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In this lecture the basic ideas of classical scattering chaos are demon-
strated with the help of a simple model. The Cantor set of singularities
in the deflection function, the invariant set in the phase space and the
chaotic structure in the cross section are presented. Within the semiclas-
sical approximation for the quantum cross section it is shown in which
way some signs of the classical chaos can show up in the quantum system.

PACS numbers: 05.45.4+b, 03.65.Nk, 03.80.+r

1. Introduction

One of the important sources of our knowledge on physical systems
is the investigation of scattering events. From measurements of the cross
section we can learn something about the interaction between the colliding
particles and about their internal structure. The evaluation of cross sections
is simple only in those cases, in which the cross section is smooth as function
of angle and/or energy. Interestingly, physicists have encountered systems
where the cross section is an extremely complicated function showing struc-
ture on many scales. For example in nuclear physics such cases are known
for about 30 years [1]. Later, complicated behaviour has also been found in
classical model computations for molecular reactions (for these processes see
the review [2]), for satellite encounters [3], for vortex scattering in hydro-
dynamics [4], for soliton scattering [5] and for various models of potential
scattering (for reviews see [6,7]).

When we find complicated structures on many scales, then we immedi-
ately think of fractal structures and chaotic dynamics. When we hear the
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expression “chaos in scattering” we may rise the objection, that a typical
scattering trajectory cannot be chaotic in the same sense as a bound tra-
jectory is chaotic. A typical scattering trajectory has a simple incoming
asymptote and a simple outgoing asymptote and in between the interaction
acts for a finite time only. Accordingly, a scattering trajectory can show
complicated behaviour for a finite time at most. However, usually we call a
trajectory chaotic only if it shows complicated behaviour for ever and there-
fore a typical scattering trajectory can never be chaotic. We see; If chaos
in scattering systems exists at all, then it works in a more subtile way. It
is the purpose of this lecture to show in which way genuine chaos can oc-
cur in scattering systems and how it shows up in measurable quantities, in
particular in the cross section.

To do this we study a particular model system which is well suited
for pedagogical purposes and we indicate, to which extend the properties
of this particular model represent the general situation of scattering chaos.
For simplicity we take a system with 2 degrees of freedom where a point
particle moves in a 2-dimensional position space under the influence of a lo-
cal potential V. We choose the following system which has been investigated
thoroughly [8-13];

V(z,y) = expl-y? - (= + V2)?] + exp[—(y — V372)? = (2 — V12)?]
+ exp[-(y + v/372)? - (= - v1/2)](1)

z,y are Cartesian coordinates in the position space. We use the notation
Pz,py for the canonically conjugate momenta and r» = /22 + y2. Our
considerations are valid for potentials which decrease sufficiently fast for
r — oo such that all asymptotic conditions of scattering theory are fulfilled,
in particular we need that

Jim ¥ (z,) =0. @

Thereby we exclude interactions of the Coulomb type which violate this
condition. The treatment of irregular Coulomb scattering will be explained
in the lecture by L. Wiesenfeld.

System (1) is invariant under rotations by +2x /3. The potential has 7
critical points; one relative minimum Py = (0, 0) at energy Eo = 0.40---,
three saddle points Ps;, Psy, Ps3 at energy Es = 0.459---, and three max-
ima Pmi, Pm2, Pvs at energy Ey = 1.005.... Ps; = (0.6---,0) and the
coordinates of Psa and Pg; are obtained by rotating Pgs; around +2x/3.
Pyy = (—1.4---,0) and the coordinates of Pysz and Py3 are obtained by
rotating Pyp; around +2x/3.
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2. Cantor set of singularities in the deflection function

First we look for signs of chaos in the scattering dynamics of system
(1) in the form of a fractal structure in the deflection function. Incoming
asymptotes are labelled by the following three quantities; The initial asymp-
totic energy Ein = 5;2, the incoming direction a = arctan(p, in/py,in) and
the impact parameter b = (2 py in — ¥Pz,n)/V2 E. The scattering angle 0
of a given trajectory is the difference between the outgoing direction and
the incoming direction taken modulo 2x. The deflection function is the
scattering angle 6 as function of b for fixed E and a.

Fig. 1(a) shows the deflection function for model system (1) in the inter-
val b € [-3, +3]. For b outside of this interval the incoming projectile misses
the region where the potential is essentially different from zero and there is
hardly any deflection. In Fig. 1(a) we see four places where 8 changes very
rapidly in a complicated way as b varies. Fig. 1(b) gives a magnification of
the vicinity of such a place. One of the structures of Fig. 1(a) is resolved
into several complicated looking substructures. In Fig. 1(c) such a substruc-
ture is magnified further and a set of even smaller substructures becomes
visible. Fig. 1(c) looks very similar to Fig. 1(b). Such a magnification can
be repeated any number of times and we always obtain similar plots. This
self-similarity of the structure under magnification is typical for Cantor sets.

In these figures we have labelled the gaps of the Cantor set by finite
sequences of the letters R (standing for right) and L (standing for left).
The rules for this signature are as follows; on the magnification level 1 (see
Fig. 1(a)) we assign the symbol L to the gap between —0.49 and —0.35 and
the symbol R to the gap between 0.35 and 0.49. Under magnification new
gaps, t.e. intervals of continuity of the deflection function, appear near the
ends of the intervals L and R. These gaps of level 2 are denoted by sequences
of two letters. The first letter is the same as the letter of the nearby gap of
level 1. The second letter becomes L or R according to whether the gap of
level 2 lies to the left or right of the nearby gap of level 1. We continue this
scheme by induction. In system (1) we find 2**! gaps of level n + 1 and
they appear near the ends of the gaps of level n. The signature for gaps of
level n+1 consists of n+1 letters. The first n letters are the signature of the
neighbouring gap of level n. The last letter is L or R according to whether
the new gap lies to the left or to the right of the corresponding interval of
level n. The points of the Cantor set itself, which is the set of accumulation
points of boundary points of gaps, are labelled by infinite L/R sequences
such that the symbol sequence of such a point is the limit of the symbol
sequences of gaps, which converge to this point.

A first indication on the origin of the observed fractal structure in the
deflection function can be obtained by looking at some trajectories in po-
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Fig. 1. Scattenng angle as a function of the 1mpact parameter for energy E = 0.6
and incoming direction a = . Part (a) gives an overview of the interval b €
[-3, +3]. Part (b) displayes a magnification of an interesting region of b values and

part (c) gives a further magnification.

sition space. Six examples are shown in Fig. 2. In part (a) the scattering
trajectory comes in and moves along a closed ring trajectory (called I" in
the following) several times and goes off to infinity again. In part (b) the
trajectory comes in and starts oscillating between two potential mountains.
Finally it separates from the oscillating trajectory and moves out again.
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There are similar oscillating trajectories between the otheg two pairs of po-
tential mountains. In the following <v; denotes the oscillating trajectory
which passes near the saddle point Ps;. In Fig. 2(c) the scattering trajec-
tory first moves along 7, then switches to I' and after a few turns along
I' goes off again. Part (d) shows a scattering trajectory which switches
periodically between 7; and I" several times before it leaves the potential
region again. In Fig. 2(e) the middle part of the trajectory is a sequence of
pieces resembling /3" and successive 7; in alternation. Part (f) shows an
irregular switching between pieces of the various periodic orbits.

fal (o) (el

(d} (e)

y-coordinate

x-coordinate

Fig. 2. Six scattering trajectories in position space. The horizontal axis gives
z, the vertical axis gives .y. All trajectories have energy £ = 0.6 and incom-
ing direction @ = x. The impact parameters and the labels of their intervals
are; (a); b = 0.5019226 € RRRLRLRLRLR; (b); b = 0.5151908 € RRRRRR;
(¢); b = 0.51519004499 € RRRRRRLRLRLRLR; (d); b = 0.513933870501 €
RRRLRLLLRLRRRLR; (e); b = 0.513564345433 € RRRLLLRRRLLLRR; (f);
b =0.49741285802 € RRLLLRRLRRLRLLL.

To obtain such trajectories, it is necessary to carefully choose b from
the very small intervals that carry the appropriate L/R signatures given in
the figure captions. The relation between signature of the intervals and the
qualitative structure of the scattering trajectory is as follows; By S, we
denote the symbol in position number n in the sequence. RR in position 1
and 2 give an incoming part of the scattering trajectory of the kind shown
in Fig. 2. If the symbol Sy,41. is equal to 5, then we add an arc to the
trajectory, which is qualitatively similar to 1/7;. Out of the various six
posibilities for 1/, 7; we choose the one which continues the trajectory
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smoothly. Likewise, if S,4+1 # Sn, then we add an arc qualitatively similar
to 1/3I" with the appropriate orientation to continue the trajectory smoothly.
When all symbols of the finite sequence are used up, we add an outgoing
part, leaving the interior of the interaction region through the pass opposite
to the sector into which the trajectory has to be continued smoothly. This
rules can be checked immediately for all six trajectories of Fig. 2. If any type
of trajectory is searched for, we decompose it into 1,y parts and }/3I" parts,
construct the corresponding L/R signature and know in which b—interval
the trajectory has to start. For trajectories belonging to b—intervals, whose
symbol sequence does not start with RR, similar rules can be given with
some modifications for symbols in the first three positions.

3. Invariant set and periodic orbits

Because of their importance for the following considerations let us give
some more information on the periodic orbits ¥ and I'. The orbit I" exists
for energies between Eg and E)j. At Eg it emerges from the point Py.
By X and 1/\ we denote the eigenvalues of the fixed point belonging to
I ip a Poincare section. At Eg we find X = 1 because of the following
reason; the potential V has C3, symmetry. Therefore the expansion of the
potential around the origin up to second order must be isotropic, i.e. V
has an expansion V(z,y) = Eg + a(z? + y%)/2 plus higher-order terms,
where a = 6exp(—2). As long as the energy is infinitesimally above Ey
the particle starting near the origin moves in a two-dimensional isotropic
oscillator potential. The frequencies of the two normal modes are degenerate
and all trajectories are periodic and have the same recurrence time T =
2x/y/a. Accordingly, for E — E, from above, all points near the origin
become fixed points in the Poincare section. Both eigenvalues are one for
all these points. For increasing E the higher-order terms in the potential
become important, the isotropy of the potential is destroyed and from the
two-dimensional continuum of fixed points in the Poincare section only the
fixed point belonging to the periodic orbit I" survives.

With increasing energy, I' remains at first elliptic. A wanders around
the upper half of the unit circle until at an energy slightly below Eg it
meets the value —1. Here I' switches from elliptic to inverse hyperbolic.
With further increase of the energy A wanders along the negative real axis.
At E = 0.6, which will be used mainly in the following, its value is A ~ —83.
For E — Ey we find A — —o00.

The orbits ¥; exist for energies between Eg and E)g; their eigenvalues
will be denoted by u,1/u. Again, these eigenvalues refer to the eigenvalues
of the corresponding fixed point in a Poincare section. At E = Eg the orbits
7; emerge from the points Ps; with eigenvalues ¢ =~ 47. With increasing
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energy p increases too. At E = 0.6 we find y =~ 107 and for E — E)
we find 4 — +o0o. The value of u at Eg can be checked analytically;
Around Ps; the potential can be approximated quadratically as V(z,y) =
Es — a(z — z5)?/2 + by? /2 plus higher-order terms, where a ~ 0.660- - - and
b = 1.747--.. Accordingly, for energies slightly above Eg the orbit vy; has
the form

2(t) =515 y(t) = yo cos(Vht + o). (3)

The recurrence time of this orbit is T = 2x/v/b. Small deviations in the z
direction develop like

z(t) — zs1 = z4 exp(v/at) + z_ exp(—+/at). (4)

During the time T the unstable solution is amplified by the factor 4 =
exp(2x4/a/b) ~ 47.- .-,

Fig. 2 strongly indicates that the periodic orbits 4 and I" and their het-
eroclinic and homoclinic connections play an important role in the creation
of the complicated scattering behaviour found in the deflection function.
Those trajectories of the system, which are held between the three poten-
tial mountains for all times in past and future will be called localised in
the following: The properties of these orbits can be investigated best in an
appropriate Poincare section. For system (1) we can construct a Poincare
section which is adapted to the C3,—symmetry of the potential as follows;

Fig. 3 shows the equipotential lines of the potential for E = 0.6 together
with three symmetry lines 3, 02,03 and two pieces of orbits. It turns out
to be useful to define the o; as half lines rather than full lines. So they start
at Py and extend straight to infinity. V is invariant under reflections at o;.
The set of the three o; lines is itself invariant under C3, operations.

For energies not too close to Eg, namely for £ > Eg =~ 0.485-:- lo-
calised orbits do not enter a neighbourhood of the origin. Therefore, for any
localised orbit, and thus in particular for any periodic orbit, the sequence
of crossings of the o; lines can be followed. Divide the trajectory into pieces
as given by subsequent o; crossings. Let d; = k if the jth crossing occurs
at the line 0,. For each trajectory, this allows the construction of a 0/1
sequence according to the scheme

a; =0 if djy1=dj,
a_,-:l if dj.‘_]#dj.

It is intuitively clear that a binary sequence is adequate as can be seen from
Fig. 3. Let an orbit cross line o; with positive §. The next crossing is either
with line o) again or with line o, as shown in the two pieces of orbit shown
in Fig. 3. Thus after each crossing there is a binary choice; to return to the
line of the last crossing or to go on to the next line.



184 C. Jung

1.0

-1.0
-1.0 X 1.0

Fig. 3. The energy boundary for E = 0.6 (three full line segments starting and
ending at the frame boundary), the symmetry lines 0,073,038 (three broken half
lines emana.tmg from the origin), and two pieces of orbits in position space. The
nght piece is of 1/2v type; it returns to the & line from which it started. The other
piece is of 1/3I type; it connects two different o lines.

Two periodic orbits are particularly simple. First, the orbit v, which
oscillates back and forth across one of the three sa.ddles It corresponds to
a; = 0 for all j. There are of course three such orbits, but as they are
related by C3, symmetry we shall identify them as one orbit 7. Second, the
rmg orbit I" corresponding to a; = 1 for all j. This orbit rotates around the
origin in one of the two possible orientations. Because these two orientations
are related by reflections at o; they will be identified as one orbit I
Other localized orbits can be described as follows; Each a; = 0 in the
sequence corresponds to a piece of orbit which resembles !,y and each
a; = 1 corresponds to a piece which resembles 13T, This is the same type
of decomposition which has been done for the middle parts of scattering tra-
jectories in the last section. Periodic orbits correspond to periodic symbolic
sequences where some basic block of symbols is repeated for ever. Fig. 4
shows some examples of periodic orbits at energy E = 0.6. The basic block
of the signature is indicated for each orbit in the figure. In part (q) only
one half and in parts (p) and (r) only one third of the complete orbit is
displayed. To get the complete orbit, the displayed pieces of the orbit have
to be supplemented symmetrically, what can be done easily with the help
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Fig. 4. 18 examples of periodic orbits of low. periods in position space. To each
orbit we give the basic block of the periodic symbolic sequence in the lower right
corner.
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of the symmetry lines shown.

The construction of the Poincare mapping itself is done in the following
way: Let the energy be fixed at a value E. For each crossing of a trajectory
with any of the lines o1 , 02 or o3 we record the distance r from the origin
and the radial component p, of the momentum, i.e. its projection on o;.
Both orientations of crossings are taken because o; are half lines. The
surface of section P so defined is invariant under C3, operations. A given
point z € P thus represents. six different phase space points which will be
identified.

Each localized orbit generates an infinite sequence of intersections with
the r/p, plane. Generic scattering trajectories, on the other hand, produce
finite sets of points. In the energy interval E € (ES,EM) almost all initial
points in P correspond to scattering orbits with incoming and outgoing
asymptotes. They have a first and a last intersection with the lines o;.
The set A4 of points in P which possess infinitely many images under the
Poincare map P : P — P has measure zero. Likewise, the set A_ of points
with infinitely many preimages has also measure zero. The localised orbits
correspond to the set A = A N A_. In particular, A contains all periodic
points of the map P and they represent the periodic orbits of the system.

A can be constructed from the structure of the stable manifold W* and
the unstable manifold W™ of the fixed point P, of the Poincare map, which
corresponds to the periodic orbit 4. Some branches of these manifolds are
shown in Fig. 5 for E = 0.6. The branch X of W" extends directly into the
asymptotic range r — oco. The inner branch A of W* leaves P, towards
the point a_ at r = 0 from where it jumps to the point a4 because the
intersection of the corresponding orbit is now with a different o; line, and
the projection of the momentum is therefore different. The next piece B
continues towards larger r values and passes near .P, before it returns to

= 0 at the point b_. From there W™ leaves the frame of Fig. 5 and
reenters later at the point c4. The last two pieces shown are C and D. Of
course, there is an infinity of further branches of W% which are not shown
in the figure. They all lie between A U X and B. Because of symmetry W*
is the mirror image of W™ created by reflection in the line p, = 0. The
corresponding branches of W* are labelled by overbared letters.

The homoclinic intersections between W™ and W* are confined to the
shaded area in Fig. 5. It also contains the set A, which is the topological
closure of these homoclinic intersections. The action of the Poincare map
in the shaded area is a perfect example of Smale’s horseshoe construction
as long as the energy is restricted to the interval (Eg, Ep). Next let us
understand this construction in more detail.

Fig. 6 gives a schematic plot of this shaded area. The nature of the map
becomes clear if we consider some special points on the invariant manifolds.
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Fig. 5. Some branches of the invariant manifolds of the fixed point P, (marked
by a full circle) in the r/p, plane, for E = 0.6. All localised orbits of the Poincare
map P are located within the hatched area.

Fig. 6. Schematic plot of the horseshoe dynamics in the hatched area of Fig. 5.
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Under the mapping P we find

Qi1 Q2+~ Q3 Q4
Ry + Ry — Rj
S1— 52
T1 = T2
If we define the four rectangles
0:=P,Q1T1Qs
0.:= P7Q2T2Q4
d:=R1Q2R25,
1.:= R2Q3R352
we have the mapping
P: 0u.l—-0.UL
0~ 0.
A1,
In order to construct the sets A, A_, A recursively, we introduce the nota-
tion
AL ;= {.0,.1},4 ;= {0,1.}
for the two sets of rectangles, and
AY;={a_j.a; = a_3.N.a1la; € {0,1}}
for the set of their four intersections 0.0,0.1,1.0,1.1, with A} = A}*_ NnAL.
On A? both P and its inverse are defined. Thus we can define the images
and preimages of the four parts;
A%; = {.a1a3 = P~1(ay.a2)|a; € {0,1}}
A% ;= {a_za_;. = P(a_z.a_1)|a; € {0,1}}.
All these strips are bounded by pieces of the invariant manifolds. The set
of their intersections consists of sixteen parts and will be called A2;
Az; = {a_za_l.alag =a—2a-31.N ;aldglaj € {0, 1}}
Again we have A2 = Aﬁ_ N A2, Tterating this procedure we obtain a nested
sequence of sets A" = AR N AT
A1 D A2D...04™D
each consisting of 22" elements with
A=, A™
By construction, A is invariant under P and P~!. The operation of P is a
right shift on the symbolic sequences, P~1 operates as a left shift;

P:oioGp+"0..20_1.01Q2++Ap "+t 2+ Qp**+G_20..101.082°**0p "
P"'l:...a_n...a_za__l_alaz...an...H ey G2.0.701A2 " Ty **

In the phase space there corresponds to the set A a chaotic saddle con-
sisting of an countable infinity of unstable periodic orbits and an overcount-
able infinity of unstable nonperiodic localised orbits. They all have their
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own stable manifolds going out into the asymptotic region. Therefore, in the
asymptotic region there is an bundle of stable manifolds of localised orbits.
Transversal to the sheets of the bundle we find a Cantor set structure. The
genuine scattering trajectories flow through the gaps of the chaotic saddle
and cast some kind of shadow image of it into the outgoing asymptotic re-
gion. Whenever the initial condition of a scattering trajectory lies on one of
these stable manifolds, the trajectory will get stuck in the potential interior
and the scattering angle is undefined. Thereby each localised orbit in the
chaotic saddle has an influence on the scattering behaviour similar to the
influence of a circular periodic orbit in the orbiting effect in rotationally
symmetric systems.

The set of singularities of the deflection function in the set of all possible
initial asymptotes is a subset of measure zero. Therefore we do not hit the
singularities exactly in numerical computations or in an actual experiment.
What we see is a jump of the scattering angle whenever the initial condition
jumps from one side of a stable manifold of a localised orbit to the other
side. Scattering trajectories belonging to adjacent gaps of the Cantor set,
having one letter more or one letter less in their signature, leave the potential
interior through different saddles and therefore their scattering angles differ
by approximately +2x/3. Actually between these two intervals there is
an infinite number of additional smaller intervals with longer signatures.
Therefore by scanning b in finer and finer steps through tiny regions the
scattering angle is seen to make more and more jumps of approximately
+2x /3 each time. This is exactly what we have seen in Fig. 1.

All essential properties of the chaotic saddle can be reconstructed from
measurements of the deflection function. The quantitative evaluation of the
chaotic saddle will be explained in detail in the lecture by T. Tel. For more
information on transient chaos and its application to scattering see [14-16].

4. Rainbows in the classical cross section

Unfortunately, the deflection function is hard to obtain even in ex-
periments on macroscopic systems and it is not at all measurable in micro-
systems. Its measurement would require an exact preparation of momentum
and impact parameter of the projectile. In usual scattering experiments the
momentum is specified as precisely as possible and the impact parameter
is completely unspecified. The quantity which is really measured is the dif-
ferential cross section as a function of angle and/or energy. The maximal
information which can be obtained from a scattering experiment on micro-
systems is provided by the differential cross section. In this section we shall
explain in which way the chaos in the phase space and the existence of a
chaotic saddle show up in the cross section.
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The computation of the cross section is done like this; We fix the energy
E and the incoming direction a and take the scattering angle 8 as function
of the impact parameter 5. We determine all values b; of the impact param-
eter which lead to some particular scattering angle 6y, i.e. we look for all
solutions of 6(3) = 6o. For each solution the quantity (d6/db)(b;) is formed
and the value of the cross section for the angle value 6y is summed up as
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Fig. 7. The deflection function §(B) for interval R in logarithmically transformed
coordinates according to Eq.(6). The contributions for § = 5.4 are labelled by
‘capital letters. The extremal values are labelled by lower case letters.

Because of this additivity we first look at the contributions coming
from one interval of continuity of the deflection function and delay the
summation over all intervals for the moment. As an example we choose
the interval R and take E = 0.6,a = x. This interval corresponds to
b € (br—,br+) = (0.34106--.,0.49733-..). This interval gives the most
important contribution for angle values close to § = 5x/3. In Fig. 1 the
behaviour close to the boundaries of the interval R is not well resolved.
Therefore Fig. 7 shows the deflection function in the interval R again, this
time as a function of the logarithmically transformed impact parameter

p =l bn)bns =b) ©)
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where p is the eigenvalue of the periodic orbit ¥ . At energy E = 0.6
its value is close to 107. By transformation (6) the interval (bg_,br) is
mapped one-to-one onto (—00,+00). For B — 400 the deflection function
as a function of B can be fitted quite well by the closed form expression

6(B) — %’r + Opm[1 — cr+ exp(—Blnp)] sin(27B + ¢r+) (7)

and in the same way for B — —o0 by

6(B) — 5?” + 0p1[1 — cp— exp(BIn u)] sin(2xB + ¢r_), (8)

where 6y = 0.394875---.

The approximate periodicity of §(B) for B — o0 can be understood
as follows; If b is close to the boundary of the interval of continuity, then
the trajectory in position space performs oscillations on the saddle before it
leaves the potential region. If the value of b comes closer to b4 or bp_ by a
factor u, then the trajectory in position space spends one more period along
9. Accordingly, the factor 1/Inu in (6), together with the sin function in
(7) ensures that 6(B) assumes the same value. For b values in between, all
angle values are obtained which can be reached by trajectories leaving the
periodic orbit v close to its unstable manifold.

To understand the slight deviation from periodicity note that, when the
scattering trajectory moves along v for some additional turns, more energy
is put into the transverse motion, and the deviation of the angle value from
its middle value 57 /3 can become greater. In the extreme case of b — bg 4
the amplitude of the oscillations of the scattering angle converges to fps.
This approach of the oscillations to their maximal amplitude is adequately
described by the factor [1 — cr4 exp(FIn )] in (7) and (8). The behaviour
of 8(B) close to B = 0 is determined by the particular value of the energy,
and there is no simple analytical fit for it.

Fig. 8 shows the contribution of the interval R to the cross section.
Each relative extremum of 8(b), where df/db = 0, gives a singularity in the
cross section, a so called rainbow. We have marked the extrema in Fig. 7
and the corresponding singularities in Fig. 8 by matching letters. In Fig. 8
we have chosen logarithmic scales on both axes in order to demonstrate the
simple scaling properties of the system. The abscissa gives the transformed
scattering angle;

— 5% x -0)1
(o) = A= Sr/ 4 On/3 4 o = O, (9)

In these coordinates the angular distance between any rainbow and its suc-
cessor (the one coming from the neighbouring extremum in Fig. 7) becomes
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Fig. 8. Contribution of the interval R to the differential cross section. The loga-
rithm of the cross section is plotted as a function of the logarithmically transformed
scattering angle (9). The rainbow singularities of the cross section are labelled to
indicate the one-to-one correspondence between the rainbows and the extrema of
the deflection function shown in Fig. 7.

(5]

1 in the limit B — oo. Compare e.g. the distance between p and n, or
b and d, or m and o, etc. Along the ordinate the quantity In(do/d6)/In
is plotted. We notice that each branch is shifted vertlcally by approxi-
mately 1/2, as compared to its successor. The reason is as follows; Close

to a maximum of 4(b) at b = b,, with angle value § = 6,, we approximate
6(b) = 6, — A(b - b,)%/2 and find

do
|6

Close to the: nelghbounng maximum at bn+1 with angle value 6,41 we
approximate 0(b) = On41 — Ap?(b — bp41)?/2 and find

= |4p? (b — bnt1)| = p[2(6n+1 — 0)A]'/?, (11)

where, according to (6) and (7), the b, and 8, scale as bg — by, = u(br4 —

bnt1) and 57/3 + Oy — O, = (5% /3 + Opg — Opt1). Let ¥, = 9(6,) and
Y41 = P(0n41) be the transformed scattering angles at 6,,0,4+1. We

compare the cross section at two angle values v and 12; which lie close to ¢,
and 1,41 respectively such that

¢n—$=¢n+l"$<1: (12)

= |A(b - by)| = [2(6n — 6)A]*/2. (10)

%‘(bn+l)
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where ¥ and 17; correspond to the values 6 and 8 of the original angle 8. Eqs
(6) and (7) imply 6, — 8 = u(0n4+1 — 6). Inserting this into (10) and (11)
leads to

dé, -
SO ()

B0 = 2Anss — BT = 240 — B2 = 511

Accordingly, for the ratio between the contributions to the cross section
coming from the vicinities of the two maxima we obtain

2 0) = w1%00) (14)

or
@) i)

Ing Inu— % '
Analogous considerations hold for the minima.

At the energy E = 0.6 the two extrema of 6(}) in the middle of the
interval, labelled by A and i in Fig. 7, are not separated very much in their
0 values. This causes a corresponding double singularity in the cross section
which comes close to a cubic rainbow. It forms the most prominent structure
in the cross section.

The next step is, to demonstrate that all intervals of continuity give
similar contributions to the cross section. This can be done as follows; We
take an interval of continuity of the impact parameter line (at fixed incoming
angle) and transport it by the flow through the potential until it reaches the
region of outgoing asymptotes. There we make a plot of the values of the
scattering angle and the outgoing angular momentum L, which is equivalent
to the outgoing impact parameter. Thereby an interval of continuity of the
incoming impact parameter line is mapped onto a continuous curve in the
0/L plane. Fig. 9 shows the results for the three intervals R, LL, LR. All
other intervals that lead to § values around 5x/3, give spiral lines which
run alongside these three lines in qualitatively the same manner. The only
difference between these various spirals is a shift of the middle structure
which produces the almost cubic rainbow structure in the cross section. The
outer boundary line of the spirals is the intersection between the asymptotic
0/L plane and that branch of the unstable manifold W* of ¥ which leaves
the potential directly outwards (branch X in Fig. 5). The image of any
b interval spirals towards this boundary line in such a way that for each
complete turn the distance from the boundary decreases by a factor u. If
a position space trajectory makes one more turn along v, then it lies closer
to the unstable manifold W* by a factor u. Spirals from different intervals
are not allowed to intersect each other. Therefore, all spirals must converge

(15)
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Fig. 9. Intersection between the outgoing asymptotic plane and the trajectories
starting in the intervals R, LL, LR with E = 0.6 and a = x. The scattering angle
value 8 = 5.4 is marked by a broken line.

to the boundary line by the same rate. This universal scaling behaviour
for all intervals originates from the fact that the boundary points of the
various intervals all lie on the stable manifold of the same periodic saddle
trajectory 7.

In this sense the scaling behaviour of all intervals is the same as the one
described in detail for interval R, and the structure of the analytical fit of (7)
and (8) holds for any interval. For the various intervals we have only to insert
other boundary values by,b_ for the impact parameter transformation in
Eq. (6) and other constants c4,c_, ¢4, ¢_ in (7) and (8).

There is a natural one-to-one correspondence between the extremal an-
gle values of the deflection function in interval R and the extremal values
of the deflection function in other intervals. Therefore, all intervals create
qualitatively the same rainbow structures in their contributions to the cross
section. There are only two differences between the various contributions.
First, the exact values of the rainbow angles are slightly shifted according to
the shift of the spirals in Fig. 9. Second, the total weight of the contribution
of any interval is proportional to its length i.e. proportional to the amount
of incoming flux which falls into this interval.

Fig. 10 presents the cross section of the combined contributions from
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Fig. 10. Classical differential cross section for E = 0.6 and a« = x. The four
most important rainbows coming from interval R are labelled by lower case letters
corresponding to the labels of the deflection function in Fig. 7.

the intervals R, LR, LL, RLL (the most important ones for angle values
around § = 5x/3) and the background. By background we denote the con-
tributions coming from large initial impact parameter values corresponding
to trajectories which pass the potential hills on the outside and do not enter
and leave again the potential interior through one of the saddles. Compare
the position of the most important rainbow singularities with the positions
of the extremal angles in Fig. 9.

Fig. 11 gives the complete cross section. This plot has been produced
by the following method; We have started 1600000 trajectories, evenly dis-
tributed in the initial impact parameter interval [—4, +4] all with E = 0.6
and a = x. The scattering angle interval [0, 2x) has been divided into 3600
boxes and hits of the outgoing asymptotes into the various boxes have been
counted. Unfortunately, the resolution is not high. Nevertheless, this plot
gives a good impression as to how the contributions from the various in-
tervals are superimposed on the background. Contributions from impact
parameter values close to b = 0 create the fourfold singularity at angles 6
close to . Compare the deflection function in Fig. 1.

So far the most prominent features of the cross section contributions
from the various intervals are the rainbow singularities, espécially the nearly
degenerate double singularities coming from the middle parts of the inter-
vals. The angular position of these singularities is somewhat different for
the various intervals. Next we show that the angular arrangement of these
rainbows defines a fractal set with binary organisation, reflecting the frac-
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Fig. 11. The complete classical differential cross section for £ = 0.6 and a = .
The logarithm of the cross section is plotted as function of the scattering angle.

tal structure of the hyperbolic invariant set in the phase space. To plot
Fig. 12 the following has been done; All intervals with signature of length
smaller than or equal to 10, and with trajectories going into the angular
range around 5x /3, were selected out. For each of these intervals the angu-
lar position of the left side of the double singularity (corresponding to point
h in Fig. 7) was taken as a characteristic angle and plotted on the angle
axis. In the upper frame the various contributions are sorted according to
the length of the signature of the corresponding interval. In the lower frame
all contributions are plotted along one line. For some contributions the cor-
responding signature of the interval is shown. Part (b) is a magnification of
a small section of part (a) and part (c) is a further magnification.

The binary organisation of the arrangement is evident. Comparison of
parts (a), (b) and (c) shows that taking half of the plot and magnifying it is
equivalent to shifting the whole structure upwards one step in the signature
length. The number of intervals is countable as can be seen from the pos-
sibility to label all intervals in closed form by finite signatures. Therefore,
also the number of rainbow angles is countable. However, the set of accumu-
lation points of these angles forms an overcountable Cantor set, coinciding
with the Cantor set defined by the chaotic saddle in phase space. This can
be understood as follows : As the signature of intervals becomes longer and
longer by accumulation of new digits in front, the corresponding position
space trajectories come closer and closer to the unstable manifold of some
localised orbit. In Fig. 9 the spirals of these intervals would converge to
the spirals produced by the intersection of the asymptotic §/L plane with
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Fig. 12. Fractal pattern of rainbow angles. In the upper frame the contributions
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shows a magnification of an interesting smaller angular interval and part (c) gives

a further magnification.
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this unstable manifold. Other sequences of intervals would converge against
the manifolds of other localised orbits. The whole set of unstable mani-
folds of all localised orbits gives the fractal structure of the chaotic saddle.
Accordingly, the angular minima and maxima of these manifolds are also
arranged in this fractal pattern. And the extremal values of the deflection
functions of the intervals converge against the extremal values of the angles
of the manifolds. Thus, the distribution of the rainbows along the angle
axis reflects the fractal pattern of the chaotic set in phase space.

For our numerical examples we always use the angle region around
6 = 57 /3. In the other two angular regions around § = r and § = = /3, which
are reached by trajectories leaving the potential interior through the other
two saddles, the same structure of the cross section can be found. For other
values of the incoming direction a nothing changes dramatically as long as
there are trajectories entering the potential interior at all, .. as long as the
stable manifolds of the chaotic saddle are intersected by the initial conditions
Din = fixed, b arbitrary. Of course, the exact position of the various intervals
along the b axis would be shifted. However, when the signature of an interval
is sufficiently long, then the corresponding trajectories spend a long time
inside the potential region and, in a sense, forget their history. For the
shape of the deflection function shown in Fig. 7 all that matters is how the
particles leave the potential interior through one of the saddles.

When the value of E is changed, the eigenvalues u and X of v and I
and the eigenvalues of all other periodic orbits are also changed and the
scaling properties of the fractal set changes accordingly. The difference of
the values of ¢ and ¢_ in (7) and (8) is the same for all intervals to
a very high accuracy. However, the numerical values of ¢4 — ¢_ depend
on E. Accordingly the shape of the deflection function in the middle of
the intervals, where the asymptotic oscillations from both sides are fitted
together, depends strongly on E. We find an exact cubic rainbow at an
energy Ec ~ 0.58. We have a cubic rainbow at angle 8¢, if there is an impact
parameter value bg such that 8(bc) = 8¢ and d/db(bc) = d26/db?(bc) = 0.
At E¢ the two extrema h and ¢ of the deflection function in Fig. 7 coincide.
For E < E¢ these two extrema disappear. For E increasing from E¢g
the angular distance between these extrema increases monotonically. The
fractal set described here exists as long as F € [Eg, Eyp].

5. Construction of the semiclassical scattering amplitude

So far everything has been described within classical dynamics. How-
ever, scattering experiments are an important source of information for mi-
cro systems, where quantum effects are essential. Therefore it is important
to find the quantum mechanical phenomena which correspond to irregular



A Simple Model System for Irreqular Scatlering 199

scattering in classical mechanics. Because of the limited time, the irregular
scattering of waves according to the Schrédinger equation can not be dis-
cussed in this lecture. Only a few remarks will be made in the concluding
section. Instead, we will restrict ourselves to a semiclassical investigation of
the fingerprints of classical scattering chaos in the quantum cross section,
since the connections between classical dynamics and quantum dynamics
can be investigated within a semiclassical approximation for quantum me-
chanics. To construct the semiclassical scattering amplitude we shall use
Maslov’s version of the WKB method [17] which has been cast into a prac-
tical form for scattering systems in [18,19].

The first step in this procedure is the construction of the classical La-
grangian submanifold £(fy,) belonging to the fixed incoming momentum
Pin- In the position space we choose a straight line G perpendicular to pi,
and far away from the origin such that along G the value of V cannot be dis-
‘tinguished from zero within the computational accuracy. G is placed on that
side of the origin, from which it will be transported towards the potential
by the flow. Along G the impact parameter b is taken as coordinate. The
corresponding one-dimensional line G in the four-dimensional phase space is
obtained by lifting G to the constant momentum value p;,. Next we trans-
port G through the phase space by the flow ¢; of the system. Thereby a
two-dimensional submanifold £(p;,) is created. For the arbitrary point Q
on £ we take w and ¢ as coordinates, where w is the impact parameter with
which the trajectory through Q has started, i.e.

w(@) = lim_b(:(Q)) (16)

and ¢ is the time of flight for the trajectory starting in (b,0) on G to arrive
at Q. The surface £ twists and turns in phase space and grows folds and
whirls. By the time it has been transported through the potential interior
it lies in an infinite number of branches over the position space.

For scattering systems we are mainly interested in the form of £ in the
outgoing asymptotic region. For chaotic scattering systems the mapping
from points of G into the outgoing asymptotes has discontinuities on a Can-
tor set along G. Each interval of continuity of b values in between the points
of the Cantor set is turned into a spiral shaped whirl during its transport
through the potential interior by the flow. In Fig. 9 we have already seen
the intersection of the trajectories starting in the intervals R, LR, LL with
the asymptotic plane.

In addition to the infinite number of spirals there is one further isolated
branch of £(fi,) coming from trajectories with large values of b which pass
the potential hills on the outside instead of running through the potential
interior. The outgoing angular momentum L of these trajectories is ap-
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proximately L = 2.5 for the angular region shown in Fig. 9. Therefore this
branch is outside of the frame of Fig. 9.

Later we need the trajectories starting on G and going to a specific
outgoing direction §. As an example, the line § = 5.4 is marked by a broken
line in Fig. 9. The intersection between £ and the line § = 0 will be denoted
by D(6). Each interval contributes an infinite number of points to D(f) as
long as d is chosen such that the line # = @ intersects the set of spirals a}
all. In this case D(9) is a fractal set.

L(Pin) is Lagrangian. Therefore a global action function § exists on L.
We define

S(w,t) = /p,,dz + pydy = /13' dg. (17)

The line integral is taken along any path from (3,0) to (w,t) which lies on
L . We are dealing with a scattering problem, where the initial point (b, 0)
and the final point (w,t) are supposed to tend to infinity in position space
and we wish to split off the uninteresting motion in the asymptotic region.
Accordingly, we define a reduced action S in which the asymptotic parts
are split off;

§(w,t) = S(w,t) - 7+ Tnar + 7+ Timitial = — / 7-d5.  (18)

The action § has a definite value for each scattering trajectory independent
of the choice of the initial and final point along this traJectory as long as
these points are both far away from the potential region. § gives the phase of
the contribution of this trajectory to the semiclassical scattering amplitude
[20].

Now we give a very brief description of the construction of the semi-
classical wave function and scattering amplitude. The method is presented
in full detail in [17-19]. On L(fin) wWe define a density

plw,t) = —J’l(:‘v(—"t)) (19)
with P .
J(w,t) = det % | (20)

where g(w, t) is the position space point onto which (w, t) projects. pin is an
incoming density on G which is supposed to be constant for our boundary
conditions. On each open subset of £(pi,), which projects one-to-one into
the position space we construct the wave function

(1) = plw, /7 exp | 028 _ 2], (21)
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where u is the Maslov index of the trajectory from (b,0) to (w,t). In our
system it coincides with the number of caustics of £(Pin) crossed by this
trajectory. In general £ lies in many sheets over the position space and
the semiclassical Schrédinger wave function 1¥(z,y) in configuration space
is obtained by summation of x over all the branches of £ lying over (z,y),

o) = 3 i) ex R B

where (w;,t;) projects onto (z,y) for all j.

Along caustics £ does not project one-to-one into the position space
and the density p in Eq. (19) diverges. Then the form of the wave function
in (21) and (22) is not a usefull semiclassical approximation. Near caustics
L projects one-to-one into the momentum space and we can construct an
approximation for the momentum space wave function in terms of the expo-
nential functions. Then we Fourier transform this non-singular momentum
space wave function in order to obtain a non-singular position space wave
function. By a smooth monotonic transformation of the integration variable
the Fourier integral can be transformed into an appropriate normal form. It
is the integral over a product of a slowly varying amplitude function times
the exponential function of a polynomial. If the caustic is an isolated fold of
L, then we need a polynomial of order three and the integral gives a combi-
nation of an Airy function and its derivative. If the caustic is a cusp or two
neighbouring folds which are not well separated, then we need a polynomial
of order four and the integral gives a combination of a Pearcy function and
its derivatives. More complicated caustics do not occur in system (1).

The Airy and Pearcy contributions from the surroundings. of caustics
have to be joined smoothly to the exponential functions from regions far
away from caustics. This is done by appropriate partitions of unity on
L. The theory of this switching between position and momentum space is
presented in mathematically rigorous form in [17].

In the outgoing asymptotic region we separate the function (22) into a
radial and an angular part. p splits as

do
db AL

(23)

p=r"

and from S we add the asymptotic radial contribution g, - pin and subtract
Jout * po.,t glvmg S, already introduced in (18). For the signs in (18) note
that @, and f;, point in opposite directions whereas gout and fout point
in the same direction. In the limit r — oo we have —@, * Fin = Tink and
Jout *Pout = Toutk where k = V2E. So we can split off the same radial factor
#~1/2 exp[ik(rin + Tout)] from each term in (22). The remaining angular
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factor of the wave function in the outgoing asymptotic region is just the
semiclassical scattering amplitude. We obtain the well known expression

(20];
10 =3 Ve [’S £) ’”2""], (24)

where
do

¢ = db(bJ) (25)

is the contribution of trajectory j to the classical cross section. The sum
runs over all classical trajectories starting with incoming momentum g;,, and
going out with scattering angle 6. Also in (24) we need an uniformisation
close to caustics. It is induced by the uniformisation of the wave function.
The differential cross section is given by

20) = 11 O). (26)

For many systems and in particular for chaotic bound systems the semi-
classical sums like the one in (24) do not converge absolutely. However,
for many scattering systems, and especially for energies not too small, the
semiclassical sum for the amplitude converges absolutely. Next let us give a
brief estimate of the convergence properties for the sum (24). First consider
the sum over the contributions from one particular interval, e.g. interval R
shown in Fig. 7. For any particular value of the angle § we group these
contributions into four classes. For example of § = 5.4 shown in Fig. 7 by
a broken line, class 1 contains the points B, F, J, etc. Class 2 contains C,
G, K, etc. Class 3 contains A, E, I, etc. Class 4 contains D, H, L, etc. Any
class contains a sequence of second next neighbouring points running to-
wards one boundary of the interval and leading to a given value of 8. Going
from one contribution of any class to the next one of the same class, the
weight | /¢5 of the contribution decreases by a factor /% in the limit of close
approach to the boundary. The eigenvalue u of the trajectory v is always
greater than 1 since v is unstable

Ck,l
Ch+1,l =~ T’ (27)

where ¢ ; is the classical weight of the k-th member of class I. For the sum
of all contributions from interval R we find an estimate by a geometrical
series

(-] 4 =)
Rl <N vam~ Y e Y u? (28)

=1 k=0 1=1 k=0
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Next we have to estimate the sum over all intervals. All intervals give
similar sequences of contributions, the only difference being that the cor-
responding weights c; are scaled proportional to the total length of the
interval. Let us group the intervals into various generations where the gen-
eration number is given by the length of the signature of the intervals. There
are 2V intervals of generation N. The ratio of the length of any interval
compared to the length of its neighbouring interval of the next generation
is always between u!/2 and (—A)!/3. Therefore, the weights ,/cj of the
contributions to sum (24) of any interval are decreased by a factor of at
least (—))'/® compared to the corresponding weights of the neighbouring
interval of the next generation. Let n be an index which numbers. the 2%V
intervals of generation N and let f,, ; be the contribution of interval n of
generation N to the sum (24). According to what has been explained so
far, we find

|fn, vl < AN f1 0, (29)
for any n and N. For the total amplitude we find the estimate
oo 2V
<Y Y lfanl < Z 2VIAITN8 (30)
N=1n=1

This sum converges, if [A\| > 28 = 64 which is fulfilled for E > 0.58.

The estimates used in (29) and (30) are very rough since we have always
inserted the largest scaling factor which can occur at all. A more careful
estimate using the average scaling factor indicates that we may expect ab-
solute convergence for energies as low as 0.52. However, for energies close
to Eg there is definitely no absolute convergence of the semiclassical sum
(24). Also for most other chaotic scattering systems we expect energy in-
tervals to exist, in which the semiclassical sum is not absolutely convergent.
In these cases an appropriate resummation has to be applied which might
be constructed along the pattern of rearrangement of semiclassical series
mentioned in [21].

In case of absolute convergence we can set a limit of accuracy and take
only a finite number of branches of £ into account which are needed in order
to stay within the given limit of accuracy. In the following we are mainly
interested in qualitative results and for this purpose it is sufficient to take
the following branches of £, which give the most important contributions
for angle values around 8 = 5x /3. From each of the intervals R, LR, LL,
RLL we take the nine most important branches respectively. In addition we
take the isolated branch from trajectories not entering the potential interior.
This branch gives the strongest contribution of all. In the following we call
the contribution from this outer branch the background.
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6. The semiclassical cross section

The most prominent structure in the classical cross section caused by
the existence of chaos is the fractal pattern of rainbow singularities. There-
fore, we now look which part of this structure survive in the semiclassical
cross section depending on the value of A.

Fig. 13 gives the semiclassical cross section in the angle interval 8 €
[4.7,5.8] for k = 0.005. The arrows in this Fig. indicate the angular positions
of the most important rainbows coming from contributions of interval R
and their labels match the ones of Figs 7 and 10. An interesting property of
do/df is the destructive interference between several caustic contributions
near § = 4.9. For h = 0.005 the various caustics are not well separated
along the 0 axis and we have many overlapping rainbows. This causes an
effect which reminds of the anticaustic effect (decreased amplitude of the
wave function at the position of clusters of caustics) mentioned in [22].
Comparison between Fig. 10 and Fig. 13 makes evident that at A = 0.005
the rainbows are not well resolved in the semiclassical cross section. So let
us decrease the value of k.
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Fig. 13.  Semiclassical cross section in the angular interval 8 € [4.7,5.8] for
h=0.005,F = 0.6 and o = .

Fig. 14 gives the semiclassical cross section in the angular interval 6 €
[4.86,4.91] for & = 0.0001. Now the rainbow j from interval R is clearly
resolved. The other arrow without label gives the position of that rainbow
coming from interval RL, which corresponds to rainbow j from interval
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Fig. 14. Semiclassical cross section in the angular interval 6 € [4.86,4.91] for
h=0.0001,E=06and a=m.

R. These two rainbows are now clearly separated. Also the shape of the
cross section in the angular region containing the double singularity h and
i changes drastically for smaller values of k. Fig. 15 shows the semiclassical
cross section in the angular interval § € [5.07,5.12] for A = 0.0001. Now
the two rainbows h and i are clearly separated. In Fig. 16 we give the
semiclassical cross section in the angular interval 6 € [4.8925,4.894] for
h = 1076, In this Fig. the fast interference oscillations with the background
are not resolved. However, they are of the same qualitative structure as
before, only compressed proportionally to the vale of . The envelope curve
of the rainbow structure clearly reminds us of a classical rainbow at § = 6
with a shape like (§ — 8g)~1/2 on the illuminated side.

In the limit of small i the semiclassical cross section reproduces the
classical cross section in the following way: the semiclassical cross section
contains fast interference oscillations between the contributions from the
various branches of £. The wavelength of these oscillations along the 6 axis
scales like A. In addition, close to caustics there exist oscillations coming
from the Airy function contributions. The width of the main peak of the
Airy function is proportional to h%/3 and its height grows like R~1/3 in the
limit of small h. In this way sharp peaks of the cross section emerge in
the limit of small & at the positions of the classical rainbows, which are
located in a fractal arrangement. If we continue to decrease %, then more
and more smaller rainbows emerge and become well separated from neigh-
bouring rainbows. To reproduce the classical cross section, let us average
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Fig. 15. Semiclassical cross section in the angular interval 8 € [5.07,5.12] for
h =0.0001, F =0.6 and a = .
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Fig. 16. Semiclassical cross section in the angular interval 6 € [4.8925,4.894] for
h=10"%E=10.6 and a = 7.



A Simple Model System for Irregular Scattering 207

the semiclassical cross section for a particular value of h according to

8+c

<‘;_‘;(g)> = % / Z—Z(é)dé. (31)

0—c

We choose 2¢, the length of the averaging interval, proportional to rl/?
such that in the limit A — 0 the number of interference oscillations in the
integration interval grows without limit. Also the width of the Airy peaks
becomes small compared to the averaging length. When we let £ tend to
0 in do/df and in ¢ simultaneously, then (do/df) approaches the classical
cross section.

Because we have seen that it is not so easy to extract the rainbow
pattern from the semiclassical cross section, we now try out another idea
to extract information on the classical chaos and the fractal structure from
the semiclassical cross section. The most spectacular difference between the
classical and the semiclassical cross section are the interference oscillations
in the semiclassical cross section. Therefore, let us now try to evaluate the
pattern of oscillation frequencies in the semiclassical cross section.

We pick out a @ interval I = [, 8 + Af] away from all classical rainbow
singularities. Then d0/db(b;) # 0 for all j and all § € I, the number of
solutions of b(f) does not change inside I and c; varies only slowly inside I
along any branch of £ and we approximate

-1

(0= | Z6:@)| =@, (32)
5(8) is expanded up to first order around 4 as
5(6) = 5;(0) + 0 - )24 (9) (33)

where d§ ;/d6(8) = L;(0) is the outgoing angular momentum of trajectory j.
Using the notation oL
_ [5i(8) - 0L;] _ pjx

(PJ h 2’

(34)

we obtain

f(8) = Z V; exp(ip;) exp(i0L;/h), (35)

j
f is the Fourier transform of

F(L) = Y /G explip)8(L - L;). (36)
7
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The support of F is the classical fractal set D(f). For the cross section we
obtain

O =T es+ Y yerereos (v — o + ST an)

Jj k<j

The frequencies occuring in the interference terms are given by (L —L;)/h;
they also form a fractal distribution.

_ Let us illustrate this behaviour by an example for system (1) and
0 =54,FE = 0.6,a = x; Fig. 17 shows the position of the most important
values of L — L; (in linear scale on the horizontal axis) and the corre-
sponding values of the logarithms of the weights ,/cic;. Parts (b) and (c)
are magnifications which illustrate the fractal character of the set of angular
momentum differences.

-1.0

LR

0.0 3.0

(a)

-1.0

il i

0.7

(b}
1
-1.0

B

Bt b1

0.8 ANGULAR MOMENTUM 0.93

Fig. 17. Plot of In ,/cx¢; (vertical axis) as a function of Ly — L; (horizontal axis).
The 9,17 and 32 most important branches of £ have been taken into account in
parts (a),(b) and (c) respectively. E = 0.6,a = .

{e)

Fig. 18 shows the semiclassical cross section for a small interval of scat-
tering angles. In part (a) A = 10~° and in part (b) & = 107 In the
semiclassical sum the 32 most important contributions have been taken
into account. In part (b) the fast fluctuations are not resolved, they are of
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Fig. 18. Semiclassical cross section as a function of the scattering angle for

E=06,0==. h=10"% in part (a) and A = 10~° in part (b).

the same qualitative structure as in part (a) only compressed by a factor
of 10.

Fig. 19 shows the Fourier transform of the cross section from Fig. 18 (a).
Comparison with Fig. 17 shows in which way the interference frequencies
give the pattern of angular momentum differences and therefore also the
classical fractal structure.

Next let us estimate the error we make, when we reconstruct the fractal
set D(0) from the data of do/df(6). By taking a Fourier transform of
do/df(6) over 8 in the interval I of length Af, we do not get sharp values of
L. Instead, for each contributing L value we obtain a broadened peak. The
width of these peaks comes from two sources. First, the finite length A6 of
the interval I causes a width A; = 2rxh/Af. Second, the nonlinear terms
omitted in expansion (33) create a further broadening. Expansion (33) only
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Fig. 19. Logarithm of the Fourier transform of the semiclassical cross section
shown in Fig. 18 (b).

makes sense if L; is sufficiently constant inside the interval I along each
branch of £. Choose § such that

<é§ (38)

do?

d*5;(8)
| =

_ ldLj

for all j and all § € I. Then |L;(6) — L;j(8)] < §A6 = A;. And the
broadening of the L values due to the nonlinearity of §;(6) is at most A;.
For given values of & and Af we can expect to resolve D(8) to an accuracy
of A = A; + A;. When we make £ smaller and smaller we let Af decrease
like A1/2. Then A; and A, both decrease like /2, By repeating the
procedure for various values of  we can reconstruct the classical Lagrangian
submanifold £(F;,) with an accuracy A A'/2. In total, we have pulled
a classical fractal set out of a quantum mechanical observable quantity, at
least approximately in the limit of small k.

So far we have investigated the cross section as a function of the scat-
tering angle for fixed energy. We can also obtain useful information, when
we look at the cross section as a function of the energy for fixed scattering
angle. Next we give a few remarks on these possibilities. In analogy to what
we have done before, we start by expanding the reduced action as function
of the energy around some reference value Ej of the energy:

5(E) = 53(Eo) + (E - Eo) 32

(Eo), (39)
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where T; = as ;/OF is the time delay of trajectory j in the potential inte-
rior. The derivative in (39) is done for fixed incoming direction a and fixed
scattering angle §. Compared to S(E)/A the quantities c; and T are slowly
varying as function of E in the limit of small % and they will be replaced
by their value at Ey. With the abbreviation

_ _EdTi(Bo) _ Si(Bo) _ 7k

the amplitude in (24) becomes
HE) = 3 verempling) ex (%) (41)

and the cross section is

(E) = E ¢j+ Y eerzeosln; — me + E(T; — Tw)/R.  (42)

i<k

The first sum in (42) is the classical cross section. The second double sum
represents the quantum mechanical interference terms. Their oscillation
frequencies are given by

e = (T; — Tp) /5. (43)

The set of accumulation points of the set of {2 values forms a fractal pattern.

To visualize this, we choose § = 5.4 and E = 0.6 and pick out from each
interval the two trajectories corresponding to the points B and C in Fig. 7 for
interval R. In Fig. 20 we show a plot of the time delay differences obtained in
this way. The horizontal axis gives the time delay differences. The vertical
axis gives the generation number. Some contributions are labelled with
the signature of their interval. This plot has exactly the same structure as
the fractal arrangement of rainbows shown in Fig. 12 (a). This structure
reflects the arrangement of the unstable manifolds of the chaotic saddle in
the classical phase space.

In the cross section in Eq. (42) there are not only interference terms
between the contributions B and C within each interval. In addition, there
are interferences between any two terms in the semiclassical sum (42). The
set of all occuring differences of time delays is a very complicated fractal
structure containing an infinite number of shifted copies of the structure
shown in Fig. 20.

Fig. 21 gives an example of do/df(E) for our model system (1). A =
10~% in part (a) and & = 10~ in part (b). The energy interval displayed is
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Fig. 20. Difference of the time delays Ts and T¢ for the intervals of generations
1-10. In the upper frame the contributions are sorted according to the generation
number of the intervals. In the lower frame all contributions are accumulated.

E € [0.6,0.6005] and @ = 5.4 which is far away from all classical rainbows.
We have taken into account the 32 most important branches of £. In part (b)
the fast oscillations are not well resolved. They are of the same qualitative
structure as in part (a), only compressed by a factor 10. From part (b) we
get an impression of the fluctuations on all scales which do/d6(E) shows in
the limit of small f. If the function do/d6(F) is given inside an appropriate
interval of E values , then we can apply a local Fourier transformation to
this function in order to recover an approximate picture of the distribution
of time delays. For the resolution of this procedure we find estimates in
complete analogy to the ones given above for the case of do/df as function
of 6.

Fig. 22 shows the Fourier transform of the cross section shown in Fig. 21
(a). Each peak of this plot corresponds to one particular combination of
two trajectories which contribute to the semiclassical sum (24). For large
values of T the slope of the envelope of the curve is approximately -0.4,
giving the value of the escape rate x =~ 0.4 of the chaotic saddle. In the
limit of trajectories spending a long time inside the potential interior the
relative probability P(T') to find a trajectory with time delay T is given by

P(T) = xexp(—«T). (44)

For more information on this see the lecture by T. Tel and [14].

Let us close with a remark on the relation of this result to the ones
presented in {7,23,24]. There the energy correlation function of the quan-
tum mechanical scattering amplitude has been evaluated. Its computation
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Fig. 21. Semiclassical cross section as a function of the energy for 6 = 5.4,a = .
h =105 in part (a) and A = 10~% in part (b).
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Fig. 22. Logarithm of the Fourier transform of the semiciassical cross section
shown in Fig. 20 (b).
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contains an averaging process over small energy intervals. Thereby, the
knowledge about the fine detailed structure of the chaos is lost. Conse-
quently, as an essential measure of the classical chaotic saddle the escape
rate K can be extracted out of the quantum mechanical scattering ampli-
tude. On the other hand, the procedure of [7,23,24] gives useful results also
in those cases in which % (the variable value of % in model computations
corresponds to the ratio between the wavelength of the incoming projectile
and the effective diameter of the target in real systems) is not as extremely
small as the value which we have used in our numerical examples.

7. Final remarks

In this lecture we have learned some properties of the model system (1)
for chaotic scattering. Of course, in the end we are interested to know what
in system (1) is typical and what is not typical for the general situation in
scattering chaos. In any system showing classiacal scattering chaos there is a
localised chaotic invariant set in phase space, a so called chaotic saddle. The
genuine scattering trajectories are not chaotic themselves, but they come
close to the chaotic saddle, move alongside the chaotic localised orbits for
a while and transport the information about the chaotic saddle with them
into the outgoing asymptotic region. This is a typical example for transient
chaos. From the behaviour of the scattering trajectories we can reconstruct
all important quantitative measures of the chaotic saddle (see [16]). One
property of system (1) which is not typical for all chaotic scattering systems
is the global exact and complete binary signature. In general there may be
elliptic orbits and surrounding KAM tori in phase space and this prevents
the construction of an globally exact symbolic dynamics. Otherwise, our
model system (1) provides a typical example for the properties of scattering
chaos and for the methods which can be used in order to investigate it.
The most important intention of section 6 was to find some fingerprints of
classical chaos in the semiclassical scattering cross section. The main result
in this respect is the following: the scattering cross section has a fractal
cluster of rainbows and shows oscillations on all scales in the limit of small
K. This is consistent with the predictions of the same properties for semi-
classical chaotic wave functions given in [25]. We look at a system in the
asymptotic range, where the radial degree of freedom is uninteresting and
has been separated off. Therefore only one essential degree of freedom, the
angle, remains. If we look at our construction from a more abstract point of
view, we can characterise it like this: given is a two-dimensional phase space
with canonical coordinates § and L and in it the Lagrangian submanifold
L, given by the spirals shown in Fig. 9. Along £ the action function S and
the Maslov index p are given. We construct the semiclassical wave function
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f(8) for this Lagrangian submanifold according to the rules of Maslov. Of
course, a structure like £ shown in Fig. 9 could never be the Lagrangian
submanifold for an autonomous system with one degree of freedom and a
smooth Hamiltonian function. In those systems the invariant Lagrangian
submanifolds — which are the curves H = constant — are homeomorphic
to lines and/or circles but never to a fractal arrangement of spirals. How-
ever, in non-autonomous systems the Lagrangian submanifolds can grow
infinite whirls and clusters of caustics, which come close to our spirals (see
the figures in [25]). Accordingly, in our scattering amplitude, which is con-
structed like a one-dimensional wave function to a non-autonomous system,
we see phenomena of the type which have been observed in wave functions
of one-dimensional non-autonomous chaotic systems.

By a careful study of the caustic positions and of the frequency spectra
of the interference oscillations we can recover classical fractal sets out of the
quantum cross section in the limit of small i. Because k = 0 is an essential
singularity of quantum mechanics, we can not take the value h = 0 itself in
an investigation of semiclassical quantities. We can only go to smaller and
smaller values of i and see the images of classical fractal structures being
resolved better and better on more and more levels of the infinite hierarchy
of levels. But, it is not possible to have the classical fractals resolved on all
infinite levels simultaneously.

In our considerations of the semiclassics we have only followed one very
direct way of investigation starting from the amplitude (24) and concentrat-
ing on fractal structures. There is another promising way: the trace of the
Green’s function for the Schrédinger equation can be expressed semiclassi-
cally in terms of the periodic orbits of the corresponding classical system
[26]. The quantum S-matrix is essentially determined by its poles in the
complex energy plane and they coincide with the poles of the Green’s func-
tion. Thereby the structure of the set of classical periodic orbits determines
the semiclassical S-matrix and also the semiclassical scattering amplitude
and cross section. For some steps in this direction see [21] and {27].

In all our considerations we have assumed, that the incoming direction
of the projectile relative to the target is kept fixed. For real scattering ex-
periments this usually requires that the orientation of the target is fixed
in space. Otherwise all interference oscillations are averaged out. Usually
this condition is not fulfilled in the scattering of two microscopic particles
off each othet. However, it is fulfilled in the scattering of a particle off a
macroscopic target, e.g. the scattering of an electron off electrically charged
objects. It is also fulfilled for the motion of ballistic electrons in mesoscopic
semiconductors. In this case the motion is essentially two-dimensional and,
therefore, it comes even closer to the case considered in this lecture. Inter-
estingly, the chaotic fluctuation of the conductivity of small semiconductors
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has recently been interpreted in terms of chaotic scattering [28,29].

The problem of the orientation of the target can also be avoided, if
we use a system which is essentially 1-dimensional and make it explicitely
time dependent, e.g. if we place it into an external oscillating field. As
an example for such a situation, the field modified scattering of a particle
in the 1-dimensional Morse potential has been analysed in [30]. Because of
the analogy between time dependent systems with n degrees of freedom and
time independent systems with n+ 1 degrees of freedom, all the methods ex-
plained in this'lecture can also be applied with only very small modifications
to time dependent scattering systems.

Finally, let us make a few remarks on irregular wave scattering; In quan-
tum mechanics the central object of scattering theory is the § matrix. In
analogy to the quantisation of bound systems, where classical chaos is cor-
related with random matrix properties of the wave dynamics, the followin
hypothesis has been formulated for quantum scattering {7,23,24}; The sta-
tistical properties of the S matrix (for & — 0) are determined by Dyson’s
theory for the orthogonal ensemble of random unitary matrices. As an ex-
ample for this statement in [31] the scattering of an incoming wave off an
infinite array of scattering centers placed along a line has been investigated
in detail and compared to the classical properties of the same system, which
have been worked out in [32]. These statements have also been checked by
microwave reflection from a cavity [33] and by transmission of microwaves
through junctions [34]. Because of the macroscopic nature of microwaves,
the measurement of phases and not only of intensities of the wave is possible
in contrast to quantum mechanics.

For the scattering off three hard discs the wave dynamics has been pre-
sented in [35] and compared to the corresponding semiclassical computations
presented in [27].

In [36] the statistical distribution of the location of the poles (reso-
nances) of the S matrix in the complexe energy plane has been described
for irregular wave scattering by the Ginibre ensemble.

In [37] the wave scattering on a surface of negative curvature has been
investigated by analytical methods. The phase shift could be expressed by
a Riemann { function, which represents a chaotic function.

In total, the connection between random matrix behaviour in quantum
scattering and classical scattering chaos (= Cantor set of singularities in
the deflection function, chaotic saddle in the phase space) is not yet com-
pletely clear. As has been pointed out in [38], the quantum § matrix is
also expected to have eigenvalues (eigenphases) according to the Circular
Orthogonal Ensemble and probably also some further random matrix prop-
erties, whenever there is no real classical scattering chaos but only chaos in
the classical iterated scattering map, whose construction has been worked
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out in [39-41]. Unfortunately, the meaning of this result is unclear at the
moment.
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