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A gravitational theory based on the generalised affine geometry is pre-
sented. It contains an antisymmetric torsion potential in addition to the
metric. The coupling to matter is derived by the minimal coupling princi-
ple, implying that the metric couples to a symmetrised energy-momentum
tensor, and the antisymmetric field couples to the canonical spin tensor
of matter. The coupling constant for both cases is Newton’s constant,
G. Phenomenological consequences of the linearised theory for quantum
processes at the tree level are explored. ,

PACS numbers: 04.50.+h, 04.60.4n, 12.25.4¢

1. Introduction

Invariance groups of continuous tranformations of fields produce con-
served tensors. In gauge theories there are specific interactions associated
with the conserved tensors. While Einstein’s General Theory of Relativ-
ity provides an interaction with energy as a source, there is no interaction
coming from spin-angular momentum, even though angular momentum is
conserved. Moreover, Einstein’s theory of gravitation requires the energy-
momentum tensor to be symmetric, this being the generalisation of the
symmetry of the stress-energy tensor in Newtonian mechanics. Planck [1]
argued that this symmetry also holds in field theory. But Planck’s consid-
erations were based on the assumption that the velocity of transport of field
energy is proportional to the local field momentum. In general this is not
true.

Weyssenhoff and Raabe [2] and Papapetrou [3] showed that the energy-
momentum tensor of a “perfect gas” of spinning particles necessarily is
non-symmetric if the particles must be considered as point particles. This
is also the case in field theory where the canonical stress-energy tensor of
the Dirac field is non-symmetric [4-7).

(87)
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Hence, one might argue that Einstein’s theory therefore has two short-
comings — there is no interaction which couples to spin, and there is the
dilemma that the Einstein-(Christoffel) tensor is symmetric but the energy-
momentum tensor is non-symmetric. The standard solution is to assume
that the metric energy-momentum tensor — which is obtained by variations
with respect to the metric and therefore itself automatically symmetric —
is the true gravitational source. The other alternative is to generalise the
theory of gravitation so as to support a possible non-symmetric source. The
first suggestions in this directions were made by Cartan [8-11] who argued
that the proper geometry of space-time is non-Riemannian and that spin
couples to the antisymmetric part of the connection.

With the advent of a gauge theoretic approach to gravity {12-15] the
ideas of Cartan were revived. This lead to the Einstein-Cartan theory
[13,16-25], which has many attractive features. It is most appealing that
the problems of spin and of symmetry of energy-momentum are unified
and resolved in the Riemann-Cartan framework. Here spin-angular mo-
mentum conservation law! relates a divergence of the spin tensor with the
antisymmetric part of the energy-momentum tensor. A main problem with
this theory is the non-propagating nature of torsion. This problem may be
mended, by introducing higher order invariants in the action integral, only
at the cost of 151 additional free parameters [26]. Admittedly the number of
free constants is reduced considerably by the requirement of no ghosts and
no tachyons [27], but one should as far as possible refrain from introducing
new fundamental constants.

Here we modify the Einstein—Cartan theory by introducing an antisym-
metric torsion potential (see Appendix B for references to earlier theories of
this type). The torsion potential has a geometrical meaning in the frame-
work of a generalised affine geometry (Appendix A), which from a gauge
theoretic point of view may be more natural as a model of space-time [28]
than the conventional affine geometry. Because of the geometric motivation
of the theory, its structure is unique once we demand the field equations
to be second order differential equations, and since the torsion field is de-
rived from a potential we also obtain a propagating torsion field without
introducing new fundamental constants.

The derivation of the field equations is given in Appendix B, and a
discussion of their strength in Appendix C. In Section 2 the proper source
of gravity is found by the minimal coupling principle. Then in Section 3
the theory is quantised, and the interaction of matter with gravitons and
skewons is discussed.

! The spin and the energy comservation laws correspond to the first and the
second Bianchi identities, respectively
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2. The proper source of gravity
2.1. Heuristic arguments

The metric energy-momentum tensor is the source of gravity in the
standard formulation of General Relativity. At a fundamental level energy-
momentum is related to space-time translations. Because orbital motion can
be reduced to a series of infinitesimal translations, it is not surprising that
orbital angular momentum plays a réle in this theory. Thus, by virtue of
the Ricci identity, Einstein’s General Relativity contains an orbital angular
momentum conservation law [29]. Moreover the theory predicts specific
rotation induced phenomena such as the Lense-Thirring effect [30-33].

But in addition to energy and orbital angular momentum, matter may
possess spin, a quantity which is connected with local rotational symmetry of
space-time. In Einstein’s General Relativity spin has no direct gravitational
effect?, but being dependent upon a space-time symmetry, one should expect
spin — or something intimately related to spin — to appear as a source of
gravity.

Curvature may be generated by a nonuniform stretching of space-time,
caused by an active local translation of points z + dz away from z. The
metric field holds all information about this space-time stretching because
it determines the distances from all points z to z + dz. Similarly one could
think of local torques making reference frames rotate when paralell trans-
ported. This would appear as space-time torsion.

Mass is known to give rise to metric curvature. By analogue one expects
spin or some related torque to produce torsion.

2.2. Noether’s tensors of space-time symmetries

Noether’s theorem [36] states that if an action is invariant under a con-
tinuous group of transformations of the fields, the corresponding Lagrangean
determines a conserved tensor.

When applied to the symmetry of translation, Noether’s theorem yields
a conserved energy-momentum tensor, whereas the rotational symmetry
implies a conserved angular momentum tensor [37]. The canonical energy-
momentum tensor has the form

oL

afg _ __YY 9B _ qaf
28 = o 2L 0Py~ 4L, (1)

2 In General Relativity spin has a very weak gravitational effect: It acts on the
polarisation of weak gravitational waves [34]. There is also an effect coming
from the gravitational spin-orbit interaction [35].
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where the field ¢ carries the summation index A to encompass multicom-
ponent fields. In general this energy-momentum tensor is asymmetric in a
and 3. The conserved angular momentum tensor is

Maﬁ,y = zﬁz,ya - z‘yzﬁa + Saﬁ,y. (2)

L%, = 2zig% _Y]"‘ may be identified with the orbital angular momentum

of the field®, and § “‘3,1 represents the spin density tensor. Following the
established practice in Einstein-Cartan theory [25], we will use Hehl’s spin
tensor t*5_ which is half the conventional one. Then Tetrode’s law [4] takes
the form

%8y, = Z[ga)- (3)
Hence, the antisymmetric part of the energy-momentum tensor has a natural
interpretation as a torque: The divergence of the spin tensor equals the

applied torque. It is sometimes argued that the field torque necessarily
must be zero: The torque, 7, on a cube of dimension L, has the form

¥ = (5% - 2¥°) L%

Now, if we let the length L of the cube shrink, the torque decreases as L3,
while the moment of inertia decreases as L°. According to Misner, Thorne
and Wheeler [38], this would “set an arbitrarily small cube into arbitrarily
great angular acceleration — which is absurd.” Central to this argument is
the idea that angular momentum is related only to rotation of a volume.
But spin angular momentum is something different, something which can-
not be obtained from orbital angular momentum by a limiting proceedure
where the orbital radius tends to zero. If such a notion of intrinsic angular
momentum is accepted, an asymmetric energy-momentum tensor arises nat-
urally as a way of transforming spin angular momentum to orbital angular
momentum and vice versa.

While the nature of the conserved Noether tensors associated with the
symmetries of space-time strongly suggests a non-symmetric theory of grav-
itation, this is not the only possibility: Belinfante [39] and Rosenfeld [40]
have shown that in general it is possible to construct a symmetric conserved
energy-tensor from the canonical energy- and spin angular-momentum ten-
sors. This combined symmetric energy-momentum tensor could be the
source of a symmetric theory of gravitation. Then the gravitational effect
of the canonical spin tensor is only to compensate the antisymmetric part
of the canonical-energy-momentum tensor, and therefore eliminate the need

3 Expressions with indices in the parentheses ( ) and [ ] are to be symmetrised
and antisymmetrised, respectively.
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for an antisymmetric gravitational field in addition to the metric. We do,
however, feel that this construction is less direct than the non-symmetric
approach, which is based on the idea that Noether’s tensors of space-time
symmetries are truly fundamental and themselves the proper sources of

gravity.
2.3. Spinor-gravity minimal coupling

In a local gauge theory of a group of symmetry G, one introduces 4m
gauge potentials A#" in the gauge-covariant derivative operator V, 9 =
Oy —THA Fbtll where the m quantities T}, are generators of the group G as
acting on the field ¥». When G is the Poincaré group, it is possible to identify
the gauge-covariant derivative with the covariant derivative of a Riemann—
Cartan geometry [25]. In addition to metric curvature this geometry has
torsion. For a spinor field interacting with gravity, the generators T} are
represented by the spin matrices o453 = (1/4)7[(7p)- Thus the covariant
derivatives of a spinor field and its conjugate are [41-45]

Va¥ = 8t + (A*5 0.7 + K*5 0, )0
Vot = Bat — P(4* 5,0, + K*5 0,F)

where the total connection I'* Bo has been split into a sum of a Riemannian

(4)

connection A", and the contortion tensor K*; .

At this stage it should be stressed that gravitation has no recognized
gauge version [46], although several gauge theory constructions have been
proposed [12,13,47,48]. The problems stem from the fact that the Rieman-
nian part of the connection (the Christoffel- or Fock-Ivanenko-symbols) are
determined by the metric potentials. Accordingly this part of the connec-
tion cannot play the réle of a fundamental field like in other gauge theories.
As opposed to the Einstein—Cartan theory, here we assume that even the
contortion part of the connection is a derived quantity defined in terms of
the R4-part of the connection of the underlying generalised affine geometry
[28].

Motivated by the equivalence principle [49,50] and by the minimal cou-
pling prescription for gauge fields as introduced by Gell-Mann [51], we as-
sume that gravitation couples to matter only through the substitutions
Nuvr = Juv = e,,”e,,“'n;,g and 04 — Vg in the matter field Lagrange
function?. In addition there is an overall factor of /~g = e in the ac-
tion integrand which comes from the invariant volume element. Thus the

* Greek indices with a hat denotes an (pseudo)-orthonomal frame, and those
without a hat denotes a general frame. Latin indices refer to holonomic
coordinates.
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Dirac Lagrange function of Minkowski (M) space-time®

L(M4)Dirac = —%‘11—17"(3:11# — myyp ()
changes to®
L(U)Dirac = ~ 5edr* Tigels — emPyp — ~erP 58, (5)
where )
1987 = 2(y20PY + oPir%)g = LhylSyPy Ty (7)

is identified as the canonical spin tensor. Decomposing the connection in a
Riemannian and a contortion part, we may write the last term of (6) as

—erP, %P — _c(aP, +K*, )i%P. 8
€ Ba 6( ﬁ . T pa) n ( )
Expressing the Riemannian part of the connection, in terms of the structure
coeflicients

. 1 . . .
B p B _ op
Aﬁa_z(Cﬁa"'Caﬁ C*s5) 9)
with L
Cﬂaﬁ = e‘&eJﬁ,ieJ” e-’ﬁe i€ (10)
we get )
aL(U4 Dirac aj 14 j &
A T/TAC (99 4 I ), 11
eae 5 j ( 1 + 1 1.) ( )

The graviton source is

6L(U4 )Dircc — l ( aL(U4 )Dirac
[

S& = ] /
t— T 3
ebe’, de*,,

- 8;

aL(Utl)Dirac). (12)

i
Oe &,j

Here we consider only first order perturbations of Minkowski space-time,
expressed by the metric perturbations g,, = 7,4, + h,,. Hence, we neglect
terms in §L(U,)/6e’; containing the connection. In this approximation the
expressions (11) and (12) lead to

§% = 5% 4 8;(t%, + t/% - %), (13)

® We use the sign convention 7,, = (-1,1,1,1).
6 Note that spinors can only be treated self-consistently by using orthonormal
frames.
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where : 1
E;w = —E'I’—'ht‘au"/’ + E’hw (’Zi')’a?a"p + 2m1/;1,0) (14)

is the canonical energy-momentum tensor.

SHY is the Belinfante-Rosenfeld [39,40] energy-momentum tensor. Ow-
ing to the identity ¥ = 9;tJ#¥, this tensor is automatically symmet-
ric. In the case of a Dirac ﬁeld the graviton source is simply the sym-
metric part of the canonical energy-tensor §#¥ = (), Recalling that
e ”ew = Nuv + hyuy we get §h,, = 2e,(,,6e L) 5O that the Dirac—Einstein
interaction term may be written as

1
Lpirac—Einstein = Eh;w 2(#!’). (15)
The non-Riemannian part of the connection gives the interaction term

LDirac—torsion = _Kuuata’“l' (16)

Because the spin-tensor t*A7 is totally antisymmetric, only the antisym-
metric part of the contortion interacts with the Dirac field. Using that”

1 3
Klapy = =5 Tiasn = 5%asi> (17)

and neglecting self-interaction of the antisymmetric field by replacing the
covariant derivative with the partial derivative, the Dirac-torsion interaction
term takes the form

3
LDirac—torsion = ""2‘3“,,,ata#l’_ (18)

This is the fundamental expression for the fermion-torsion interaction. Here
we have used that t®87 js totally antisymmetric, so it is not necessary to
antisymmetrise the torsion potential. Then adding the the total divergence
0a(3/2s,,t*#), the Dirac-Gravity coupling takes the form

1 3
LDirac—Gravity = Eh;wz(‘w) + §3pvtam’,a' (19)

The spin-torsion coupling may also be written in terms of an axial vector
current. Because the spin-tensor is totally antisymmetric, we may express
it as an axial vector

JB = 6 Bu Pty pe (20)

7 Here Tap., = 2@4[yp) — Capy is the torsion tensor. Kap., = 1(Tpay + Tyap —
Tapy) is the contortion tensor. The skewon field s,, is the antisymmetric
torsion potential, see also Appendix B.
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This current is not conserved, JP B # 0. In terms of the axial vector spin-
current the skewon interaction is

3
LDirac—Gravity = —Eﬂaﬁ7aJpaa375- (21)

As was pointed out by Ogievetskii and Polubarinov [52], this interaction
shows a pecularity of the antisymmetric field. While the free field behaves
like a scalar, having only one physical degree of freedom, in interactions it
carries all three polarisation states of spin 1. The point is that a virtual
skewon does not have zero mass, and therefore it acquires the additional
states with helicity +1, associated with a massive antisymmetric tensor field.
Then by the definition of the spin of an interacting field, the interacting
skewon field has spin 1.

On the mass shell we may use the angular momentum conservation
law t*# , = E[#¥], and write the linearised Dirac-Gravity interaction La-
grangean (19) as

1 3
LDirac—-Gravity = Eh;wz(‘w) + 53,“/2['“’]- (22)

The minimal coupling prescription in a space-time with an antisym-
metric torsion potential leads to the conclusion that the proper sources of
gravity are the Noether energy-tensor and the divergence of the Noether
spin tensor.

The symmetric Belinfante-Rosenfeld combination is coupled to gravi-
tons, and the divergence of the Noether spin tensor is coupled to the torsion
potential. For a Dirac field on the mass shell, these sources reduce to the
symmetric and antisymmetric parts of the canonical energy-momentum ten-
sor. This type coupling was first proposed by Papapetrou [3].

2.4. Photons and torsion

While minimal coupling lead to a satisfying result for Dirac fields, a
direct replacement of §, with V, in the definition of the electromagnetic
field tensor implies a photon-torsion coupling which would break the U(1)
gauge invariance. If, however, the field tensor is defined in terms of the
exterior derivative of the potential, a cancellation of torsion terms occurs
which means that photons do not couple to torsion [53]. From a gauge
theoretic point of view [48] this procedure finds a natural justfication, since
in this framework the gauge fields (like the electromagnetic potential A,)
are treated as Poincaré scalars which should not couple to the connection.
The decoupling of gauge bosons from torsion also appears naturally in the
Kaluza—Klein scheme [54]. Here the gauge bosons are space-time projections
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of higher-dimensional metric exitations which are not expected to produce
torsion.

3. Non-Symmetric Quantum Gravity
3.1. Quantised General Relativity

Quantisation of General Relativity has been the subject of much investi-
gation [55-63], but when coupled to matter the theory is not renormalizable
[64-69]. Despite these problems useful results can be obtained. Indeed in
connection with the phenomenological Lagrangian approach to current alge-
bra it was found that the tree-graph approximation to quantum field theory
reproduces the classical field [70,71]. Explicite calculations [72,73] have ver-
ified that the quantum-gravity tree-graph contribution correctly reproduces
the classical Schwarzschild solution. Thus macroscopically the theory gives
predictions which are in excellent agreement with experimental data [74].
Papini and Valluri [75] have given a detailed review of the quantum theory
of gravitons.

3.2. Skewons and gravitons — propagators and vertez
rules

In previous Sections we have given theoretical motivation for a skew
symmetric component of the gravitational field. Because these considera-
tions are based on the spin concept, a microscopic quantum phenomenon,
it is natural to look for consequences of the theory in a quantised theory.

The linearised field equations are (see Appendix B)

Ok, = —16xG2(,,y, B*, =0, (23)
Osu = —-167Gt%,, o, ", =0. (24)
In the harmonic gauge these field equations, can be inverted as
- 167G 167G
huy = _kz_-z(lw) and sy, = k_zta;w,a‘ (25)

Taking the trace invers of the first equation and rewriting the right hand
sides by use of projection tensors, we get

167G 16xG
huy = —k—z,"Puuaﬁzaﬂ and sy, = —kTNuvaﬁtaaﬂ,a- (26)

The projection tensors are

1
Piyag = E(Wuaﬂuﬁ + Mvafug — 771-W"laﬁ) (27)
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and 1
N;waﬂ = E(ﬂuaﬂvﬁ - nuanp,ﬂ)' (28)

In view of the couplings (19) and the above inverted field equations, we may
write down the following Feynman rules

1
ap 5 v _Yuvap
2:232:22:11:2) k2 + i€’ (29)
Fig. 1
wp 5w _Nyvap
k2 + i€’ (30)
Fig. 2
"
¢ L
wwe —giMEuk + Rk, - (kR +m®)) (31)
Fig. 3.
k’ 1...., ' '
g s ~giMFa(kunup + kunup) + ka(kyflpa + Euiva)
—nap(kyky + kuky) + nuu (k- k'1ap — kokp)
k —k- k'(npﬂnua + ﬂua"luﬁ)}’ (32)
Fig. 4.
» 1, ' '
Trzm< —gi (e +2,) +1(pp +2)
f —277yu[7a(Pa + P:,) + 2mj}, (33)
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1, o
- _s_<' — 3 M6 (" — P%)- (34)

Fig. 6.

On the mass shell the last vertex rule may be written as

~ Moy + ) = 1o + F)}- (35)

3.3. Static limit

We now consider the problem of gravitational interaction between two
massive scalars. Since scalars do not couple to the skewon field, only the
graviton exchange process is relevant. Using the graviton propagator (29)
and the vertex rule (31) in the static approximation ¥ = k'® = (M, 0) and
p* = p'® = (m,0), we find the matrix element

.P k'
., 9 ix?
TEEEEE., M(q) = —m*M?. (36)
2¢
P k
Fig. 7.

Using that ¢2 ~| {'|2, the classical Newtonian potential is recognized as

i

V(%) = 5 M) (37)

where 1
— ig-7 37
M) = s [ M@ (38)
This gives

AmM GmM . 2
V(a—-327"l’7] =~ T7 with A° = 32xG. (39)

For the gravitational interaction between two fermions, we also have
to consider exchange of skewons. But using the static approximation, i.e.

neglecting the space-momentum, we find
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9 Mi(g) = mM a(p' yrou(p)a(k')you(k) (40)
Fig. 8.
and
p’ k'
>_3_< Ma(g) = 0. (41)
Fig. 9.

This is equivalent to the Newtonian force found for scalars. Hence, the
skewon interaction does not change the gravitational force in the static
limit.

3.4. Scattering of fermions by graviton and skewon
ezchange

The exact expression for the matrix element owing to graviton exchange
is

i\2
My = 5oz {alK - PYG(P) - 5(K)) + BK - 5(P))(P-§(K))
—oP (PN KD, (42)

‘where K = k + k', P = p+p', and j#(P) = u(p')y*u(p), j*(K) =
u(k')-y"u(k) are the Dirac vector currents at the interaction vertices. (p,
p', k, and k' are the particle momenta, as given in Fig. 8). The coefficients
a, b, and c are given by a = b = ¢ = 1 for graviton exchange. The last term
~ ¢ does not contribute in the limit m — 0, owing to the Dirac equation.
For skewon exchange, the amplitude M, can be written in the same form
as (42), with a = —b = 1,¢ = 0. Using the fermion-skewon coupling in the
form (34), a more interesting expression for M, is obtained:

iA2 v
Mg = 16 ( Nuv + quq )JA(P)]A(K) 3 (43)

where j%(P) = #(p')y*ysu(p) is the axial current. In the limit m — 0,
¢ -ja(P) — 0, which means that skewon exchange is effectively a point
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(local) interaction in this limit. More specific, q - j4(P) = 2ma(p')ysu(p)
where the scalar density #'ysu vanishes in the static limit. Thus (43) is in
agreement with (41).

The modifications of the gravitational interactions between the fermions
are found by adding Mg and M,. In the limit of vanishing fermion mass
we have explicitely calculated the quantity

Ss+g) = Y Mg+ M|?, (44)
Pol.

which determines the cross section for scattering of two fermions (f;f2 —
f1f2) and annihilation of two fermions (f1 fi — f2f2). The full expression
for S(s4) is given in Appendix D, Eq. (D1). For scattering angles § — 0,
6 = x/2, and 6 = w, we obtain the following modifications due to torsion

o\ (8+%) .
'(i(ﬁ'%)T = {i’so/m; % :£/2 (45)
an i =

For annihilation the total cross section can be calculated, and we obtain

(g+s) _ 8 (9) (46)

Ann. — gaAnn. .

We have also considered the interference with the total gravitation ampli-
tude M, ,) with the one photon exchange amplitude. The unpolarised
square of the total amplitude is then

S(‘Y+S+’) = Z lMﬂy + Mg + Ms|2 = S'y + S(g+s) + SInh (47)
Pol.

where S,y is given in textbooks in QED, S(, 1) is given in (44) and (D1), and
the interference between the one photon exchange amplitude and our ex-
tended gravity is given in (D2). The skewon interaction modifies the result
obtained by pure graviton exchange. But of course Sy, is only interesting
numerically for energies rather close to the Planck energy Mp)c?. To make
predictions one should use the effective couplings for extremely high ener-
gies. This is known in pure QED. But aen, and the cross section itself are
modified also by electroweak interactions, and furthermore by Grand Uni-
fied (GUT) electroweak and strong interactions, if they exist. In the end we
should also have a consistent theory of particle physics including gravity.
This is unfortunately still lacking. Of course the processes considered in
this subsection have occured in the very early universe, but because of the
mentioned shortcomings the given results are rather academic.



100 H.H. SoLENG, J.O. EEG

One could also consider scattering of a fermion in the fields of macro-
scopic objects. From (43) we see that skewon exchange is essentially a
dipole-dipole interaction, because the space part of the axial fermionic cur-
rent is a spin density. Using the relation between the spin and the magnetic
-moment, the skewon will couple to the magnetization of a macroscopic ob-
ject, for instance of a neutron star. Thus we can write down amplitudes
for scattering of a charged fermion in the field of a magnetized neutron
star due to skewon and photon exchange. But the ratio between the ske-
won and photon exchange amplitudes are roughly of order Gmyg/(faem),
which is extremely tiny even for a momentum transfer ¢ ~ Mpje. (mn
is the neutron mass). If the scattered fermion is a neutrino with a mag-
netic moment ey, /(2me) (m. being the electron mass) the ratio will be of
order Gmym, [(haempty ), which is still extremely tiny, for the small neu-
trino magnetic moment predicted by the electroweak standard model [76)
By ~ 107 [m, /(1 eV)].

3.5. Photoproduction of graviton and skewon

The processes yf — fg, and their crossed versions ff — yg have been
considered in the literature [58,75], and the corresponding skewon interac-
tion was considered by Neville [77]. The contributing diagrams to lowest
order are given in Fig. 10.

{a) {b)
lc) (d)
Fig. 10. Diagrams for yf — fg
The 4vg coupling can be found from the energy momentum tensor of

the Maxwell field

1
™ = ZW,,F"’ - F,°F,,. (48)
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The diagram (c) is gauge invariant by itself with respect to QED because
TM involves only the electromagnetic field tensor. The contact term (d) is
obtained by using the replacement 8, — 3, + ieA, in the fermion energy-
momentum tensor (14). The sum of (a)-(d) is found to be gauge invariant
with respect to QED (i.e. the sum is zero when the replacement ¢(y) — p,
is performed) and similarly with respect to gravity. The unpolarised square
of the total amplitude (a)-(d),

STE =N | Mot My+ M+ My 7, (49)
Pol.

which is given in (D3), can also be used to find the cross section for ff — ~g.
In the last case we have found the cross section in the center of mass (CM)
frame in the limit m — 0:

do 3
(E)CM = ZaemGh(l + cos? 9), (50)

where @ is the scattering angle. This is a factor of 3 more than in Ref. [75].

For 4f — sf or ff — s, the diagram (c) does not exist because torsion
does not couple to electromagnetism [25,53]. Using the coupling (34) derived
from (18), there is no contact term like (d) because the skewon is electrically
neutral. One could also use the coupling (35) derived from (22) in Sa) and
(b). Then there will be a contact term (d), but the result for $71=*f, given
in (D4), is unchanged. It should be emphasized that §YT—*{, vanishes in the
limit m — 0, reflecting the fact that emission of a skewon flips the fermion
spin®. To order m? the cross section for ff — s is

do 4m?
(Eﬁ) om = FemCh gy (51)

3.6. Bremsstrahlung of g and s

We have considered Bremsstrahlung of g and s from a fermion scattered
in an external electromagnetic field. These processes are similar to yf —
fg and 4f — fs, except that now the photon is virtual. Considering soft
graviton emission we find an amplitude

f—f e\/a- O (. = PuPv P:,_P' v *
My ~ S e (M neu@) (- ) ()", (52)

8 This is a quantum analogue to the spin-precession which follows from the clas-
sical equations of motion of a spinning particle in a Riemann-Cartan back-
ground [78,79)].
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which is similar to the result of soft photon Bremsstrahlung. (e°(v*)/k?
represents the Fourier tranform of the external field). Especially, the in-
frared divergence for ¢ — 0 is present. The result for m — 0 is given in
(D5).

For soft emission of a skewon the amplitude is

~1s _eVG _ P,
ME® ~ S (1) rorsule) (2 ~ 2 )" P areun(s)* 5 (53)

which has no infrared divergence as ¢ — 0. Thus soft Bremsstrahlung of
skewons (even from astrophysical objects as energetic as supernovae) will be
extremely weak compared to that of gravitons. Moreover, the unpolarised
squared amplitude goes to zero for m — 0, which can be seen from the
expression given in the (D6).

4. Conclusion

In this article we have presented a version of gravity including torsion
as a propagating field, the skewon. As shown in Section 2.3, the coupling of
torsion to matter is obtained through a gauge principle. As a result, torsion
is coupling to the well known spin tensor obtained from Noether’s theorem
for Lorentz invariance. Thus one obtains a completeness of the interactions
in nature in the sense that the well known Noether quantities couple to some
field: The currents couple to gauge fields, the energy-momentum tensor
couples to the curvature (graviton) field, — and the spin tensor to the
torsion (skewon) field. We considered the aestetically most attractive model
where the torsion coupling function p = 1, see Appendix A. This implies
that the skewon couples to spin with the same coupling constant as the
graviton couples to energy-momentum.

We have explored some consequences of the inclusion of the propa-
gating torsion field at microscopic (i.e. elementary particle) level. Torsion
obviously modifies the gravitational forces between fermions, and emission
of skewons certainly will occur. But to observe significant effects due to
exchange or emission of skewons seems hopeless because the effects are ex-
tremely tiny and will be overwhelmed by electromagnetic (and other) inter-
actions. Furthermore, we have shown that emission of skewons are rather
unimportant compared to graviton emission — in the high energy-limit the
relative probability is typically going as m?/E?, where m and E are the
mass and energy of the radiating fermion, respectively.

We thank F. Ravndal and R. Stabell for useful comments.
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Appendix A
Generalised affine geometry

It was noted by Trautman [80] that the metric tensor may be interpreted
as a Higgs field breaking the symmetry from GL(4, R) to the homogeneous
Lorentz group O(1,3). However, it is generally recognized that the total
symmetry group of a gauge theory of gravity should at least encompass the
Poincaré group P(4) = 0(1,3) ® R*%. It is therefore natural to consider
the simplest extension of GL(4, R) which contains P(4) as a subgroup, as
the gauge group of gravitation [28]. Thus one is lead to the group A(4) =
GL(4,R) ® R*, with a corresponding extension from the bundle of linear
frames, L(M), over the manifold, M, to the bundle of affine frames A(M)
as the principal bundle in which the connection is defined.

Points in L(M) are linear frames. Hence, u € L(M) means that u =
(p, eo,), u is the linear frame, e, = €', 0;, at the pomt, p = w(u), where

: L(M) — M is a projection map. A point in A(M) consists of an
element of the bundle of linear frames, u € L(M), together with a vector
v at #(u). Thus w € A(M) means w = (p, eq,v). Therefore the bundle of
linear frames L(M) is the subset of A(M) consisting of (p, eq,0).

A connection on A(M) consists of a GL(4) part 2%, and a R*-part
¢". The first part defines a linear connection on L(M) and the second a
tensorial 1-form on L(M). The fundamental structure of an affin geometry
is given by basis forms w* and basis vectors e, and the action of a covariant
derivative on these quantities. The forms and vectors are related through
the fundamental contraction (w*,e,) = §*,. A connection is defined by the
covariant derivative operator V. Let f and g be scalar functions, ¢, u, and
v vectors and w a 1-form. Then the covariant derivative has the following
defining properties

Vuf = 0uf = (df,u), (A1)
Vufo=fVuv+oVuyf, (A2)
Vitigu? = FVo + gVuo, (A3)
Ve(u®v) = (Vou) ® v+ u ® (Vgv), (A4)
Vu{w,v) = (Vuw, v) + (w, Vyv). (A5)

Due to the Leibnitz rule for the covariant derivative of the contraction (A5),
the action of the covariant derivative on both basis forms and basis vectors
are specified by the 64-component symbol I'® By Thus

Vye“ = earapv and Vywﬂ = _waI’Fay- (AG)
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Defining the structure coefficients C“p,y by the exterior derivative of the
basis forms 1
dw® = _Ecaﬁ,,wﬂ Aw?, (AT)

torsion is given by
Ty = I%p ~ I%y = C% (A8)
The metric tensor is defined as the scalar product
Jop = €q " €q: (A9)

The non-metricity tensor, Q,g-, is defined as the covariant derivative of
the metric

Qaﬁ'y =E Japly = V‘Ygaﬂ' (A].O)

So far we have defined the basic structure of the Riemann-Cartan-Weyl
geometry. The generalised affine structure is specified by an additional (i)-

tensor ¢°‘ﬂ which defines the R*-part of the generalised affine connection:
¢+ = o¥ 0. (A11)

Just as the covariant exterior derivative of the basis form defines the
torsion form,

T = Dw*, (A12)
one may define a generalised torsion form, $*, by
# = D¢V, (A13)
In general the R%-valued 1-form ¢ may be written [28]
o' = pwt + TH. (A14)

The scalar function p is called the torsion coupling function. In the literature
one has normally choosen

p=1 and 7#=0, (A15)

so that the R* potentials, ¢*, reduces to the basis forms, and the R* cur-
vature, #, to the torsion 2-form, T%. This assumption appears to be too
restrictive. A minimal generalisation would be®

p=1 and 7TF#O. (A16)

® A variable p behaves as a scalar potential for the torsion vector, which is
identified as a Weyl gauge field [81].
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It is now possible to identify the generalised affine connection with gauge
potentials of gravitation. Thus the GL(4) part 2#, corresponds to the 6
Lorentz rotational degrees of freedom, and ¢* to the translational part.
Note that both these terms are part of the generalised affine connection. In
the conventional approach the translational potential w* is only indirectly
a part of the connection.

The corresponding gauge fields are the covariant exterior derivatives of
the connection form, represented by the GL(4) part R*, = Df2*, and the
R* part #* = D¢*. Geometrically T* is directly related to the closure
failure of parallelograms and therefore to a kind of translation [82]. In
general the physical meaning of #* is less clear since it depends strongly on
TH,

Among the generalised affine geometries there is one special class which
generate linear connections on L(M) such that autoparallels with respect
to this connection are mapped into straight lines in the local affine space.
This geometry is specified by an invertible ¢4, and a metric g3 satisfying
the generalised compatibility conditions [83]

Qaﬁ‘y =0 and ¢aﬂ|fy = ¢aprﬂ7- (A17)

Zero non-metricity means that angles and lengths are preserved under par-
allel transport. The second condition implies that the generalised torsion
form is very closely related to the space-time torsion

= —¢* TV, (A18)
The existence of an inverse $°‘ﬁ of ¢°‘p is secured if

¢°g = exp (—a®p). (A19)

In this notation T/ = —a*,wY to first order in a,,. If aos is an anti-
symmetric tensor, ¢ can be given a geometric interpretation as a rotational
transformation of the frames. By allowing ¢-transformations which include
shear and dilatations, it is possible to construct a theory which takes into
account traceless proper hypermomentum and intrinsic dilatation currents
along with spin currents. These additional intrinsic currents have earlier
been considered in connection with the so-called metric affine theory {84].

The second compatibility condition, which is identical to the one Ein-
stein imposed on the fundamental tensor in the non-symmetric field theory
[85,86], here takes the form of a defining relation for a torsion potential.
Hence we find

Ga[ply) = ~Tapy and  an(gly) = 0. (A20)
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Note that for an antisymmetric field a,g these relations imply that a,g5(, =
[af|y]- Thus the torsion tensor is totally antisymmetric and autoparallels
defined by the linear connection coincide with the geodesics.

Appendix B
Non-symmetric theory of gravitation

Having motivated the choice of underlying geometry, we have to choose
an action integral. The simplest generalisation of the Einstein-Hilbert
action is implied if we in the Einstein-Hilbert action simply replace the
Christoffel connection with the more general connection with torsion. In
this case the action is given by the Riemann-Cartan curvature scalar [87]

1 a, a,
R(T) = R({ }g) = 180pa ™" + Aop,a®P17. (B1)

Here the first term is the usual Einstein—Hilbert term, whereas the second,
the totally antisymmetric torsion term, is of the Kalb-Ramond type [88],
which is expected to appear in string-modified four-dimensional gravitation
theory [89,90]. Anp, = Ay(gy) is a Lagrange multiplier corresponding to
the constraint a,(g|y) = 0. Here we have given formal geometric arguments
(straight lines of the affine space are mapped to autoparallels of the linear
space) in favour of this constraint, but other theoretical considerations also
lead to a totally antisymmetric torsion field [91]. Post priori this restriction
is acceptable because Dirac particles can only interact with the totally anti-
symmetric part of torsion [25], and these particles seem to be fundamental
building blocks of matter.

An asymmetric generalisation of the metric tensor was first introduced
in the unified field theory of Einstein and Straus [85,86]. Instead of identi-
fying its antisymmetric part with electromagnetism, Moffat has interpreted
it as an antisymmetric gravitational field of a Non-symmetric Gravitational
Theory [95,96]. Such fields have also been considered in connection with
an invariance requirement under extended (gauge) transformations of the
Poincaré group [47,92-94]. Finally antisymmetric torsion potentials have
been introduced ad hoc in the Riemann—Cartan geometry to make torsion
propagate in vacuum [97-101]. The geometric approach followed here has the
advantage that the ratio of gravitational and inertial mass most naturally!?

10 Choosing a torsion coupling scalar p # 1 would lead to a different coupling of
the torsion potential, but the value p = 1 is singled out because only in this
case the ¢-transformation (A11) is a pure rotation.
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is the same as the ratio of gravitational and inertial spin. Hence, the cou-
pling strength of torsion is the same as the Einstein-Newton coupling. More-
over, the structure of torsion is uniquely specified by the geometry.

The static spherically symmetric vacuum solution of this theory is equal
to the Schwarzschild solution up to second order modulo an unobservable
rescaling of gravitational mass [87). Thus the theory passes all solar system
tests [74].

As a redefinition of the fundamental torsion potential we introduce the
antisymmetric field s,z satisfying

33(aplr] = Baply = ~Tapy: (B2)

without any constraint on s,(5),). Then we get

R(I) = R({ }5) - 32apy P, (B3)

We now consider curvature and torsion perturbations of Minkowski
space-time: g, = 9, + hu, where | by, |[€ 1 and | s,, |< 1. Here by,
is a Riemannian metric perturbation (graviton), and s,, is an antisym-
metric torsion potential field. In accordance with earlier practice [102-104]
in connection with antisymmetric gravitational fields, we call the particle
associated with the skew field the skewon.

For convenience we introduce the trace inverse of the graviton field

1
hpv = h“y - En“yh. (B4)

This leads to the action
Lo=—thygaiPoy 1h R g 2p omnp 9, o desdl (B
G = —Z vB,a + § o + '2" po B Z"aﬂﬂs : ( 5)

This action is identical to the second order action [104] of AHG (Alge-
braically extended Hilbert Gravity) [105]. The full nonlinear theory repre-
sented by the action (B1) is, however, inequivalent to AHG. In the nonlinear
regime the two theories have different couplings between the symmetric and
antisymmetric fields. In the present theory this coupling is responsible for a
rescaling of the effective Newtonian mass of the static spherically symmet-
ric vacuum geometry [87]. Since the graviton-skewon terms are of minimum
third order in the fields, the symmetric and antisymmetric fields decouple
in the linearised theory. The terms depending on h and 8k in the weak field
action (B5) correspond to the Einstein—Hilbert action. It is invariant under
the gauge transformation

hpv hd h;,w = h;w + a(y,Xu), (BG)
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whereas the Kalb-Ramond (torsion) field Togy = —33(qg,] is invariant
under ‘

3“11 - 3:‘,” = -’”'y + a[“Y,,]. (B7)

This gauge invariance has been associated with the interaction between
closed strings [88]. With the sources found in Section 2, the classical lin-
earised field equations take the simple form

Ok, = -16xGZ(,,), »*, =0, (B8)
Os,, = -167Gt%,, o, s**, =0. (B9)

These are the Papapetrou [3] field equations.

Appendix C
The strength of the field equations

In general a set of field equations does not determine the field com-
pletely. Einstein [86] introduced the concept of strength of field equations
to give a quantitative measure of the number of free data consistent with
the system of field equations.

For reviews of the strength concept see Mariwalla [106], Shutz [107] and
Hoenselaers [108].

The concept of strength is of such generality that it is possible to com-
pare vastly different systems. In four space-time dimensions it turns out
that the complex Klein—-Gordon field, Maxwell’s field, the massless Dirac
field, as well as the vacuum gravitational field of Einstein’s General Relativ-
ity all satisfy field equations of the same strength [106]. Since the strength
is directly related to the number of dynamical degrees of freedom [107], it is
not surprising that the above mentioned massless field equations have the
same strength.

Suppose that we have a set of fields satisfying a system of differential
equations which are analytic in some neighbourhood of some point on a
manifold (here we assume four dimensions). Then the field equations imply
certain relations among the various coeflicients of order n. By subtractien
there remains a number Z(n) of free coefficients. This number is a measure
of compatibility and strength according to Einstein.

The number of coefficients in the nth order Taylor expansion in d di-

mensions is d Qo1
=77 )
n n

Subtracting the number of independent restrictions imposed by the field
equations, one finds an expression for the number of free coefficients. When
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the system is invariant under gauge-transformations, one also has to sub-
tract unphysical degrees of freedom. In general the expression for free Taylor
coefficients will be of the form

Z(n) = [Z] (B+ 242, (c2)

If Zo > 0 the system is called absolutely compatible. Then if Zy = 0, the
parameter Z; is called the coefficient of freedom. The system is stronger
the smaller the value of this integer.

One may also express Z(n) as [107]

Z(n) = gz\rk [:] : (C3)

In this representation Ng > 0 implies absolute compatibility. For all
systems of equations normally used in physics Ng = 0: There is no free
function of four variables in the solution. N3, which corresponds to the
coefficient of freedom, Z;, is the number of free variables on a three dimen-
sional hypersurface. In both Maxwell’s and Einstein’s vacuum equations
this number is four. This corresponds to the free choice of two variables
and their time derivatives on a Cauchy surface.

The physical meaning of the one- and two-dimensional coefficients N;
and N, is not clear. Consider now the free skewon field. In the field rep-
resentation (here the physical measureable field is the torsion axial vector),
there are 4 free fields. These are restricted by 7 first order field equations
[88). Among these equations there are 4 identities of second order. These
identities are also not all independent because there is one third order iden-
tity of the identities.

This gives

st [ L) e

n n—~1 n—2 n—3
Using the basic relations [107]

d d] rd— 1]
n+1] - | 7 + |n+ 1] (C5)

~[4] -4 Y] (C6)
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the function Z(n) for the free skewon field may be written

3 2 1
Zm)swomn =2 3] + | 2] + [ 1] = 0+ 22 (e7)
The result, Ny = 0 and N3 = 2, shows that the free skewon field has only
one degree of freedom.

This result should be compared with the Maxwell and Einstein vacuum
equations. In the physical field representation these theories give [107]

Zmawen =4[] +2[2] =204 D049, (08)
Zn)einsiin =4 3] +6|2] =2n+n+). (o)

All coefficients N, are independent of the use of potential formulation, and
therefore also the lower dimensional coefficients appear to contain some real
information about the structure of these theories. The skewon field differs
from the other two in having a nonzero one-dimensional coefficient.

An interesting alternative to the theory presented here is the Poincaré
gauge theory (PGT). PGT is a Uy-theory obtained from a higher order cur-
vature action with the torsion field regarded as a fundamental field [48,109].
Sué and Mielke [110] have calculated the strength of the general PGT vac-
uum equations. They found Z; = 120, showing that the field equations of
PGT are much weaker than those of the present theory which has Z; = 18.

Appendix D
S qudred amplitudes

The squared unpolarised fermion fermion amplitude is
A2 2
Stern) =(13g7) 18328 +1)2[(2 + )7 + 7]
+ 2ab(2s + t)2[(2s + t)® — 2] + b[(2s + t)® — 2]*}, (D1)

where s = (p'+ k)? and t = (p — p')? as usual. For graviton exchange only,
a = b = 1; for skewon exchange only, a = —b = 1; and for graviton plus
skewon exchange, @ = 2,b = 0. Note that the expression (D1) for pure
skewon exchange has no term ~ t~2, in agreement with (43).
The interference between photon exchange and graviton plus skewon
exchange is
232

e‘A
SIllt = 2M7M‘(|ls+s) =

at—2(2s+t){a[(2s+t)2+t2]+b[(2s+t)2——tz]}, (D2)
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where a and b are defined as above.
For 4f — fg we find

57 = —(de)?{4m® [i + -:-]2 +m? L4 ; ~ 3|
+3[y+z - 2;%:—2] b (Dy)

where z = (p+k)2 —m?, and y = (p—¢)? —m?. The corresponding quantity
for 4f — fs is
2
Yi—fs _ _(Ae) 2{¥% 2
st = lm L+y 8. (D4)
For graviton Bremsstrahlung from a fermion in an external field we
obtain for m — 0.

— Ae \2
Spe® = (z—f;) {2(p- X)?[13¢% — 17ty — 3tz + 4y?]
+2(p' - X)?[13t? — 17tz — 3ty + 427]

+4(p- X)(p' - X)[10£* — 3ty — 3tz + 4yz]
+ %X’[tlﬁt3 - 72t2(y + z) + 29t(.1,l2 + 22)
- 3(y® + 2*) - 11yz(y + 2) + 60tyz]}, (D5)

where ¢t = kZ and X = €(7*)/t. Note that (D5) is symmetric under the
replacements y « z & (p- X) & (p'- X). t = k? and X = ¢(y*)/t. The
corresponding result for skewon Bremsstrahlung is to order m?:

st = - O fa(p- X7 - 6 XN+ X+ 7. (D)
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