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The Kepler problem in the Lobachevsky space is solved.
PACS numbers: 04.90.+¢

The first of December 1992 is the 200-th anniversary of the birthday
of Nikolai Ivanovich Lobachevsky. We present this paper to celebrate this
anniversary.

Upon solving the longstanding problem Lobachevsky discovered an ex-
traordinary geometry. He delivered a report on it in 1826 at the Kazan
University and wrote a paper [1] published in “The Kazan Bulletin edited
by the Emperor’s University of Kazan” (1829-30). In this paper, for the
first time in the mathematical literature, a geometric theory was presented
based on all Euclidean postulates except for the fifth one which is referred
to as the Euclidean postulate of parallels.

It is useful to illustrate the difference between the two geometri¢ theo-
ries, the Lobachevskyan and Euclidean ones, by using a sphere with radius
p as an example.

According to the third Euclidean postulate “from any center it is pos-
sible to draw a circle of arbitrary radius” [2]. This means that both in
Euclidean and Lobachevskyan geometries the value of p may be arbitrary.
Lobachevsky has shown that the internal geometry of a sphere is indepen-
dent of the fifth Euclidean postulate. Therefore, both in the Euclidean and
Lobachevskyan geometries we can draw on the sphere “parallels and merid-
ians” and we may introduce polar coordinates # and ¢. We denote the
length of the “equator” by 2xr. In the usual way we get the metric form
r2(d6? + sin® dp?) of the sphere and its surface element 72 sin dfdp. The
surface of the whole sphere is equal to 4xr2. The difference between the two

(115)



116 N.A. CHERNIKOV

geometries consists in the dependence of r on p: in the Euclidean geometry
r = p while in the Lobachevskyan one

r = ksinh % . (1)
Here k is some characteristic constant called the Lobachevsky constant.
For k — oo the Lobachevskyan geometry transforms into the Euclidean
geometry. If k < 0o, then the sphere of radius p for small values of p/k has
approximately the Euclidean geometry.
In both geometrical theories the radius is perpendicular to the sphere.
Therefore, the metric form of the space is equal to

ds? = dp® + r¥(d6? + sin? 0dy?). (2)
In the equatorial plane § = x/2 and the metric form equals
ds? = dp? + ridyp?. (3) '

The constant k enters into all the formulae of the Lobachevskyan georn-
etry in that part where it differs from the Euclidean geometry. For example,
the sum of angles A, B, C of an arbitrary triangle in the Euclidean planime-
try is equal to x, while in the Lobachevsky planimetry it is smaller than =
and the area of the triangle is equal to

F=k(r—A-B-0). (4)

The volume of publication restricts our review, but we have to mention
the surfaces orthogonal to a bundle of parallel lines. Lobachevsky called
them limiting spheres (orispheres) and showed that the internal geometry
of an orisphere coincides with the Euclidean planimetry. Let us emphasize:
rejecting the fifth Euclidean postulate for the plane, Lobachevsky has proved
it for the orisphere!

We also mention that Lobachevsky formulated two completely new
problems: on the astronomical verification of the geometry of our visible
world and on the “kinds of changes which will occur in Mechanics after
introducing in it the imaginary Geometry” [1], p. 261.

Both these problems are actual now. In paper [3] published in the
“Scientific Notes of the Emperor’s University of Kazan” Lobachevsky wrote
in 1835:

“ ... there should be no contradiction in our brain when we admit that
some forces in Nature follow a certain Geometry while other forces follow
their particular Geometry. To clarify this idea, we assume, many others
believe in this also, that the attractive forces weaken due to the propagation
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of their action through the sphere. In the usual Geometry the surface of
the sphere is 4xr2 if its radius is » and, therefore, the decrease of the force
is quadratic in distance. In the imaginary Geometry I found the area of the
sphere
x(e" —e ")2

and perhaps the molecular forces follow this Geometry and their manifold
should then depend on the number e always being very large. By the way
let this be a pure hypothesis which should be proved by more convenient
arguments; but we should not doubt that the forces produce all by them-
selves: the motion, velocity, time, mass and even distances and angles” [3],
p. 159.

It is possible to get agreement of the formula presented in this part of
the text with the previous one describing the area of the sphere of radius p,
if we abandon notation (1) and put

5= _ — Lm 1 — 1
—1, r=p, e_n—roo(l—*.; X—:H.

However, in the subsequent considerations it is more convenient to keep
notation (1).

We shall obtain the Newtonian theory of gravitation in the Lobachevsky
space provided we can find the fundamental solution of the Poisson equation

AP = 4rab(z)é(y)é(z) (5)

in the space with metric (2). This equation contains the following ingredi-
ents:
the gravitation potential & acting on a test body and produced by the
point mass m;
the constant a = ym, where v is the Newton constant;
the Laplace operator in the Lobachevsky space

10,0 1108 .9 1 0\
rzap 6p+r2(sm030 06_0+sin296_¢2)’

the Dirac §-function with arguments

A_

z=rsinfcosp, y=rsinfsing, z=rcosh. (6)

According to the remark of Lobachevsky we assume that the “attractive
force” (a covector of the force) has the following components:

o o ad oo
=2 ~55 =0 Fs=-3-=0.
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Consequently
a

“Ftamh§ (1)

Let us consider the motion of a test body. Denoting the time by ¢, we
obtain from (2) and (7) the Lagrangian of a test body

¢ =

L =3 +r26 +r¥sin’ 05%) — & (8)

as well as the equations of motion

d. A2 L w202y X
o rr' (6% + sin® 8¢ )+r2_0’

%(rzé) —r?sinfcosfp® =0,

d <2,
-&Z(rz sin? ) = 0, (9)

where :
7' = cosh - —=¢; (10)

the dot denotes the time derivative.
Since the Lagrangian (8) does not depend on-time, the energy

E = (p* 4+ +26% 4+ r®sin? 0p%) + & (11)

is conserved. Due to the spherical symmetry of the Lagrangian, all the
components of the angular momentum

My =y3 — 2z = —r?(sinf cos 8 cos pp + sin ¢d)
Mz = zi — 22 = —r*(sin 8 cos 0 sin p@ — cos pb),
M; =z — y& = r?sin? 0, (12)

are also conserved; it is easy to check this directly by differentiating Eqs
(11) and (12).

The conservation of the angular momentum means in this case that the
test body is moving on the Lobachevskyan plane that passes through the
origin of attraction. Without loss of generality we can take this plane as
the equatorial plane with § = = /2. In this case M; =0, M; =0, M3 = M,
where

M=1%p, (13)

and the energy integral takes the form

E = }(5* +12¢%) + 8. (14)
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Substituting (13) into (14) we get the differential equation for the trajectory
p = p(p) in the form

M2 [ dp\? 2
E-—F[(E(;) +1‘]+¢. (15)

Now, taking into account the form of ¢ given by (7) we introduce the
notation

p_1
ktanh i (16)
Since 1 1 1
du = -ﬁdp, u? = atmE 1)
and equation (15) takes the form
M3[fdun2  , 1
E_T[(E;) +u -k—z]—au. (18)
The solution of this equation is
a a2 2E 1
v=ae TV ta T ety (19)

The integration constant is chosen here so that the maximal value of u
corresponds to ¢ = 0. If we denote

M? 2EM? MH*
= ?’ € = Jl'*’ a2 + azkz ’ (20)
the equation for the trajectory of the test body may be written in the form
P P
tanh - = ————. 21
kta k' l+4ecosy (21)

In accordance with our choice of the integration constant for equation
(18) the point of the orbit (21) nearest to the attraction center corresponds
to the angle ¢ = 0. The distance from the attraction center to the nearest
point of the orbit equals p; given by

P1 P
k= = . 22
E 1+4e (22)
The most remote point of the orbit exists only for a finite motion. In this
case the following condition

p

k
> 1-¢

i.e. e<1-%, (23)
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should be satisfied; this is equivalent to the condition

«
FE < —"k-. (24)

We shall restrict ourselves to this case. We shall then get the solution of the
Kepler problem of motion of a planet around the Sun in the Lobachevsky
space.

In the case of a finite motion, the most remote point of the orbit corre-
sponds to the angle ¢ = x while the maximal distance p; is given by

pP2_ P
ktanhk_l—e' (25)

Let us denote the size of the orbit by 2a. Clearly it is equal to p; + p2.
From (22) and (25) we find

Icta.nh% 2p 2

EEETET I (26)

Now we find the period T of the motion of the planet. According to
(13) we have

2%
MT = / r2(p)dg. (27)
0
The integrand may be found from (1) and (21)

p2

(14 ecos ¢)? — p? k2
_}i‘i 1 _ 1 )
~ 2 \l+4e€cosp—p/k 1l+4+ecosp+p/k)’

The integral is evaluated by the substitution { = tan £. Then we get

r*(p) =

(28)

de = 2 darcta.n( m_ntanf)
m+ncose +/m2 - n? m+n 2/’
2n
/ dp = 2x for m > |n|.
m-+ ncose mé —n
0
Therefore,
1 1
MT = 1rpk( - ) . (29)
V(1 -p/k)2 ~e&  /(1+p/k)? - €
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Substituting (20) into (29) we get

~k 1

T= (¢:E“-T/ \/m) ‘ (30)
The period T depends on the energy E, but it does not depend on the
angular momentum M. k

The substitution of (26) into (30) gives the following expression for the
square of the period:

4x? a
T? = —;——(k sinh k) cosh e (31)

It is interesting that the planet’s orbit on the Lobachevskyan plane may
be defined in the same way as on the Euclidean one: the orbit is a set of
points having a given sum of distances from two given points. This set we
shall call the ellipse. The given points are called foci and denoted by F and
F. The gnven sum of distances is denoted by 2a and called the length of
the major axis. We denote the distances from F and F to a point M laying
on the ellipse by p and g. Thus p + j = 2a. Let the middle point of the
segment FF be O, while its length is equal 2c. We shall call the point O
the centre of the ellipse. The major axis passes through the foci while the
minor one passes through the centre orthogonally to the major axis. On the
minor axis p = p = a. The length of the minor axis is denoted by 2b.

/

F 0 F

Fig. 1. In this figure the major axis, both foci and the centre lying on the major
axis, are shown. The point M lies on the ellipse.

From the triangle M FF it follows that

2a—-p 2c
cosh — = : cosh _E cosh 2 = smh * ® sinh £ cos(1r -¢). (32)
After a number of transformations we arrive at Eq. (21), where
. 4 2a 2a 2c .2 2a .2
psth = k(cosh——é— — cosh 7), esmh—é— = sinh . (33)

When the point M lies on the minor axis, this triangle becomes isosceles,
while the triangle MOF becomes rectangular. From this we find

a b c
cosh 7= cosh z cosh z (34)
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Substituting this into the first of Eqs (33) we get

b
ptaxﬂl%:ktanhzz. (35)
It is interesting also that it is possible to obtain the same problem in
the nonrelativistic limit (¢ — o0) in the gravity theory with two connections
[4], choosing the second one in the form of the Christoffel symbols for the

metric
di? = 2dt? — dp? — (ksinh %)%do’ + sin? 8dp?).

It seems that this problem is important from the point of view of the
relativistic theory of gravitation [5].

The velocity of light ¢ plays the role of the Lobachevsky constant in
the velocity space [6]. In the invisible world of velocities the role of the
distance p plays the rapidity s, and the role of the quantity represented by
the left-hand side of (25) is taken by the velocity v so that

v S
— = tanh —-.
[ [
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