required by SUSY), one has to work in d = 5 dimensions.

Now, upon variation of the action with respect to e}, &5, ¥u, ¥,
(wu)ab and @ (application of the least action principle), we obtain the fol-

lowing equations of motion:

0" [(e€)'?g(u)0"¢] = 0, (3.11)
NP4y, Doty = 0, (3.12)
(A + A) T2 + (95, = 932) = (U + Ly (3.13)

and
R;.m. :%nauaﬁl’auapeua + ﬁpyaaiupaueaa + nuaaﬁ[quap + Xua;l.p]eaa
+ 2[9(ap)0% P8P e pa — 9uvepad”pd” ], (3.14)

where

By = 3(ee)' ek} ~ efep),
9%y = (e€)!/? (et D&} — el DY),
ab = %npa"’.’@a‘f"ru&ab%,
Xuvap = —i(€€) 2P, 1°y,Dath,.

It is straightforward to show that the action and equations of motion are
invariant under the following symmetries:
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a) d = 4 general covariance with parameter ¢:

6‘/’ = "'ga,‘Pa
feke = —g¥eke 4 ek,
6éub — "‘Eaéub,a + éabeuﬂ

‘Sd’u = ”€a¢u,a - ‘pafa,u
61/311 = "‘ga'/;u,a - 1Zcxfa,u

60)““6 = _an“ab’a _ waabfa,p
5(Ryu)ab = "£Q(Rpu)ab,a - (Rau)abfa.u - (Rua)abfa,v (3-15)
b) local SO(3,1) Lorentz transformations with parameter a,p = —ay,:
dp=10
fet?® = a“be“b
§&H® = a®yert
‘Sd’p = aabaab¢p
§%u = a®*oapPu
6w“ab — __3“aab + %fcdefabacdw“ef , (3.16)
where
fabed® Oes = MbeTad + NadTbe — MaTac — NacTba (3.17)

(o4p are the Lorentz group generators). Of course, in addition to this
symmetry, one has invariance under local SUSY transformations.

4. Local SUSY transformations

To derive the SUSY transformations, we will use throughout this sec-
tion, the 1.5 order formalism {14]. In other words, one only needs to vary
the explicit tetrad fields ef, and &, the scalar field ¢ and the fermionic
fields 4, and 1,5,, and although the spin connection w,(e, &, %, J)p, ) is not
invariant, one may put éw = 0. As explained in reference [15], this is due
essentially to the fact that the spin connection w,(e, €, ¥y, J)“, ) satisfies
its own field equation.

Starting from the Lagrangian (2.7a) and applying the 1.5 order formal-
ism, one can show easily that:

6Cg =680 + 681, (4.1)
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where ,
6L = ~3(e8)1/2[ef R - 28"Perel (R aslbe) (4.2)
and R is the scalar curvature defined as:
R =e**&"%(R,,)ap- (4.3)
Now, if one sets: ) .
562 = i&7'Y,, (4.4)

where ¢ is an ordinary Majorana complex spinor parameter, the expression
(4.2) becomes:

6L = ~i(e2) [ef R - 26"Per% e (Ry)asl(E7'p) . (4.5)
To cancel the contribution (4.5), one has to consider 6[,5;) and §L,. In
fact, taking the variation 5£$) and setting:
0 eP5h, = [QHPYE — QHPOPID g + fROPE (4.6)
and

QPR Dotpp) =2#Y*P{[Da, Dple = £G%gap +iG%a0p}
+i0R7PGE o + iNHTPGY o + 2ify el e e,
(4.7)

where
G”aap = (‘5_7#'¢l’a)(Da¢p) (4 8)

(f and f#*? will be determined later) together with the definition (3.5) of
N#veh and the orthonormality relations:

b
e,‘:e# =46,, ehel =146k,
(and similarly for &}) one gets:

§OHYoP =L PP e fek + éf bek) + nrvadelsel
+ N7V Pekbel, + NEoPeksel + NFVTPeksey . (4.9)

Thus, Jﬁg) can be written as;

5L = ZT (4.10)
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T, = —%nwaﬁ[(DaEhs’YuDP'/’V - (DP€)757“DQ¢"] !

T; = “%nwaﬁJ’u‘Ys‘Yu[Da’ Dle,

T3 = —a"‘[ﬂ"““"’éi - 20“uaaé£]§zV757#Da¢P‘sé§' ’

Ty = —fe4(ev*.),

Ts = _%f""Pe—‘ls'YuDa'ﬁP . (4.11)

Now the term Ty can be written as:

3
T, = Z A; + a total derivative (4.12)

=1
with

Ay = 0247 *Pey*(Dara)(D o) — €1°(Dpr1u)(Daths)
Az = _%nuvaﬁé-,’,s,y“[Dm Da)¢y ,
Az = 1[0, 0247 *PeySy, Dy, — 0,00#VPeySy, Datp,].  (4.13)
By noticing that
[Da, Dp] = %(Rap)abo'ab (4.14)
and ,
{0abs Te} = Mabear®7* (4.15)
(with 75 = 70717273; ,’70123
rangement:

= —mo123 = 1) and using the Fierz rear-
=5 7 5
EY Tu0abPy = Py Y’ TapTpe
we obtain (with (y°)% = —-1):
Ay + Ty = +500%Py,c0eS (%uy%e)(Rap)®® - (4.16)
Now, simplifying the expression f2+¥ aﬁ’?abcde,i and using the property:
(Rap)ab = —(Rpa)ab = "(Rap)ba (417)
one gets after a straightforward calculation:
Ay + Ty =07 + 04, (4.18)

where _
O1 = §(e&)' 2 (ev*yy ) el R — 2e¥*&* €} (Rap)as] (4.19)
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and
02 = (&) /?(ev*4p,)[ef R — 280e"2e**(Rap)ab) - (4.20)
It is to be noted that: '
sc8) = —0,. (4.21)
Now, let us take the variation of %6[:.,. It turns out that if we choose:
f=%i(ee)'/?R, (4.22)
frer = 2[07P8(D, el Jet + 9, RrAvE] (4.23)
ek = §,Z1ke (4.24)
and define .
ZE* = gopypPrFy08", (4.25)

(where “[va]” means antisymmetrization in the indices » and a, and ? is
a shorthand notation of 8”¢) and in order that the variation of the total
Lagrangian vanishes, one has to have:

80" = XguapboaY *POP7y%e + Go” (4.26)
where
Xﬂp,ap = %@ﬂ‘ys‘YﬂDa'pP ’
y #Bapo (eé)-l/z(n#ﬁaﬁ:y" - 2n“ﬁ°’&:/p) (4.27)
and

bk

G = — §[288 + 1Penil g(an) e ($p1*77e)

~ £[2ef + 7(#PE, ] (evi,) (4.28)

4(#P) is the inverse tensor of I(uv)- (Note that it differs from the symmetric
part g(#¥) of the tensor g*?). Thus, we have shown that:

1 1
L) + 6L + 6L, =0
and consequently the invariance of the Lagrangian density?:

Lg+Ly+Ly.

? Similar equation holds for the complex hyperbolic conjugate of 6[.,(;1) + 6£$)
+ 36L,.
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Now, to get the expression of the gravitino (fermionic partner of the gravi-
ton) and skewino (fermionic partner of the skewon) as well as the SUSY
transformations of the graviton and skewon, one has to notice that un-
der SUSY transformations, -the graviton - G,, = g(,,) and the skewon
$ = e#¥g[,,) has to transform, respectively, as [15}:

6Guy = e[ Tuxs + Tuxa) (4.20)

and )
8¢ = &S, (4.30)

where the pure imaginary hyperbolic complex antisymmetric tensor e*” is
defined by:

-1 if p>v, (4.31)

v {+1 if p<v,
eh? =
0 if p=w.

Xu and S are, respectively, the gravitino and skewino fields. Here I', means
E¢7., where E}, is the real vierbein, defined by [7]:

() = EZ.Egnab'
Using the transformation laws of ef, and €, one can show easily that:
8G v = PaV(,E (4.32)

and _
58 = jer P Ve (2 =1). (4.33)

Equations (4.32) and (4.33) imply that:

Xp = %J;QV:‘,,F" (4.34)
and _ _
S =je oV, (32 =1), (4.35)
where
Vi, = €uaZy® =859, . (4.36)

Notice that the N = 1, d = 4 NGT supersymmetric laws are a sort of
a generalization of those of ordinary N = 1, d = 4 supergravity (SUGRA).
This is due essentially to the fact that the vierbein e}, does not represent only
the graviton, but rather a mixed state (graviton and skewon). Similarly, the
hyperbolic complex spinorial field 1, does not describe just the gravitino
field.
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5. Conclusions

From our above described simple model, one can deduce that the struc-
ture of N = 1, d = 4 NSUGRA is totally different from that of SUGRA.
As mentioned before, this is due essentially to the fact that in the proposed
Lagrangian, the symmetric and antisymmetric parts of the tensor g,, are
mixed. Moreover, the hypercomplex spinorial field %, is a mixed state of
the gravitino, skewino and the supersymmetric partner of the real scalar
field ¢.

This suggests that the ultraviolet behaviour of the present model might
be different from that of ordinary SUGRA, including possibility of renor-
malizability (or finiteness) of the theory.

Moreover, and because of its structure, NSUGRA coupled to nongrav-
itational gauge theory may lead to a phenomenologically interesting new
class of models. In this case, and contrary to the popular belief that the
gravitational effects should be negligible at low energies, NSUGRA phenom-
ena act as the trigger for the breakdown of the gravitational gauge theory
symmetry. Then, one will have a dynamical unification of the NSUGRA
nongravitational gauge theory phenomena. More details are under investi-
gations.

We are grateful to Professor G. Clement and Drs M. Lagraia and
M. Tahiri for very valuable discussions. One of us (K.A.) would like to
thank Professor G. Clement for fruitful comments.
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