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We present the leading logarithmic third order, O(8%), corrections to
the electron structure functions in QED. For the non singlet component
we present exact Monte Carlo algorithm and compare several approximate
(exponentiated) solutions. Using structure functions we discuss the QED
initial state photonic (i.e. without additional fermion pairs) corrections
to total cross-section at LEP. We find the size of O(3%) corrections, in the
range |/2— Mz| < 2.5GeV, to be 4a(®) /o < 0.12% for Kuraev-Fadin and
< 0.01% for Jadach-Ward ad hoc exponentiated formulas, respectively.
We show that in the case of the exponentiated formulas the stronger cuts
more efficiently eliminate higher order corrections. Finally, we propose
a new, compact, “pragmatic”, i.e. without numerically unimportant sub-
leading terms, O(a®) formula for the initial state QED photonic part of
the total cross-section at LEP, accurate to §o/o < 0.015% for |\/s—Mz| <

2.5GeV and 0.035% for |\/s — Mz| < 7.5GeV.
PACS numbers: 12.20.Ds

1. Introduction

In 1983 the W and Z bosons were discovered in the proton-antiproton
collider at CERN. It was a great success of the unified theory of electromag-
netic and weak interactions. The theory, called the Electroweak Standard
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Model (EWSM), is based on the local gauge symmetry group SU;xU;. The
EWSM predicted intermediate heavy bosons, charged W+, W~ and neu-
tral Z in addition to the massless photon of the conventional QED. The
experimental discovery of all these massive resonances strongly confirmed
the EWSM. The masses of the bosons were measured at the time of discov-
ery within a few per cent accuracy and well agreed with the predictions of
EWSM.

Later, more accurate measurements have been possible in the LEP col-
lider at CERN. This 27 km long circular collider of the et and e~ beams,
of the energy up to 55 GeV per beam, was completed in 1989. Its aim is
to produce a high statistics ~ 107 of the Z events. It is able to perform
new tests of EWSM and precisely determine its basic parameters. There
are two main groups of observables measured at LEP. First, connected with
Z line shape are: peak total cross-section, peak position, width and branch-
ing ratios. The second includes forward-backward and spin asymmetries.
Within the first group the typical LEP experimental accuracy is below one
per cent whereas in the second of order of a few per cent. One of the spec-
tacular results, coming from the total width measurements (first group of
observables) is determination of the number of fermion families to be three
(2.90 £ 0.10, see Ref. [1]).

On the other hand, any deviation from the Standard Model would be a
signal of a “new” physics. Until now, however, no unexpected signals have
been found. Present LEP results are used to set better mass limits for new
particles (top, Higgs, supersymmetric particles etc.), see e.g. Ref. [1].

To analyse the data one has to have theoretical formulas including all
necessary corrections up to a given accuracy level. Let us concentrate on one
of the observables, the peak total cross-section. The corrections come from
three sectors of the theory: QED, weak and QCD. The bulk of corrections
comes from QED (in total cross-section up to 50% and more) covering all
the subtle details of EWSM. In this respect the detailed control of the QED
sector is crucial for the exact measurements.

In the paper we discuss only the QED part. Such a selective treatment is
possible because the electromagnetic corrections are separated (factorized
in the scattering matrix element) in a natural way from the rest. The
dominant QED soft radiation is a long-range phenomenon, taking place
long time before and after the hard scattering process, and it is therefore
well separated in time and space from hard process, see e.g. Refs [2] or [3].

The leading O(a?) initial state QED contribution to the total cross-
section was first computed with the help of leading logarithmic structure
functions technique in Refs [2,4]. Later, the complete initial state O(a?)
QED formula was presented in Ref. [5]. In Ref. [2] the O(a?) formula was
also supplied with all-orders soft photonic corrections. This was an example
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of the so called ezponentiation procedure. Loosely speaking, the exponen-
tiation is a smooth interpolation between finite order analytical expression
and the multiple soft photons emission formula, see later in this Section
for more detailed discussion on exponentiation. A collection of various ex-
ponentiations can be found in the proceedings of the 1989 LEP Workshop
Ref. [6]. However, the estimation of the size of O(a®) corrections was not
included and selective comparison of the exponentiation prescriptions has
not been done at the time. This kind of analysis has been initiated in Refs
[7,8].

In the presented work we repeat and complete the discussion of Refs
[7,8]. As before, we discuss the QED photonic corrections to the total cross-
section in eTe~™ — Z 4+ — ff. In Ref. [7] the calculations were done within
the leading logarithmic (LL) framework and two exact solutions to the LL
non singlet evolution equation were presented. To this purpose the Monte
Carlo algorithm and the numerical inversion of the Mellin transforms were
used. The analytical result for the O(83), 8 = 2(a/7)L, L = In(s/m?)
correction to the exponentiated formulas for non singlet function was also
presented. Finally, the comparison of various exponentiations at the level of
structure functions was performed. In Ref. [8] the new, compact, analytical
O(a®) formula for the total cross-section was presented and the comparison
of various exponentiations was carried out. In order to get the exact LL
result the M.C. algorithm for the convolution of non singlet structure func-
tions was used. In this paper we repeat major results of the above works
and add the following new ones: We present the complete O(3°) corrections
to the non singlet function (virtual and real terms) and the singlet function
as well. We find the exact solution of the singlet function by numerical
inversion of the Mellin transforms, calculate the size of O(8°) corrections
to formulas for the total cross-section of Ref. [6] and discuss the cut-off de-
pendence. Finally, we discuss the next-to-leading corrections in the total
cross-section.

The basis of our work is the leading logarithmic approximation method,
also called the structure functions method. This formalism, widely used in
QCD, was in fact born in the QED framework. It was introduced in the
Gribov and Lipatov works [9,10]. Authors of Ref. [9] have summed up to
infinite order all the LL contributions to the deep inelastic ep scattering
and to the ete™ annihilation. They found the dominant LL contributions
to be of the form of the so called “ladder” graphs. The calculation was done
in the Feynman gauge (unphysical), with the help of Sudakov phase space
parameterization and Ward identities. The results were later rewritten in
the form of evolution equation in Ref. [10]. The excellent guide to the
resummation technique, discussion of the physical gauges and other details
can be found in Ref. [11].
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The structure functions were introduced in QCD by Altarelli and Parisi
in Ref. [12]. Starting from the results of Operator Product Expansion (OPE)
they rewrote and reinterpreted the formal OPE result in terms of parton
distributions and their evolution in energy scale Q2. Various calculations at
the LL and the next-to-leading levels were performed, including processes
like Drell-Yan, deep inelastic leptoproduction, ete™ into hadrons etc., for
a review of corresponding results see for example Ref. [13]. A key point of
all these results was the factorization theorem, see e.g. Refs [13-16,11,3]. It
states that the cross-section to a given process can be split up into two parts:
a short distance hard cross-section and a structure function containing long
distance effects. The hard ¢ross-section is calculated perturbatively and does
not contain any mass singularities. The remaining part, called the structure
function, consists of the experimental input (structure of the hadron) at the
fixed energy scale sg = Q2. They may be evolved to higher energy scale
by the evolution equations. All the spurious mass singularities are factored
out at the scale sy and replaced by the experimental data. This is very
different from the QED case where at the scale sg ~ m2 there is no internal
structure of the electron. This sets the unique analytical boundary condition
for evolution equations. In other words the QED structure functions are
calculable without any experimental input.

In the past few years, supported by the formalism developed in QCD,
the structure functions revived in QED. It was due to Kuraev and Fadin
[2], who, in analogy to the Drell-Yan process, described the initial state
corrections to ete~ — fTf~ with the help of electron (positron) structure
functions, factored out from the cross-section. Then, the LL evolution equa-
tions were used to determine the structure functions. The NLL calculations
for ete~ — fTf~ were done in Ref. [5]. Some further developments can be
found e.g. in Refs [17-22]. Let us also mention other areas of application of
QED structure functions: LEP-IT and HERA experiments, see Refs [23,24].

In the LL approach all the leading (collinear) contributions are simulta-
neously summed up to the infinity. The leading terms are defined as propor-
tional to a™ L™ and the corresponding approximation is called the leading
logarithmic (LL), the next-to-leading (NLL) approximation also sums terms
proportional to a®L™~! and so on. In the case of the ete™ annihilation
at LEP the NLL terms are already of order In"?(m%/m2) ~ 4% of the LL
ones. The extension of this approach from LL to NLL is, however, difficult
in practical calculations.

The other thing to be discussed is the concept of exponentiation. It
may have several meanings. In the presented work we will often refer to
this keyword. Therefore, we wish to clarify it here. Special attention should
be payed to its relation to the LL approximation. (i) The rigorous way
of exponentiation in perturbative QED is to follow the scheme by Yennie,



Leading Logarithmic Calculations of QED Corrections at LEP 139

Frautschi and Suura in the 1961 paper Ref. [25]. The entire QED pertur-
bative series of any process is rearranged in such a way that the infrared
(IR) singularities are already from the beginning factored out, summed up
to infinite order and properly cancelled. The remaining, not exponentiated,
IR finite series can be calculated perturbatively. The YFS exponentiation
is theoretically well founded and it forms a well defined order-by-order per-
turbative prescription for practical calculations. (i) The other, common
type of exponentiation is one or two dimensional “ad hoc” exponentiation
of inclusive distributions. Inclusive distribution resulting from finite order
calculation is improved by hand in the soft photons limit. The basic re-
quirement in this procedure is that the IR behavior of the theory known
from the YFS analysis is reproduced. (i) Finally, the third possibility is
the LL-exponentiation, compare Ref. [9]. It is, in fact, a well defined mathe-
matical problem of finding the fastest convergent solution to the non singlet
evolution equation. The LL approximation defines a closed and unique
framework for QED calculations. The set of evolution equations for the
structure functions is complete and the boundary conditions are unique (no
internal structure of the electron). The evolution equations have the unique
solution and can be solved approximately in a few different ways (a) iterative
to the finite order or (b) in the soft limit to the infinite order. A certain in-
terpolation between these two solutions, i.e. another approximate solution,
we call the LL-exponentiation. Definite answers can be given both for the
structure function itself and, after convolution, for the total cross-section as
well.

All three ways of exponentiating are used in practical calculations,
sometimes mixed together. For example, in Ref. [2] the O(8?) solution
for LL, non singlet structure function was derived, exponentiated (LL-
-exponentiation) and, then, supplied with subleading terms taken from the
perturbative calculations, and improved in the soft limit as well (ad hoc
exponentiation). In Ref. [5], see also Ref. [6], the finite order O(a') and
O(a?) perturbative inclusive distributions were exponentiated ad hoc. Fi-
nally, the exclusive YFS exponentiation was extensively used in practical
Monte Carlo applications in Ref. [26] and related papers.!

Keeping in mind the above distinction the approach used in this paper is
as follows. The results of our work will be obtained with the help of leading
logarithmic approximation in QED. We stay within the LL framework as
long as possible. We present and compare various solutions of LL evolution
equations (LL-exponentiation). Next, still at the LL level, we discuss the
total cross-section. Our LL O(83) result allows us to calculate the dominant

! In particular, in Ref. [27] the renormalization group method was applied to
YFS scheme in order to improve its ultraviolet behaviour.
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O(B3) correction to total cross-section using various LL-exponentiation pre-
scriptions. Finally, we discuss the formulas for total cross-section beyond
the LL approximation. The exponentiation of NLL terms, although with
close correspondence to the LL one, is the ad hoc one. We discuss nonleading
effects and new “pragmatic” third order formula.

We summarize here the main new results of the paper.

¢ We calculate the complete O(33) corrections to electron non singlet and
singlet structure functions. For the singlet contribution we also obtain
the exact solution by numerical inversion of the Mellin transforms.

o We calculate the size of O(a®) corrections to commonly used QED
photonic formulas for total cross-section at LEP. In the range |/s —
Mz| < 2.5GeV it varies between Ac®®) /o < 0.12% for Kuraev-Fadin
exponentiation and Ac(3)/o < 0.01% for the Jadach~Ward one. It also
demonstrates that among ad hoc exponentiations discussed in Ref. [6]
the best is by Jadach and Ward of Ref. [26].

e We show that the compact O(3%) formula for initial state QED photonic
corrections to total cross-section at LEP, proposed in Ref. [8), is accurate
to §o/o < 0.015% in the range |/s — Mz| < 2.5GeV and to §o/o <
0.035% for |/s — Mz| < 7.5GeV
The content of the paper is the following. In Section 2 notation and the

master LL evolution equations are introduced. In Section 3 the analytical,
Monte Carlo and numerical solutions of non singlet and singlet evolution
equations are presented. In the non singlet case the discussion and com-
parison of exponentiation schemes is performed. Section 4 is devoted to
application of structure functions to total cross-section at LEP. The higher
order corrections are determined, various exponentiation schemes are com-
pared and the compact formula for QED corrections is presented.

2. General framework of LL calculations

In this Section we introdiice notation, collect definitions and present
the basic set of evolution equations for the structure functions.

The LL electron structure functions Df(z, s), p = e, &,7 can be defined
as density dn,/dz of a given virtual particles p in the initial electron, where
z is a fraction of the initial energy (longitudinal momentum) of the electron.
The second argument s = Q? is the energy scale characteristic for the pro-
cess (in our case of ete™ — utpu~ it is the center-of-mass energy squared).
The boundary condition for the evolution is the requirernent that for s = m2
electron does not have any internal structure, i.e. DS(z,m2) = §(1 — z).

Instead of DS and D¢ one often uses functions

DNS = D¢ - Dt and DS = D% (1)
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DNS | the non singlet structure function corresponds to the diagrams where
incoming electron takes part in the hard interaction (“valence”). In the
case of non-running coupling constant used (a(s) = a = 1/137) the non
singlet function describes corrections due to the multiple bremsstrahlung
from an electron line. Inclusion of the running coupling constant also takes
into account a similar mechanism of fermion pairs emission (some photons
are replaced by fermion pairs). It can be seen e.g. in direct Gribov’s and
Lipatov’s resummation of the leading ladder diagrams in Ref. [9]. The
running coupling constant appears there effectively as a result of inclusion
of the LL vacuum polarization in photonic lines. It is equivalent in turn
to additional fermions in the final state. The singlet structure function
describes the other possible mechanism of fermion pairs production. For
the symmetry we introduce also function D* = D¢ + DZ.
The evolution equations read [10], [12], [2]

De(:c s)=6(1-2)

+/ v aéfr') (D (') ® P2(-)(2) + DY (') © P5(-)(=)), @)

8!
m?

Di(es) = [ L35 (D2 () @ PEC)E) + DY () © F3()(@) ()

and )
DY(e0)= [ 42
(=207 (2,) + D2 (+) ® PI()2) + D% (+#) € BO)(E)), (4
where
1
z2
P() = P() = -5) [T (5)
0
e(2) 2 2 14(1-2)°
Py (2) =2+ (1-2)* and P(e)()——z———— (6)

are the probabilities (splitting kernels) of transitions e(g) — e(€),7 — e(&)
and e(€) — 4 respectively. The convolution symbol ® stands for

Pi()) ® Py(-)(z) = / de1deyb(z — 2122)Py(21)Pa(z2).  (7)
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Due to term —2/3 D¢, Eq. (4) looks apparently different from its QCD analog
of Ref. [12]. However, by rewriting —24D{ (z,s') = DJ (-,s') ® PJ(-)(=)
with PJ(z) = —(%/3)6(1 — z) we recover the evolution equation for gluon
structure function of Ref. [12] restricted to the QED case. The splitting
kernel PJ corresponds to first order, purely virtual, vacuum polarization
correction present also in QED.

At the LL level there is no difference between e and € at all. Certain
differences might appear in the nonleading calculations, see Ref. [13]. The
two terms in P(z) correspond to the real and virtual photons. Cancellation
of the IR singularities between them becomes more transparent if we use
the explicit IR cut-off . The P(z) is rewritten as

1+ 22

Z

(8)

As before, the second term represents the real emission above the cut-off,
whereas below the cut-off the singularities cancel resulting in a finite ex-
pression (first term).

Finally, a(s) is the running coupling constant. In the case of electrons
only it is of the form a.(s) = a/(1 — (a/37)In(s/m2)). If also muons are
allowed it becomes

P(2) = 6(1—z)( +21ne) +9(1—e—-z)

a
1- &ty - (s —m z)gz,;m;’z)

At the end of this section we rewrite the master equations for DNS
and D¥ (i.e. DS) in the form more convenient to the further analysis. We

introduce new variable
f 2a(s')ds’
plo) = [ 2 (9)

Qetp(8) = (

s
md

Employing the various definitions of a(s) (see above) we find
i In 2, for a(s) = a,
—6 ln(l - -f—‘-ln-—";) for a(s) = a.(s),

—31n((1 =ln 2 ) —(£)?1n? ;‘,‘-) for a(s) = aetu(s)-
(10)

After differentiation with respect to 3, the formal solution to Eq. (4) reads

B(s) =

B
DY(z,0) =300 (- 5) [dnexp )DHm) @ PX()E). (1)
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Substituting solution (11) to Eqs (2) and (3) we get

B
DNS(z,0) =81~ 2) + } [ nD™S (,m)® P()(e) (12)
0

D+(Z,ﬂ) =§(1-z)
g
+1 [ an(D*(.m 8 P(e)
1]

n
+ Jexp (- %) / dy exp (%)D+(',y) ® R(z)) (13)

1—2
3z

Equations (12) and (13) together with (5) and (14) form the master set
of LL evolution equations. Extensive discussion of their solutions will be
presented in the next Section.

R(z) =P] ® P5(z) = 4+ 7z +42?)+2(1+2z)lnz (14)

3. Solutions of the LL evolution equations

The exact analytical solutions of the equations (12) and (13) are not
known. Here by the exact analytical solution we mean any one in the form
of standard special functions and not the moments of the Mellin transforms.
The strategy of solving Eqs (12) and (13) is, in general, twofold. One can
construct solutions perturbatively expanding order by order in the effective
parameter 8. Until recently only the second order calculations were done,
see Ref. [2]2. They are in agreement with the full O(a?) results of Ref.
[5]. However, to estimate the accuracy of O(a?) formulas it is necessary to
know the O(a®) LL correction. In the following we will present new O(3%)
solutions of Eqs (12) and (13), see also Ref. [7] for more details.

The second way of solving convolution-like equations is to use the Mellin
transforms converting the convolution into an ordinary multiplication. The
inverse transformation is, unfortunately, difficult to carry out analytically.
Only in the soft photons limit, z — 1, of non singlet function (the singlet
function vanishes for z — 1) inversion can be done analytically. This way
the old Gribov-Lipatov result of Ref. [9] is reproduced®. In order to get the

% See also note [32] in Ref. [6].

3 In fact, at the last step of direct resummation of Feynman graphs, Gribov and
Lipatov also used the Mellin transforms technique.
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exact solution we will perform the complex integration in the inverse Mellin
transforms numerically, both for non singlet and singlet structure functions.
Finally, for the non singlet function we propose also the exact Monte
Carlo algorithm, see Refs [7,8], based on Ref. [28].
The further detailed analysis will be done separately for non singlet and
singlet functions.

3.1. The non singlet function

3.1.1. Analytical perturbative O(8) result
The formal iterative solution to (12) is of the form

NS, gy — s(1—z1a S~ LB ¢ ok,
DY (2,0) = 501 )+,§k,(4)1’ (=),

P®(z)=P®---® P(z). (15)
k

First term of this series is simply the P(z) of Eq. (8), second term is already
known in the literature, we quote it here for the sake of completeness, see
Ref. [24],

1P®P(z)=6(1- :c)(21112€+31n6+ 2 —2((2)) + O(l—e-—:c)
[1+z

(2ln(1-z)-Inz + )+%(1+z)lnz—1+z], (16)
where ¢ < 1 is an infrared regulator in the beam energy units, ((2) = x2/6

and ((3) = 1.2020569031.... We have calculated the third order correction
to Eq. (15). It reads

1 (ﬁ) PRPQ®P(z) = (‘—’) 8(1—2)bcerm+ (ﬂ ) O(1-€e—2z)brerm (17)

3! 2
with
11+22(9 =2 2
Bterm—[zl_z(sz—ﬁ-{- ln(l—:c)-—-ln z+ = In(l-z)
+ 1121n z—--lnzln(l—-:c)) (1+:c)lnzln(1—:c)

- Z(l —2)In(l-z)+ §2-(5 ~3z)Inz — 11—6(1 _2)

- -1_(1 +2z)ln’z + l(1 + 2)Lia(1 - z)], (18)

Storm =3¢(8) - 363 +1a )+§(§+1ne)3. (19)
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© is the Heaviside step function, @(z > 0) =1,0(z < 0) = 0.

Let us mention the interesting point on the iteration of (17) leading to
the fterm. Its nontrivial structure is a result of the real photons phase space
rearrangement. For example in the series (15) the 3-photon phase space
is given by O(1 — € — 21)O(1 — € — 22)O(1 — € — z3) whereas in (17) it is
converted into @(1 — € — z3z223). This requires extension of the cut-offs,
which, if carefully treated, leads to term-

We may also use different method in calculation of the é¢erm. The DNS
function satisfies the normalization condition (conservation of the lepton
number)

1
/ dzDNS(z,8) = 1. (20)
0

The same holds for every term of (15) separately

1 1 k
/ dzP®*(z) = [ / da:P(:c)] =0. (21)
0 0

Hence,
1—e

Sterm = — / dzeterm(z)- (22)

The advantage of the above method is that we can calculate the Oierm

careless of any finite cut-off ¢ effects and then restore the §germ from (22).
One important remark should be added. The §teym Of the first three

terms of (15) constitute the beginning of the expansion of the function

exp (— %.BCEuler)
Ir(1+1B)

1 .3
XP(Eﬂ(Z +1ne)), Cpuler = 0.5772157....

(23)
It is up to the e#/4 the infrared factor of Ref. [25]. It results from all-orders
exponentiation and cancellation of virtual and real soft photons below the
IR cut-off e.# This way the artificial logarithmic singularities ~ In* € are
summed up to the well behaved function /2,

Dvirt(e, ﬁ) —

4 The extra e?/4 corresponds to the remaining perturbative 3o term in YFS
analysis of Ref. [25], see also Section 3.1.3, or directly to the Gribov-Lipatov
soft solution (next Section).
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3.1.2. Mellin transforms method
The Mellin transform of the function f(z) is defined as

MIf)Q) = FO = [ defie)et? (24)
0
and its inverse as
ctioo
f(z)= % / d¢z—$F(), (25)

c is arbitrary constant such that ¢ > k for any k satisfying
o0
/ dz 21| f(2)] < oo.
0

Since M[P, ® P;]({) = M[P1)({)M[P;](¢), hence, the Eq. (12) becomes

B
DNO(B) = 1+ 7 [ dn DNSO () PO, (26)
0
PO = (1) + 9(3) - $(¢) - 9(¢ +2), (27)
where 1(() is the Eulers 9 function. The formal solution to Eq. (26) is
DN (B) = exp (%ﬁP(O) . (28)

Inverse Mellin transform leads to the explicit exact solution

D¥5(a,0) = exp (38(E - Cur)
7 dt 27 % ¢ exp (g—(—z,b(it +ec)—Y(it+c+ 2))) . (29)

Analytical evaluation of the (29) cannot be done. The only known result
is in the soft limit z — 1 (e.g. Ref. [2]). One gets it keeping only the
asymptotic form of the ¥(z) ~ Inz. From the Hankel’s representation of
the I" function we find

Gribov _exp(38(] ~Cruar)) 1, \}p-1
DE™PY(z, B) = (i1 15) ;A -=2)¥" (30)
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The same result was previously obtained by Gribov and Lipatov in Ref.
[9] from the direct resummation of the Feynman graphs. Recently, some
further refinements of the soft limit formula (30) has been proposed, see
Ref. [29]. In the asymptotic expansion of ¥(z) one has kept not only the
leading term In z but also some higher order terms.

The above result we can link to our previous perturbative calculations.
Integrating (30) over soft photons domain up to some IR cut-off we recover
the DVirt function (23)

1
/ vdzDG'ibov(z, ﬂ) = DVi"(G, ,3) (31)
1—¢

as conjectured previously in Section 3.1.1 from the perturbative expression
for dterm-
3.1.3. Exponentiationin LL

The final discussion of the previous paragraph introduced us to the
subject of exponentiation. From the technical point of view the LL-exponen-
tiation may be regarded as interpolation procedure between finite order
solution (15) and the all orders soft solution of Eq. (30). Adding some higher
order terms, one improves the convergence of the initial perturbative series
(15). For the reader interested in detailed introduction into the subject of
exponentiation we recommend Refs [8] and [30-32].

The most common exponentiation procedure is defined in Refs [2(}, [5].
According to Eq. (31) one replaces the §ierm of Eq. (15) by the DCribov
function. Next the DSFPov function, expanded to a given order, is also
extracted from the fierm of Eq. (15)

Di#(2,8) = DS(2, ) + 457 (2, B). (32)
The explicit O(83) result for the AXF(z, 8) reads

A5 (2,6) = ~3A(1 + =)

Inz 3 5 1
1_z+§(1+z)lnz—§—-2-z)

+ 1—16-,62 (—2(1 +z)In(1-2) -2

1'.2
+@p[-3a+a(g- G+ jn0-2+ uia-o)

11+2%( 3 1., 1

3Tz (—-s-lnz-i-lzln z—2lnzln(1-z))
+%(1+z)1nzln(1—:c)—-i-(l—z)ln(l—z)+-31§(5—3z)lnz

1

1 1 .
- R—(l -2z)- 3—2(1 +z)ln’z + §(1 + z)Lia(1 - z)] . (33)
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The above scheme was proposed by Kuraev and Fadin [2] and in the follow-
ing is referred to as the KF solution®.

The interesting question at this moment is: can one find another expo-
nentiation prescription and which would be converging faster? In fact, one
may invent many other O(33) interpolation prescriptions. All of them must
reproduce the same finite O(3%) result (17) but they may differ in O(34)
and higher order terms. The only way to compare their accuracy can be a
comparison with the exact solution. In the following sections we will discuss
these questions with the help of the exact Monte Carlo solution.

In the following we would like to present another exponentiation pre-
scription proposed by Jadach and Ward in Ref. [26]. It is motivated by the
classical Yennie, Frautschi and Suura paper [25] on the all orders cancella-
tion of IR singularities. For the convenience of the reader we review briefly
the main ideas and results of YFS work. It will be useful for both the further
discussion of the Jadach—-Ward (JW) exponentiation and the discussion of
the total cross-section beyond the LL approximation as well.

In the framework of QED calculations proposed by Yennie, Frautschi
and Suura, the IR photonic singularities (both real and virtual) are explicitly
factored out and then summed up to infinite order. The remaining non
singular terms can be treated perturbatively with any required accuracy.
The net result for any physical observable becomes manifestly IR finite.
From the technical point of view it is certain rearrangement of the standard
Feynman-like perturbative series. Applied to the initial state emission in
ete™ — utu~ the rearrangement looks schematically as follows:

Z n = exp(2a(Re Byiry + Breal) F(ﬁS) Z ﬂk» (34)

n=0

_ eXP(—ﬂSCEuler) -9 —_— -
F(Bs) = Zors e, Bs=2; (m -~ 1). (35)

Here ¢ stands for the total energy carried away by the additional photons, in
the beam energy units. The Feynman-like perturbative series of do,,/de is
effectively replaced by the series of 3;. Subscript k refers to the number of
emitted real photons and each 8, separately is given by perturbative series.

The difference is that in each doy,/de separately the IR cancellation must
be done, resulting in a spurious IR cut-off singularity. The B, from the
construction are IR finite, and the cut-off singularities are factored out and

5 Note that for some time the soft singularities were exponentiated inconse-

quently (e.g. Ref. [33]). This was pointed out by Kuraev and Fadin [2].
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summed properly to the infinite order. IR cancellation takes place in®

—= 1 afx? 1
2a(Re Bvirt + Breal) = ﬂshlf + ZﬂS + = (_ - _)' (36)

T\ 3 2
The Bg corresponds to the LL § of Eq. (10) The important difference is
in nonleading term —1 correctly included in Bs. For further details (e.g.
the formal definitions of §; terms) we refer to the original paper Ref. [25}
(applications directly oriented on ete™ annihilation can be found e.g. in

Refs [35,27,36,26]).

After trivial identification ¢ = 1 — 2, formula (34) and (36) with 8, =
0 for k > 1 looks very much like DGribov Eq, (30), the Bo term con-
tains among others the missing ef5/2, One should remember however that
Eqs (34)-(36) reproduce exactly the soft limit whereas (30) only within the
LL approximation.

The YFS program only rearranges the entire QED perturbative series
without any approximations. Both sides of the expansion (34) are exactly
equivalent and can be worked out order by order. This is the general strategy
used by Jadach and Ward in Ref. [26] and related papers. This way, the
important soft limit of the cross-section is under control throughout all the
calculations. The remaining ) terms can be next determined with the help
of standard perturbative technique without spoiling the IR behaviour.

Based on the formula (34) Jadach and Ward proposed another form
of ad hoc exponentiation. The soft exponent is here extracted in the mul-
tiplicative form from the whole formula (also from the hard term). The
corresponding LL-exponentiation reads

DY (2, 8) = DS™PoY(2, 8) ATV (2, ), (37)

ATV (z, ﬂ)_ 1+2%)+- E(—§(1+3z2)lnz—(1—z)2)

+ 1 (%) ((1 -z 4+ %(3:2 ~4z +1)Inz

“5(1 + 72%)In z 4 (1 — 2®)Liz(1 - 3))- (38)

8 More generally, the IR region corresponds to one of the mass singularities of
the theory, the photonic one. Due to the Kinoshita-Lee-Nauenberg theorem
Ref. [34] mass singularities disappear in the properly defined measurable quan-
tity. This happens when one sums over all the states degenerated in mass. In
our case over arbitrary number of the soft photons. Actually, this was done in
the YFS analysis.
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Up to the O(B3) terms both formulas (37) and (32) are identical, the dif-
ference starts from O(3%) terms. Compared to AKF, Eq. (33), the AW is
substantially simpler. In particular, it does not contain any singular In(1-=2)
terms. This already indicates which formula is the better (more accurate)
one. One more indication for the JW exponentiation can be found in Ref.
[29]. Therein, in the soft limit, the approximate solution of the form as
Eq. (37) is calculated with the help of Mellin transforms. The A’W series
of Eq. (38) is reproduced therein in the soft limit up to second order, i.e.
up to O(B?) hard terms. The multiplicative form (37) results there directly
from the approximate calculations. The most convincing argument, coming
from the comparison with the exact solution, will be given later on”.

For the completeness we also quote the LL version of the third prescrip-
tion, proposed in Ref. [6]

D% (=, 8) = #D‘“‘"“(z,ﬁ) + 4V (2, p). (39)

lnz+3
-2 2

(—%m:w Lo —;-lnzln(l—z))

AW (z,8) = %,32 (_2 (1+z)lnz -1+ z)

_1_1~}—z2
21—z

* (g)s [+ 12

1 1 1
+ §(1 +z)lnzln(l-=2) - Z(l —z)In(1-2)+ 35(5 —3z)Inz
- 11—6(1 —z) - 31—2(1-{-::)1n2:c+ %(1+Z)Li2(1—z)]. (40)

Let us finally remark on the normalization of the exponentiated ap-
proximate solution. As we stated before the non singlet structure func-
tion satisfies the normalization condition N = fol dzeDVS(2,8) = 1. Tt is
exactly fulfilled by any iterative order by order solution. After exponen-
tiation, however, the normalization becomes only approximate. We have
numerically checked that the solutions done in J-W prescription satisfy
NIO(BY)] -1 < 1073, N[O(B?)] - 1 < 1075 and N[O(B%)] -1 < 107°
relations. The discrepancies are due to incomplete higher orders (partially
included by exponentiation).

3.1.4. Monte Carlo exact solution

So far, we have discussed various approximate solutions to (12). To
estimate their actual accuracy, or to select the most efficient exponentiation
we have at our disposal an exact solution of Eq. (12). In the following we

7 See also Note Added at the end of the paper.
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present such an exact solution obtained with the Monte Carlo technique.
The M.C. algorithm was described in detail in Ref. [7]. Here we recall only
its main ingredients.

The basis of the algorithm is the exact iterative solution of Eq. (12)
rewritten in the form

1—z
. 1 3 1] :
DNs(z,ﬂ)=eh_If};exP (§ﬂ(me+z))1§1i=rll / z

o wn )Wy,

(41)
where

oo = nl (g) Ho(l_z-w,-)e(w,--ez)a (1~z—gwi) ,

3o ) o)

5 =
=1

Formula (41) is nontrivial for M.C. integration since it involves an infinite
series of integrals. Each of them represents a multiple photon emission.
Photon emissions are almost uncorrelated. They get correlated each with
other through the weights W,,.

The crucial observation now is that dropping the weights W,, the re-
maining simplified distributions p, almost factorize (up to the §-function)
with respect to the w; variables. The emission becomes almost independent
i.e. Poissonian. The Monte Carlo algorithm for this class of distributions
has been presented in Ref. [28].

The simplified integral (41) can be done analytically

w%mm%(m+)znjm% wn)

n=01i=1

_ Bexp (746(4— — CEuler +1n 1;:))
- 2(1-2)r (1+ 18) '

(43)

The entire M.C. algorithm is organized as follows:
¢ Generate variables n and wy,...,w, according to the simplified distri-
butions p,, Ref. [28].
o Calculate the corrective weight W, (w1, ..., w,) for each M.C. point.
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o Average weights over the entire M.C. series. The integral (41) is given

by
DNS(zsﬂ) = DNS(z,ﬂ)(W(z,ﬂ)). (44)

Few remarks are in order. (i) Let us notice that the IR cut-off € is
a dummy parameter in the algorithm. We have numerically checked that
results do not depend on its choice in the wide range of € from 10~4 to 10712,
(#i) The M.C. algorithm, as presented above, provides us not only with the
value of DNS function, but also explicitly simulates the photonic cascade.
The multiplicity n of each event is well defined, and the set of variables
(wiy,...,wn) can be interpreted as energies of the photons, or equivalently
as their longitudinal momenta. (iii) At the LL level the transverse momenta
are not well defined, they are integrated over. The only trace of them is in
the effective parameter § which is given as

5 /‘ dk2 2a(k

Transverse momenta correlation, conservation etc. are effects of sublead-
ing order. We are free to add to our algorithm distribution of transverse
momenta dp% / P?I‘ up to p1 ~ /3. These distributions however, are not con-
trolled within the LL approximation and there is certain degree of arbitrari-
ness in their choice. This holds true for any LL Monte Carlo algorithm in
QED, compare Refs [20,19,37,38]. More sophisticated description of trans-
verse momenta distributions is required in the NLL evolution equations e.g.
Refs [5,13,14].

Since the series (41) is an exact solution to Eq. (12), the DNS function
resulting from our algorithm is automatically normalized to unity.
3.1.5, Numerical inversion of the Mellin transforms

As a second exact solution of Eq. (12) we numerically calculated the
inverse Mellin transform, Eq. (29). In the case of non singlet function the di-
rect integration is difficult to carry out. The complex, oscillating integrand
does not vanish quickly enough with |t| — co. The result would therefore
either depend on the upper cut-off 4 used or would be unstable due to
machine errors. We overcame this difficulty by subtracting from Eq. (29)
the asymptotic form of the integrand and integrating it analytically, actu-
ally Eq. (30) represents result of integration. The remaining part is better
convergent and can be integrated. As the integration contour we used line
z=1+itte (-4 A).

3.1.6. Numerical comparison of solutions

Having in hand exact solution to Eq. (12) we estimate the accuracy of

the various previously discussed approximate solutions. In particular we
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compare different exponentiation prescriptions and find the best convergent
one.

At first, we discuss and compare two exact results: of the M.C. and
Mellin type. The accuracy of M.C. solution is under precise control. It
is given by the standard deviation and depends only on the number N of
generated events. The accuracy improves rather slowly with the increasing
statistics (6D/D ~ 1/v/N) but in principle can be arbitrarily high. The
situation of Mellin integration is more complicated. To increase precision
one should extend the integration domain. On the other hand it quickly
makes the integration routines unstable and the results meaningless. The
actual numerical error is therefore under poor control. Both method agree
within the relative accuracy 10~4. It is also the best accuracy reached with
Mellin integration.

1-107 ¢ T l | q

DYt/D, -1

_1_10_3- I i ! |
0.00 0.25 0.50 0.75 1.00
soft

Fig. 1. The ratio of the exact Monte Carlo result to the third order exponentiated
analytical solution of the JW type for the LL non singlet electron structure function.
Calculation was done for /s = 92GeV. Samples of 10® events were used for each
z-point. The M.C. statistical error is displayed.

1.107 e e A
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z
Fig. 2. The ratio of the exact Mellin transform result to the third order exponen-
tiated analytical solution of the JW type for the LL non singlet electron structure
function. Calculation was done for /s = 92GeV.

In Figs 1 and 2 we plotted respectively, the ratios of both M.C. and
Mellin solutions with the best approximate third order result, exponentiated
according to JW prescription, of Eq. (37). The error bars of Fig. 1 represent
M.C. error for the statistics 10 events per point. The comparison can be
summarized as follows:
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e All three solutions agree within the accuracy 5-10~* in hard limit and
1-10~* in soft limit.

o The analytical solution (37) is accurate to about 1-10~* and can be
treated as a numerical parameterization of the exact solution within
this accuracy.

1-107% ¢
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Fig. 3. The ratio of the approximate to exact solutions for the LL non singlet elec-
tron structure function. The approximate solutions are the exponentiated O(3?)
solution of either the KF type (open circles) or JW type (filled circles). The exact
solution is obtained by means of the M.C. technique. The error bars represent
the M.C. statistical error. Calculation was done for /s = 92GeV. Samples of 10°
events were used for each z-point.

Having discussed the exact solutions we can compare various exponen-
tiation procedures. In Fig. 3 we show the second order solutions exponen-
tiated by KF and JW prescriptions, both normalized to the exact M.C.
solution. The results of comparison are as follows:

e The JW prescription is definitely closer to the exact result than the KF
one. It holds true not only for hard but for soft region as well (the latter
one is especially important in the case of resonances or strong cut-offs).

e In the soft part (z > 0.8) the accuracy of the O(8%) JW solution is
almost the same as the O(3%) JW one, compare Fig. 1. Differences are
of order 1075,

o The third prescription (39), not shown in Fig. 3, places in between the
JW and KF exponentiations.

The final conclusion is that the JW exponentiation prescription (37) is
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better than both the commonly used KF one of Eq. (32), and the one of
Eq. (39) as well.

3.2. The singlet function

3221, Analytical perturbative O(8%) solution

The general iterative series for D5 resulting from Egs (13) and (15) we
found to be of the form

en-iZa(8) 3 ()

m=0,r=1

X (""’:‘_'1"‘1) (_%P)®m® (gn)m (2). (45)

P(z) and R(z) are defined in Eqs (8) and (14).

Up to the second (i.e. first nontrivial) order the solution (45) was pre-
sented e.g. in Ref. [2]. We have also calculated the new third order correc-
tion. In the O(B%) we need to compute analytically the convolution P ® R
(one pair + one photon). Unlike the non singlet case, the R(z) distribution
is infrared regular and finite: R(z = 1) = 0. It reflects the fact that the
probability of emitting a soft pair (through the “singlet” mechanism) tends
to zero in the IR limit. We do not deal with any IR singularities during the
calculations and the final result reads

P®R(z) = (g +2In(1 - :c)) R(z) + (1 +2)(~1In? 2 + 4Lin(1 — 2))
+ %(~9 -3z +8z%)lnz + g(—g ~8+8z+32%),  (46)
D3(z,8) = 5;8* 1= R(e) + 336° (35P ® R(e) - 5B (=))
=-11—6 [%ﬂzR(z) + %[P ((% +1n(l - 2) - %)R(z)
F3(-2 ~ 84824 82%) + £(~9 - 32 + 82%) In=

+ %(1+z)(—1nzz+4Li2(1—z)))]. (47)

3.2.2. Mellin transforms results

As in the non singlet case the use of the Mellin transforms, see Eqs (24)-
(25), converts the Eq. (13) into ordinary linear differential equation for the
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moments D'*'(()(/B) of the D*(z, B) function

DHOMpB) = ( 2p© _ E) DFHOg) 4 ( - ~pO 4 R(o) D),
pty=1, DHI(0)= ZP(O’ (48)

where prime denotes differentiation with respect to 8. The solution to
Eq. (48) is of the following form, compare Ref. [9],

pHOg) - P(<)2+\/A1(LC;/A( [2( plo _ +\/ZT—)]

1
6
1p(O) + 1 JA(Q) B(low _1 -
NG exe 5 (579 - § - VAD)|, 40

1/1 1\? 1
A(¢) = Z(EP(O + 5) + -2-R<<),

o_1(_4 ,3__3 4 1 _1._._)
2= (et o) et ) o

During inversion the requirement on the constant c of Eq. (25) is ¢ > 1. The
analytical inversion of the Eq. (49)has not been found yet and probably does
not exist.

We have done the numerical inversion of Eq. (49). In the soft limit the
D7 function reduces to the DNS function (30), i.e., the DS function itself
vanishes for z — 1. As a consequence the DS(¢) = 1D+(() IDNS(O
vanishes quickly for || — oo and the integration can be done without
difficulties. The result becomes almost independent of the upper integration
limit 4 and the Gaussian numerical integration is stable. We took as the
integration contour the line z = ¢ + it with ¢ slightly higher than 1.
3.2.3. Comparison of solutions

The comparison of O(82?) and O(B3) solutions of Eq. (47) with the
exact numerical solution is given in Fig. 4. The second order function, as
the lowest possible order, is not very accurate, about a few per cent, even
for medium and hard region, z < 0.75. The third order correction already
reaches the level of accuracy below 0.1%, for z < 0.75. In the soft emission
limit z — 1 both solutions start to diverge. This is due to the lack of
soft photons resummation, “exponentiation”. This discrepancy is, however,
completely irrelevant numenca.lly since DS — 0 as z — 1 and the relative
weight of the region z ~ 1 is negligible. Moreover, as compared to DNS the
function DS is a few orders of magnitude lower almost everywhere except for
z ~ 0. The only region where D° contribution could be of any importance
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Fig. 4. The ratio of the approximate to exact solutions for the LL singlet electron
structure function. The approximate solutions are the O(8?) (filled circles) and
O(B®) (open circles) solutions respectively. The exact solution is obtained by means
of the Mellin transform. Calculation was done for /s = 92GeV.

is z ~ 0, which corresponds to the emission of very high energy pairs. Only
for very loose cut-offs and energies far from resonance such contribution
may be significant.

4. Applications to total cross-section at LEP

The second part of the article is devoted to a certain application of the
presented LL structure functions formalism, to the calculation of the total
cross section o(s) for the process ete™ — utu~ at LEP. We shall look
at the ete™ annihilation as the Drell-Yan process. Using the QCD-style
parton model we may describe all the initial state QED corrections with the
help of structure functions®. This approach was pioneered in Refs [2] and

[4].

Let us concentrate first on the LL calculations. Later on we shall discuss
the total cross-section in a complete way going beyond the LL approxima-
tion. In this extension we shall make use of the O(a?) results of Refs [5,6].
We should mention here that the generalization of the parton model like
convolution formula (51) to the subleading orders is not proved to be cor-
rect. To be rigorous, one should follow the NLL factorization theorems, and

8 Actually, at the LL level the direct resummation of leading, “ladder” graphs
justifies the improved parton model as a proper “factorization theorem”.
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in particular use the corrected hard cross section instead of the Born one.
On the other hand, however, such a solution would not reproduce the soft
limit of the formulas in a correct way.

The LL calculations constitute the “skeleton” of the analysis. At the LL
level we have estimated the size of O(3?) corrections and compare various
exponentiations. In the next step we shall assure the proper soft limit
behaviour of our LL formula (based on the YFS result, see Section 3.1.3.).
In the final step we shall add remaining nonleading terms, representing
among others hard photons emission. Our strategy should be regarded as a
phenomenological one, since it does not use the NLL factorization theorem
but rather relies on the explicit O(a?) results of Refs [5,6].

4.1. Physical input

The requirements for theoretical accuracy of peak total cross-section
formulas are about §o /o < 0.3% in the energy range |\/s — Mz| < 2.5GeV.
There are three types of corrections: QED, electro-weak and QCD.

The QED photonic corrections at LEP have to be under control up to
the second order. On the other hand there are almost no estimations of the
accuracy of the O(a?) formulas available in the literature. For example in
the review of Ref. [6] there is an extensive presentation of various analyt-
ical formulas for o(s) including emission of up to two additional photons
from the initial state and the exponentiation of multiple soft photons. The
additional fermion pair production and all other initial-final corrections are
excluded. An accuracy quoted therein is §o/o(M%) ~ 0.3%. There is,
however, no satisfactory explanation where from this error comes.

The main goal of our work is to reduce this error and to justify the
new result with the series of calculations. We restrict ourself to the initial
state QED corrections. The initial-final state corrections as well as the pair
production are left beyond present analysis and will be published separately,
see Ref. [39].

As far as the initial state corrections are concerned the most important
points to be discussed are:

e What is the size of O(a®) photonic corrections?
e Which exponentiation scheme is better?

e What is the magnitude of subleading terms?

e What is the dependence on the cut-off?

Using results obtained in the previous sections we are able to answer
the above list of questions.

We shall also propose a new compact analytical formula for o(s), see
Ref. [8]. It includes initial state LL photonic corrections up to the third
order and the NLL ones up to the second order. This formula we shall call
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“the pragmatic” third order formula. The overall accuracy of the formula
is estimated conservatively to be do /o < 0.015% for |/s — Mz| < 2.5GeV.

4.2 Details of calculations

The QED parton model description of the ete~™ — u*u~ annihilation
is, in analogy to the Drell-Yan process, of the form

o(s):/dzldzz z DP(z1,)D2(z3, 8)opp(s2122) (51)
p=e,&,y

1
= / dz®(z, 3)0Born(32). (52)

Teut

In Eq. (52) we already omitted the term with p = 4, as contributing to
the non resonant, two photon pair production mechanism. Up to the third
order only the terms with p = e contribute to Eqs (51)-(52). In Eq. (52)
we shown explicitly the cut-off z.y¢.

At the LL level the kernel &1 (z,8) can easily be obtained from the
structure function results of the previous sections. We get

$11(z,B) = $L1 (2, B) + 11 (2, B), (53)
where

#11 (2, 8) = DNS(-, 8) @ DNS(-, B)(2) = DNS(z,28), (54)
#i1.(z, ) = D°(-,8) ® D°(-, B)(z) + 2DN5(-, 8) ® D°(-, B)(z). (55)

The non singlet kernel Q{IE is of the same form as the DNS function. The
whole modification is to substitute § — 283. It can be seen e.g. from the
Eq. (28) for the moments of DNS. All the exponentiated solutions to DNS
can be directly rewritten for ng This way, we have at our disposal also
the exact M.C. and numerical form of éfls_,‘ It is either the M.C. algorithm
of Sect. 3.1.4. or Mellin integration of Sect. 3.1.5. In actual comparisons we
will use the parameterization of the exact results by the analytical formula
(37), see also Fig. 1. This parameterization guaranties the accuracy of
§@NS /NS < 3.1074 in the hard region z < 1 and §NS /BN < 1075 in
the soft limit z — 1.

On the contrary to @EE the sFEL does not obey a simple multiplication
rule (compare Eq. (49)). Up to the 3% terms it reads

#te= (2) 2o+ (£) (Sroerne - 2ae), o
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see Eqs (14) and (46) for R and P ® R functions.

The exact O(a?) formula for #(z,s) has been calculated up to the
second order in Refs [5,6].

In practical applications the integration in Eq. (52) is done numerically.
There are, however, some approximate analytical results for the special
forms of #(z, B8), see Refs [5,6,29].

4.3. Higher order corrections

To obtain the size of O(33) photonic corrections we can use the exact,
infinite order, Monte Carlo calculation of Qﬁg Compared with the O(3?)
cross-section based on Eq. (16) we get the size of dominant O(a®) correction.

In Fig. 5 we present, among others, the ratio of LL iterative, not expo-
nentiated, O(8%) and O(B3) cross-sections of Eqs (16) and (17) to the exact
LL result, as parameterized by Eqs (37) and (38). A cut-off z.y = 0.9
on the energy of photons in the integration of Eq. (52) is used. One can
clearly see from Fig. 5 that the O(3%) photonic corrections are huge, about
1% near the peak. Even the O(3%) terms are 0.2%. It is too much to be
neglected. The situation for the looser cut-off, z.y¢ = 0.6, is presented in
Fig. 6. The size of O(8%) and O(*) corrections is approximately the same
as in the previous case.

Such a big corrections are mainly due to the soft photons emission. If it
is really the case, the exponentiation procedure should substantially reduce
their size. Indeed, as a second pair of curves in Figs 5 and 6 we plotted
the LL exponentiated according to Jadach-Ward prescription O(8!) and
O(B?) cross-sections with normalization and cut-offs as before. In the case
of stronger cut z.,¢ = 0.9, already the first order exponentiated formula is
accurate to 0.2% whereas, the second order one almost coincides with the
exact result. For the looser cut, z.,t = 0.6, the exponentiated solutions
close to the resonance preserve the same accuracy. Further from the peak,
however, they start to diverge. It is mainly due to the hard photons included
only to lower (first or second) orders. At the peak, the resonance itself serves
as a strong cut-off.

The lesson from the above exercise is the following. In the case of
strong cut-offs, or close to the resonance, the exponentiated formulas are
more effective than not exponentiated ones. It could be especially useful in
the case of Bhabha scattering where one uses the O(a!) matrix elements,
see Ref. [40].

4.4 Comparison of exponentiation schemes

The results of the previous section pointed out that the actual size of
higher order corrections is highly sensitive to exponentiation procedures. In
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the integration of Eq. (52) is used.
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Fig. 6. The same as in Figure 5 for the looser cut z¢y: = 0.6.

the following we pursue this question and compare various LL-exponentiation
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schemes in the total cross-section calculations. As before it will be done in
the LL approximation with the help of the exact Monte Carlo form of 45]1:‘1?
We hope that the results remain true also in the nonleading orders, where
none direct analysis is possible, see, however, remarks in Sect. 4.5.

In Figs 7 and 8 we present the LL second order exponentiated total
cross-sections resulting from two different prescriptions: Kuraev-Fadin of
Eq. (32) and Jadach-Ward of Eq. (37). Both curves are normalized to the
exact LL result as parameterized by formulas (37) and (38). Two different
cut-offs zcyt = 0.9 and z.y¢ = 0.6 are employed.

1.10* F T =09 | agpm af{,}(}) -1
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b | - Oyw Jogw — 1
e i :
-10 0 10 20
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Fig. 7. The ratio of the two approximate LL second order cross-sections to
the exact LL result as parameterized by the exponentiated third order formula
Eq. (37) and (38) of the JW type. The approximate cross-sections are either the
O(B?) exponentiated KF (dots) or O(8?) exponentiated JW (filled circles) ones.
The strong cut-off zcy¢ = 0.9 in the integration of (52) is used.
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Fig. 8. The same as in Figure 7 for the looser cut-off zcy: = 0.6.

The results of comparison remain in the perfect agreement with the
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earlier analysis of Sect. 3.1.6 done for single structure functions. The KF
prescription is definitely less accurate than the JW one. The quantitative
results are the following:

e In the range |/s — Mz| < 2.5GeV the O(83) corrections to the KF

formula are Ao{{? /oxF < 0.12%, no matter which cut-off is used.
o For the JW formula, in the same /s range, the O(8) corrections are

at least ten times smaller, i.e. Aaga/ajw < 0.01%.

o The third prescription of Eq. (39), not shown in the pictures, is some-

where in between (< 0.05%).

The above points summarize the main results of our analysis of total
cross-section at LEP. They represent the actual O(a®) photonic corrections
to the commonly used formulas of Ref. [6]. With an eye on the 0.1% accu-
racy of the QED sector, we come to the conclusion that the most popular
KF exponentiation exceeds at the second order the required accuracy. The
third order corrections are not negligible in this scheme. In the JW prescrip-
tion the situation is different. In this case, already at the second order, we
reach the accuracy §oyw/oyw < 0.01% for |\/s — Mz| < 2.5GeV.

We stress here once more that there is nothing principally wrong with
the KF formula. Both KF and JW ones are physically correct. The JW is,
however, more effective in summing up higher orders.

The final remark concerns the dependence on the cut-offs. Comparing
Fig. 7 for cut-off z.y¢ = 0.9 with Fig. 8 for cut-off z.y¢ = 0.6 we find again
that exponentiated formulas are more accurate in the case of stronger cuts.

4.5. NLL corrections and the “pragmatic” O(a®) formula for
total cross-section

Until this point our analysis was carried out within pure leading loga-
rithmic framework. We have compared various exponentiation schemes and
calculated the actual size of the QED O(B2) corrections to corresponding
formulas for the total cross-section. In order to make it realistic we have
to go now beyond the LL approximation. The collection of formulas can be
found in Refs [5] and [6]. In this section we propose a new, compact formula
for initial state photonic corrections accurate to 0.015% in the resonance re-
gion.

We recall that according to Eq. (54) the #}° has the same functional
form as the DII:‘E The whole modification amounts to substitution 8 —
283. The LL-exponentiation procedure can be therefore done for a single
structure function as well as for a convolution of two structure functions.
We will benefit from it in NLL level. As mentioned earlier, in our analysis
of subleading corrections we will not follow the rigorous NLL factorization
theorems and NLL evolution equations. Instead, following Refs [2,6], we
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extend the parton model description of Eq. (52), modifying appropriately
the kernel & and convoluting it with the Born cross-section. At this point
we will make use of the exact calculations for the total cross-section of Ref.
[6] and combine them with all the previously obtained results for the LL
structure functions.

The exact treatment of the higher order soft nonleading corrections
requires to use the YFS scheme of QED calculations (Sect. 3.1.3.), i.e. YFS
exponentiation. In practice, however, one prefers to “improve” by hand
the LL soft $87ib° result of Eqs (30) and (54) to ensure the correct soft
behaviour. The NLL “improvement” is realized as follows. Comparing Eqs
(30) and (34)-(36) we easily implement the necessary refinements (the e is
identified with 1~z for # ~ 1): the leading logarithmic 8 = 2(a/)In(s/m32)
should be replaced by 8s = 2(a/x)[ln(s/m2) — 1] and the multiplicative
form-factor exp ((a/7)(x2/3—1/2)) should be added. The first replacement
solely ensures the proper IR behaviour. It is a rigorous result of the YF$
analysis. The second, multiplicative factor of Eq. (36) is IR regular and
reflects conventions of YFS exponentiation. The remaining perturbative
corrections to soft photon limit are hidden in the By term of Eq. (34).
The actual criterion in establishing these corrections are the LL limit, i.e.
d‘fﬂib“ function and the first order iterative solution that must be properly
reproduced. Finally, we get the following extension of Eq. (30)

3 _ ax® _1
@Sﬁibov - ésoﬂ:(z) — exp [135(4 fg.u:f;:; w\ 3 2)] ,BS(]- _ z)ﬁS"l.
(57)

It has manifestly correct YFS and Gribov soft limits. In the following NLL
ad hoc exponentiation it will be interpolated with the hard limit, as it was
done with DGP°¥ formula in the LL framework.

The soft nonleading corrections are numerically very important. The
“—~1" term, assuring the proper IR behaviour, contributes 2% correction to
the total cross-section. The multiplicative term exp ((a/7)[(x%/3)—(1/2)))
contributes another 0.7%.

In the next step we add remaining NLL corrections. It can be done
according to any of the before discussed exponentiation scheme, as shown
in Eqs (32), (37) or (39). The noninfrared terms are of both real and virtual
type. In the KF prescription the modifications are of the form

Sir(2) = SN AV + A, (58)

= a 3 =2 3
ASE =1+ ;ﬁs (ﬁ iy + '2‘C(3) + C’)(azLo)),
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AXF

real
1+ 322
—

=-pstLE2 4 23 e+ ) a1 - 2) -

3 lnz—5—z]

la _ 2y 11,2 2
+ 8”,351_2:[ (1+3z*)In°z2+2(3+ 22+ 2z°)In=
+4(1 + :cz)(Liz(l —2)+Inzln(1 - 2)) +2(1 - 2)(3 - 22)
2
41—y (=1 20
4(1-2%)( . 2) + O(a®L )]. (59)
The nonlogarithmic O(a?L®) terms, as numerically negligible (see below)

are already discarded in Eq. (59). The reader interested in the full formula
we refer to Eq. (3.29) of Ref. [6]. The JW prescription looks as follows

(2:) = Qson(Avnrt reul) - Qso“A(2) ’ (60)

A(z,_(—l—g”—"’) 20s(5- 5+ 3e@) + 2

-(1- z)’} +35 [4(1 + 22)(Li2(1 —2z)4+Inzln(l - a:))

[ (1 +23z2)

—(1+32))In?z 4+ 2(3+ 2z + 2*)Inz + 2(1 - 2)(3 - 2z)]. (61)

In Figs 9 and 10 we compare the size of the second order NLL corrections
to total cross-section. The ratios of cross-sections resulting from Eqs (58)
and (60) with the noninfrared NLL corrections in A functions, switched on
and off are presented (the nonleading nonlogarithmic terms are discarded
in both cases). Note that we do not touch the NLL terms in #%°f, It is so,
since the #*°f* is not an ad hoc guesswork but rather a result of calculations.
Two cuts 2.y = 0.9 and zcy¢ = 0.6 are shown.

The striking feature of Figs 9 and 10 is the smallness of NLL O(a?L)
corrections. At the resonance region they do not exceed the 0.03% (JW)
and 0.05% (KF) level, respectively. It is already below the required accuracy
and, at least, allows us to safely neglect the nonleading contributions. It is
important e.g. in the case of M.C. programs, where their inclusion might
complicate and slow down the algorithms. Naive counting rules would sug-
gest that the NLL terms are of the order a ~ 0.7%. The actual, ten times
smaller, size is due to the exponentiation that has already resummed some
NLL contributions, all the first order NLL corrections in particular.

Another interesting information comes from the comparison of Figs 9
and 10 with Figs 7 and 8. One can see, that in the most popular KF scheme
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Fig. 9. The ratio of the exact second order total cross-sections with the NLL
terms in A functions of Eqs (58) and (60) switched on and off. The cross-sections
are the O(a?) exponentiated ones of the KF type, based on Eq. (58) (dots) and
JW type, based on Eq. (60) (filled circles). The nonleading (nonlogarithmic) terms
are discarded. The strong cut-off .y = 0.9 in the integration of (52) is used.
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Fig. 10. The same as in Figure 9 for the looser cut-off z., = 0.6.

the second order NLL corrections are significantly smaller than the O(53)
terms. This has been overlooked in the literature, see for instance Refs
[5,6]. The main emphasis was put on the full second order calculations of
O(a?L!) and O(a?L®) corrections. The formulas were built according to
the powers of coupling constant a rather than to actual accuracy.

We propose a new arrangement of the total cross-section formula, see
also Ref. [8]. There are two scales involved, a and L = In(s/m2). Instead
of calculating order by order in a we try to pick up all the terms of similar
size, determined in fact by both scales. We show it schematically in the
Table 1.

TABLE I
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Rows symbolize subsequent perturbative orders in a. It is the traditional
arrangement which is used in the renormalization technique. It is quite
useful in practical calculations in the absence of the big logarithms, ¢.e. for
L~ 1. Every result in O(a™) can be divided into O(a™L"), O(a™L™"1),
..e» O(a™L?) terms and the corresponding approximations are called LL,
NLL and so on. For electron and s ~ M%, terms of equal magnitude
are roughly on the diagonal. This means that to reach a given accuracy
level we may keep only O(a™L™), i.e. LL contribution of the highest order,
O(a™ 1L"~2), i.e. NLL one of lower by one order and so on. We call this
selection a “pragmatic” O(a™) expansion.

The third order pragmatic expansion which we shall use includes, in de-
scending magnitude order, O(a®L®), i.e. Born, O(a'Ll), O(a®L?),
O(alL?), O(alL?) and O(a?L?) terms, as depicted in Table I. The domi-
nant omitted terms are O(a*L*), O(a®L?) and O(a?Lf).

With the help of our third order LL results we present here the third
order “pragmatic” formula for the total cross-section [8], see Table I,

82X () = &0 (2) A T8, (62)

“ ” 1 a 3 7"2 3
pragm” - 2 - &~ ¥
Ag =5+ e0+ wﬁs(sz g t 2“3))

+ %(_%(1 + 332)1113 _ (1 _ z)2) + %%(—(1 -+ 3::2)]112 z

+4(1+ 2?)(Li2(1 — 2) + InzIn(1 — z)) +2(1 — z)(3 - 2z)
+2(3+42z+ zz)lnz) + %ﬂg (%(:m2 —4z+41)Inz

+ 1—12(1 + 72°)In’ z + (1 — 2%)Liz(1 - z) 4+ (1 — a:)z), (63)

where #°°®t is defined in Eq. (57).

The formula includes the initial state photonic corrections. Its accuracy
we estimate in the following way. The size of the O(a*L*) term we estimate
conservatively to be no more than 0.5 times the third order correction. It
gives the numbers 0.001% for |/s — Mz| < 2.5GeV and 0.01% for |\/s —
Mz| < 7.5GeV, in the wide range of cuts 1 > z.y¢ > 0.1. In analogy the
third order NLL contribution we estimate by 0.5 of the second order one.
It reads 0.015% for |\/s — Mz| < 2.5GeV and 0.025% for |\/s — Mz| <
7.5GeV. Adding absolute values we get the following conservative accuracy
of pragmatic formula (62): do /o < 0.015% for |\/s — Mz| < 2.5GeV and
<0.035% for |/s — Mz| < 7.5GeV. To our knowledge, it is the up to date
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the best available formula for the total-cross section at LEP?. Compared to
any formulas presented in the review [6] the above one is more accurate by
factor ten and shorter at least by factor three!

5. Conclusions and final remarks

In the presented paper we have discussed the method of structure func-
tions in QED. The work was oriented on the practical calculation of total
cross-section at LEP (Z line shape). We described a series of new solutions
of the QED evolution equations for the electron LL structure function:

¢ The exact Monte Carlo solution, based on the semi-Poissonian distri-
bution of soft photons (for non singlet function).
o The exact numerical inversion of the Mellin Transforms (for both non
singlet and singlet functions).
o The complete, analytical O(33) corrections to the non singlet and sin-
glet functions.
e The general form of the iterative series of singlet function.
Having at hand the above results we compared accuracy of various O(8?%)
formulas for non singlet electron structure function available in literature.
We were looking for the best exponentiation prescription. By comparison
with the exact results we showed that the most accurate is the prescription
due to Jadach and Ward.

In the second part we applied the structure functions formalism to the
analysis of the QED corrections to total cross-section at LEP. With the help
of exact and O(33) forms of electron structure functions we were able to
answer the problem of the size of higher order corrections to commonly used
formulas. We have repeated the comparison of various exponentiated for-
mulas (at the level of cross-section) and found again that the ansatz of JW
is the most accurate one. The actual size of O(a®) corrections we calculated
to be: Aa(3)/a < 0.12% for the KF formula and < 0.01% for the JW for-
mula, in the range |\/s— Mz| < 2.5GeV. We have also checked the influence
of exponentiation on the subleading corrections. Our comparison showed
that already the next-to-leading terms contribute onpy, /oL, < 0.05% for
the KF prescription and onpy, /oLt < 0.03% for the JW one. It enables us
to discard the nonlogarithmic (NNL) O(a?L?%) terms completely.

As a practical consequence of this analysis we proposed a new com-
pact formula for initial state QED photonic corrections to the total cross-
section at LEP. We estimate its accuracy to be §o /0 <0.015% in the range

® The O(B%) pragmatic formula (62-63) has been recently extended to simul-
taneous inclusion of lepton pairs, featuring the same high precision, see Ref.
[39].
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Vs — Mz| < 2.5GeV and 0.035% for |\/s — Mz| < 7.5GeV. We called this
formula the “pragmatic” O(a3) which contains all the terms contribut-
ing at the same accuracy level, i.e. O(a®L?), (Born), O(a'L?), O(a?L?),
O(alL?%), O(a®L?) and O(a?L?) terms, as depicted in Table I.

Finally, we have discussed the cut-off dependence of the cross-section.
We came to the conclusion that in the case of the exponentiated formulas,
as expected, the stronger cut-off eliminate significantly better higher order
corrections.

In the presented work we confined ourselves to the initial state correc-
tions to total cross-section. We left over final state and initial-final QED
contributions. We also have not discussed in detail the additional fermion
pair production. In the following we would like to comment shortly on some
of these points.

The first order final state and box-+tinterference corrections to total
cross-section can be found in Refs [41,42]. The final state radiation can be
described in terms of the structure functions and parton model in a similar
way as the initial state ones, compare e.g. Refs [11,13]. This approach
was used e.g. in Ref. [19]. The qualitative estimation of the final state
contribution is the following. If no cuts are used, i.e. the integration is done
over the entire phase space, the KLN theorem [34] guarantees that all mass
singularities (In(s/p?) in our case) have to disappear in total cross-section.
It means that the entire final state correction is ~ a. Introduction of any
cut-off 2.y will lead, however, to the terms ~ Inz ¢ spoiling the above
argument.

The last contribution to be discussed is the additional lepton pair pro-
duction. At the LL level, confined to the initial state, this process is already
built in the presented structure functions (parton model) formalism. The
practical prescription for their inclusion is the following:

1. Replace a = 1/137 with the appropriate running coupling constant of

Eq. (10).

2. Add the singlet structure function contribution.
3. Calculate the structure function DZ(a) and include it into the sum of

Eq. (51), combined with the appropriate hard cross-section oz, see

Ref. [22].

The bremsstrahlung-like process (1), i.e. the contribution to the DNS func-
tion from the running coupling constant is the dominant one.

The difficulties with the pair production appear however, if one wants
to go beyond the LL approximation. The exact cross-section is known only
in the lowest O(a?) order, see Refs [5,43]. From the O(a?) result one can
learn that the nonleading contributions (correct soft behaviour) reduce the
LL result even to 50%. On the other hand the higher order terms (multiple
soft photons) can reduce the O(a?) result to 50% as well, see Ref. [39].
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Some solution to this difficulty is an ansatz proposed by Kuraev and Fadin
in Ref. [2]. It consists of the O(a?) cross-section appropriately matched
with the soft photons contribution. The more systematic analysis of pair
contribution to total cross-section, based on a certain extension of YFS
framework has been recently done in Ref. [39].

The other interesting extension of the presented work would be to find
the exact solution of the NLL evolution equation. We have in mind the
Monte Carlo algorithm for non singlet function. The basis of the algorithm,
the quasi-Poissonian distribution of soft photons, may remain unchanged in
NLL calculations. We hope therefore, that the NLL corrections could be
smoothly included by the standard Monte Carlo techniques. Such an exact
NLL result would be very important from the practical point of view.

The author would like to thank dr. S. Jadach for the supervision and
constant help in this research, prof. J. Kalinowski and dr. M. Jezabek for
critical reading of the manuscript, dr. Z. Was for instructive discussions and
prof. J.J. Aubert for his hospitality in CPPM-Marseille, where parts of this
work were done.

Finally, I want to thank my wife for pains she took while this work was
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Note added in proof

After this work was completed the paper by M. Jezabek [44] has been
published. The author of Ref. [44], making use of the ansatz (37), derives
general perturbative recurrence formula for AW (z, 8), being the exact so-
lution to Eq. (12). Also the terms singular at z = 0 are resummed to
the Bessel function and it is shown that factorizing of this function further
simplifies the series ATW (z, 8).
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