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A review of theoretical, experimental and computational work on Ran-
dom Anisotropy Magnetic systems is given. Monte Carlo simulations of
two dimensional spins on a two dimensional lattice in the presence of ran-
dom anisotropy fields have been carried out. In the absence of randomness
this is the familiar XY model in two dimensions, which has a low tempera-
ture phase with algebraic order; this is the well-known Kosterlitz—Thouless
phase. In the presence of random anisotropy evidence is presented that
there are three phases: a low temperature orientational glass phase, an
intermediate temperature Kosterlits~Thouless phase, and a high temper-
ature disordered paramagnetic phase.

PACS numbers: 05.50.+q, 75.30.Gw

1. Introduction

In these talks I shall be concerned with the magnetic properties of amor-
phous alloys containing rare earth metals. A wide class of such materials
have been observed to have spin glass-like properties at low temperatures,
and it is naturally of interest to understand what general features of these
materials lead to such interesting behaviour. In this symposium much atten-
tion is being given to transitions between integrable and chaotic dynamical
behaviour; a crucial feature of this transition concerns the disappearance

- of predictibility. Glass transitions have some features in common with this.
At high temperatures the statistical mechanics of most materials can be
predicted using classical methods — the Boltzmann statistics, partition
functons and so on. The initial conditions of the system are essentially
uninteresting. Beyond a glass transition, however, the initial conditions be-
come all-important. Insurmountable energy barriers (in the sense that they
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grow with the size of the system) crop up. The behaviour of the system
becomes less predictable, and from a statistical point of view, becomes non-
ergodic; that is, the dynamical path of the system no longer has uniform
probability over the Boltzmann surface in phase space.

I shall organise these talks in the following way. Following this brief
introduction, I shall give a brief experimental overview in §2. Then, in §3,
I shall discuss in greater detail the theoretical framework which is in wide
use in order to understand the experiments, and also discuss the theoretical
progress which has been made over the last fifteen years or so. In §4 I shall
discuss computational results on model systems obtained by other workers.
In §5 I shall present the main features of our own computational results on
model of two dimensional random anisotropy magnets. Finally in §6 I shall
make some concluding remarks.

2. Experimental systems

The subject of interest of this paper is the magnetic behaviour of

amorphous alloys of rare earth metals [1]. Among systems which have
been studied are the alloys Dy—Cu, Dy-Al, Tb-Fe;, Ho-Fe, Er—Co, Dy-Ni,
Gd-Co-R, Tb-Co, Dy-Fe-B, ThyFe; _.Ni, (where R is a rare earth metal).
These systems have magnetic properties with a number of common features.
Among these are:
a) A history dependent magnetisation. More specifically the magnetisa-
tion in a magnetic field H at low temperatures depends on whether the
system has been cooled in that field (field cooled), or in its absence (zero-
field cooled). Typically the field cooled samples show a large magnetisation,
whereas a zero-field cooled samples show only a relatively small magnetisa-
tion. The two curves diverge at a temperature Ty(H) which one can identify
with the onset of a glassy phase. We show in Fig. 1 a typical curve [2] of
the magnetisation M as a function of temperature in the two cases. This
result encourages one to believe that the low temperature phase of these
materials is a spin glass phase, of the type much discussed in the literature
in the case of dilute magnetic alloys such as Gd-Al or Cu-Mn [3].

b) The glass temperature T,(H) is field dependent; the higher the field, the
lower the temperature has to be before the magnetic behaviour becomes
history-dependent {4]. This behaviour is shown schematically in Fig. 2.
This result is reminiscent of the De Almeida—Thouless line [5] predicted to
exist in classical spin glasses, which separates regions in the phase diagram
where the Boltzmann statistics describe the Statistical Mechanics from non-
ergodic regions.
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T

Fig. 1. Random Magnetic Anisotropy magnetisation (a) — field cooled and (b) —
non-field cooled.

BN

T
Fig. 2. Behaviour of glass transition temperature T,(H) as a function of magnetic
field.

¢) In practice, experiments to determine this dependence are carried out in
AC fields. Classical spin glass phenomena appear to be time dependent,
dynamic phenomena [6], in which the onset of glassy behaviour depends on
the experimental time scale. One might expect these spin glasses to behave
analogously, in which case the glass transition temperature would depend
on the frequency of the AC magnetic field. Such frequency dependence is
not, however, observed [4].

d) From Fig. 1 it can be seen that there is a magnetic susceptibility maxi-
mum at T¢(0). There are hints that this may even be a cusp, but there is
no divergence of the type usually associated with a thermodynamic phase
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transition. Occasionally there are even two peaks in the susceptibility x [7].
However, there do not seem to be the usual thermodynamic singularities in
quantities such as the specific heat.

e) The existence of a non-zero magnetisation in field-cooled samples (even
when the field is removed) is consistent with the experimental observation
of hysteresis curves, which are usually associated with the existence of bona
fide magnetism. These systems exibit remanent magnetisation and coercive
field, as do other more ortodox magnets, However, the hysteresis curves are
bumpy, poorly reproducible, and dependent on the time-scale of the exper-
iment.

f) There is less consistency about the form of the low temperature corre-
lations, which are usually measured in scattering experiments. Different
authors have fitted their results for the magnetic component of the struc-
ture factor S(k) to a power law form [8): S(k) ~ k~24, giving rise to (in
three dimensions) an expected form for the magnetic correlations:

(m(r)m(0)) ~ r~%°. (1)

Boucher et al. [9], on the other hand observe that their measurements
of S(k) in RFe; compounds may be fitted to a k=7 form at low k, and for
higher k it can be fitted to a k3 form. Other workers [10] find that S(k)

can be fitted to a “Lorentzian plus a Lorentzian squared” form:

A B
k2 + k2 + (k2 + K.2)2 ’ (2)

S(k) =

where the Lorentzian squared term becomes preponderant at low tempera-
tures.

3. Theoretical models
3.1. The HPZ model

The clue to a theoretical understanding of these materials seems to lie
in the orbital angular momentum due to the electrons in the partly filled 4 f
shell; this feature is common to all the rare earth metals. In crystalline rare
earth metals, this angular momentum couples with the crystal field due
to the nearest neighbour atoms, causing a magnetocrystalline anisotropy
with the symmetry of the underlying crystal lattice. Once the lattice is
amorphous, however, and this may be true in pure materials, although it
is much more common in alloys, the leading order effect of the anisotropy
at each site is to create a term in the Hamiltonian which couples with J?2
(with J the angular momentum operator), but with a special direction z
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which now changes, randomly, from lattice site to lattice site. Thus the idea
of a Random Anisotropy Magnet (RAM) came into being.

The insight of Harris, Plischke and Zuckermann [11], was that the mag-
netic properties of these systems depend crucially on the random magnetic
anisotropy at each site, but that the precise topology of the lattice is unim-
portant. This strategy for dealing with the effects of disorder seems to have
been successful in the past; Anderson, for instance, used it in order to suc-
cessfully model the localisation of electrons in a desordered metal [12], and
later in the classic Edwards—Anderson [13] spin glass model.

The HPZ model for RAMs is a lattice model with classical (i.e. not
quantum) spins on each lattice site, and with energies dictated by local
coupling between neighbouring spins and by coupling between spins and a
magnetic field. The Hamiltonian is:

H=-J ) S;-S; —DZ(S -n;)? —DuZ(S, ‘ng)’-H. Zs,, (3)
{,7}

where the sums over pairs {i,j} are taken over nearest neighbours on a
regular (usually cubic) lattice and all sums over sites i are taken over all
sites of the lattice. The vector spins S; are characterised by m components;
normally we would expect m = 3 (the so-called Heisenberg model), but
the analysis of the model is sometimes simpler for m = 2 (the XY model),
without, one hopes, changing the physics dramatically.

There are four terms in the Hamiltonian (3). The first term is the mag-
netic exchange term, and is present in all magnetic models. The quantity J
sets the energy and temperature scale for all magnetic processes in the ma-
terial. The second term is the random anisotropy term. A crucial quantity
in understanding the phase behaviour will be the quantity A = D/J. The
third term is due to coherent anisotropy (CA). This will occur, for instance,
as a result of magnetoelastic interaction between a uniaxial stress field and
the local magnetic moments. The final term is the interaction between an
external magnetic field and the local spins. We shall be interested, first of
all, in the phase diagrams in the parameter space of T = T/Jand A= D/J.
We shall then discuss the effect of an external magnetic field, and finally
possible complications due to the coherent anisotropy. We note also that
this Hamiltonian does not take account of the long-range magnetic dipolar
forces responsible for magnetic domain structure in permanent magnets.

At this stage we observe that although we have a well-posed mathe-
matical problem, we are far from having solved it. As with many such
problems in Statistical Mechanics, the regimes in which the problem can
be solved exactly lie far from physical reality. We note three parameters
which can be changed in this problem, and which will change the nature
of the phase diagram (or at least the critical behaviour) as a function of T
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and A. These are the dimension d, the number of spin components m and
the number of equivalent easy directions p. The classical RAM model has
p = 2; the random field problem [14] has p = 1. We shall now explore some
solutions of the HPZ model in some easy limits. Except where we indicate
it explicitly, we shall consider the H = 0, Dy = 0 limits.

3.2. The Ising limit

A particular simple limit of the HPZ model occurs when D — oo. The
spins on each site are then constrained to lie in one of two directions, parallel
or antiparallel to the local easy axis. At each site we may arbitrarily assign a
+ direction; the value of each spin is then +1, and the Hamiltonian reduces

to:
H= —Z]ijS;Sj, (4)

where J;; = J(n; - n;j). This Hamiltohian is reminiscent of the Ising
spin glass Hamiltonian [13]; formally, indeed, it has the same form. The
difference lies in the method of generating the J;; from -an underlying
distribution. In the Edwards—Anderson (EA) spin glass the interactions
are thought of as being generated by the oscillating RKKY interaction,
the spins representing dilute magnetic impurities. Thus the probabilities
p(Ji; = 1) = p(J;; = —1) = 1/2. By contrast in the D — oo limit of the
HPZ model, presumably n; - n; is a random quantity. However, one would
not really expect this to have a dramatic effect on the phase behaviour.
Both Hamiltonians incorporate the crucial element of frustration; it is im-
possible to arrange the spins in such a way as to minimize all the interaction
energies at the same time. Another element in common is the existence of
a gauge invariance; one can redefine the spins and interactions consistently
in such a way as to leave the Hamiltonian invariant.

3.3. Spin glasses

At this stage it is worth giving a (very!) brief review of what is meant
in the literature by a spin glass. For a much more comprehensive review
we refer the reader to Ref. [3]. The dilute magnetic alloys now known as
spin glasses were observed to have a cusp in the magnetic susceptibility at
a temperature Ty at which it was hypothesised that local magnetic order
became frozen in, although there is no global magnetic order. Edwards
and Anderson [13] hypothesised Eq. (4) as a suitable Hamiltonian for such
systems. An order parameter which describes such frozen-in magnetic order

is: 1
=y Dl (%)
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Careful computational and analytical studies [6, 15] of the Statistical
Mechanics of the Hamiltonian (4) in two and three dimensions show that
the low temperature phase does not have a strictly non-zero value, but
the relaxation times become increasingly large; the glassiness is a dynamic
phenomenon. The progress toward magnetic relaxation can be measured
using a dynamic spin glass order parameter:

aft) = 3 Y(S:(r) - Silt + 7)) (6)

the initial time 7 is taken in such a way that the system has already equili-
brated. It is evident that ¢ = ¢g(t — o0).

Only in four dimensions does it seem that there is a true spin glass
phase. For two and three dimensions the crucial features of the low tem-
perature spin glass phase seem to be:

a) many inequivalent ground states, whose number goes up with system
size;

b) energy barriers between these states whose height goes up with system
size;

c) non-ergodic behaviour;

d) an effective glass temperature whose exact value depends on the time
scale of the experiment, the size of the system and the imposed magnetic
field.

The question that evidently poses itself is: to what extent are any spin
glass phases in RAMs analogous to these “classical” spin glass phases?

3.4. Basic theory

Over the last fifteen years a variety of methods have been used in order
to study the HPZ Hamiltonian. These methods include mean field theory
[16-18], the replica trick [19, 20], the Migdal-Kadanoff (M-K) bond-moving
procedure [21] and the renormalisation group in 4-¢ dimensions [22-24] and
two dimensions [25]. There have also been a number of exact calculations
in particular limits [26—28], and a large number of calculations based on
implementations of the Imry—Ma [14] procedure by Chudnovsky and col-
leagues [29-33]. We defer till the next section a discussion of the Monte
Carlo simulations of the HPZ model.

Exact calculations on the HPZ model in the Ising limit are particularly
instructive. The calculation of Derrida and Vannimenus [25] of a similar
problem in the limit of infinite range interactions (or, equivalently, infinite
dimension) shows that in this limit, at least, the low temperature ferromag-
netic phase is preserved. On the other hand, the calculation of Thomas [26]
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shows that in one dimension the ground state is strictly non-magnetic. Intu-
itively this can be seen as being caused by a drift of the preferred direction
through phase space as one goes along a chain. One can conclude that there
is a lower critical dimension for the retention of the ferromagnetic phase.
Indeed, an M-K calculation by Jayaprakash and Kirkpatrick [34] indicates a
critical dimension of between 2 and 3. Presumably in this regime one should
expect a spin glass low temperature phase, but the M—K method is unclear
on this feature because there is no spin glass phase explicitly described by
the model.

One can make estimates of critical temperatures using conventional
Curie—Weiss mean field theory. This give rise to a critical temperature for
the onset of ferromagnetism of T, = zJ/2 (in three dimensions) or T, =
2zJ /= (in two dimensions), where z is the number of nearest neighbours on
the lattice. By contrast, the same procedure predicts a spin glass transition
temperature of J/z/d. By this criterion ferromagnetism should always win,
because the transition to the spin glass phase occurs at a lower temperature.
However, one can use methods first introduced by Imry and Ma [14] to
check on the stability of such a ferromagnetic phase. We shall find that the
ferromagnetic phase is unstable with respect to break up into domains of
dimension £, where, for dimension d < 4, £ only diverges in the strictly non-
random, D — 0, limit. These ideas have been more extensively developed
by Chudnovsky and collaborators [29-33), although in what follows we shall
merely follow the spirit of these ideas.

3.5. Domain structure

3.5,1. The Imry—Ma—-Chudnovsky argument

The crucial idea which we emphasize in this section is that the low
temperature phase of the HPZ model involves a balance between the mag-
net trying to align with its neighbours, and trying to align along a local
favourable direction. If the neighbours win, presumably the system will be
ferromagnetic, but it will have to pay a price for not aligning along the
easy axis. Conversely if the local axis wins, there is an energy price to pay
for lack of local alignment. In practice, we shall find that there is (as so
often in such problems) a compromise, in which there is ferromagnetic-like
alignment over a coherent length scale §,,.

Let us calculate the order of magnitude of §,,. We suppose that the
whole sample is broken up inte domains of dimension {,,, as shown in
Fig. 3. Within each domain the spins are (more or less) aligned along
the average easy axis. The energy E,n;s associated with rotating the spins

from a favourable to an unfavourable configuration is approximately DN ; /2 ,
where Ny is the number of spins in the cluster. This follows from the central
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Fig. 3. Schematic break-up of a sample into magnetic domains of size {ar.
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limit theorem; one is adding Ny random anisotropies. Now, N; is related
to £,n by the relation:
Ny~ (€m/a)?, (7

where a is a microscopic length scale of the material.

This energy must be balanced against the exchange energy E.xcn. This
energy can be calculated by multiplying the energy of a surface between two
domains by the total surface area caused by the existence of the domains.
The surface area S of each domain is (to within numerical factors which are
not important in this essentially dimensional argument):

S~ g1, (8)

The surface free energy (per site) v is governed by the fact that continuous
spins can shift direction slowly, rather than abruptly. To shift direction
by an angle 48 ~ o(1) over the distance {,, (which is all that is available
between domains) involves a shift of angle §6 ~ a/{.n, between neighbouring
spins. The energy price (relative to a purely ferromagnetic state), for each
set of neighbours whose orientations are separated by §0, is given by:

€= J(1 - cos 86) ~ 3J(86)* ~ J(a/tm)?. (9)

Hence the surface energy per site is given by multiplying € by the number
of sites contributing to the directional shift, which is approximately (£/a),

and hence:
v~ €(ém/a) ~ J(a/lm)- (10)



228 T.J. SLUckiIN, D.R. DENHOLM, B.D. RAINFORD

Finally the surface energy of each domain is given by:

Egom ~ (1/a471)$ ~ J(km/a)* 7. (11)
We can now calculate the total energy of the sample:
Agor ~ Nce].l(Eeach + Eanis) ) (12)

where N.y ~ (L/ém)? is the total number of domains in a sample of
dimension L. Substituting from Eqs (7)—(12), we obtain:

Aot ~ (L/Em)d{ - D(Em/a)d/2 + J(fm/a)d»_z}; (13)
yielding:
Aot ~ (L/a)d{ - D(fm/“)md/2 + J(Em/a)~2} . (14)

< \/”

g

Fig. 4. Domain structure energy per site vs £5r, showing competition between
exchange and random anisotropy terms.

Eq. (14) is the final result. The functional form of A¢ot(£) is plotted
in Fig. 4. For dimension d > 4 this is minimised at £,, = 0co; domain size
diverges and the system is ferromagnetic. For d = 4, this approach suggests
two alternatives; either D < J (weak randomness), in which case {,, — o0,
and ferromagnetism wins, or D > J (strong randomness), in which case
§m — a (its minimum possible value), which corresponds to a spin glass
phase. Finally for d < 4, the anisotropy term dominates at high &, the
exchange term dominates at low {,,, and in between there is a minimum,
with the magnetic coherence length given by:

m ~ a(D[J)"2/4=) L g2—2/(4-d) (15)
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Thus £,, diverges in the limits of
a) randomness disappearing (as is expected), and
b) system dimension approaching four.
The lower critical dimension is four; we should not really expect our quali-
tative considerations to be too helpful in that régime.

It is of some interest to consider the physical specific cases of d = 2 and
d = 3. For d = 3, Eq. (15) yields £y, ~ A~2, whereas for d = 2 one obtains
€m ~ A~1. In practice, of course, there are further complications for d = 2
because even in the non-random case the low temperature phases are not
ferromagnetic.

P

\/
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0 ) _ 2 1

1+A

Fig. 5. Schematic phase diagram showing cluster spin glass spectromagnet and
paramagnetic phases.

Qualitatively speaking, for the three dimensional case, we can identify
two distinct régimes. For A S 1, the domain dimension £, will be larger
than the intermolecular dimension, and a domain will consist of more than
one spin. This régime has come to be known as a cluster spin glass (CSG)
[29-33] (or occasionally as an asperomagnet [35]). By contrast, if A > 1, the
domains will only consist of one spin, the spins will essentially be uncorre-
lated with their neighbours, and the only effect of the neighbours will be
to choose between the two local easy directions. This is the speromagnetic
(SM) régime [35]. There is now experimental evidence concerning the ex-
istence of both of these phases [4,7,8,35]. We show in Fig. 5 a schematic
phase diagram.
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3.5.2. Locally correlated anisotropy

The argument of the previous section can be extended to take account
of the related case of a polycrystalline sample. In such a case the anisotropy
directions will be correlated over the dimensions £, of the crystallites. The
free energy per spin can be calculated by analogy with the methods of
Eqs (7)—(14). The contribution from the exchange terms is unchanged. The
direct contribution from the anisotropy to a domain energy is now given by
the number of crystallites per domain; thus

Epnis ~ “‘D]Vcr(]Vd/]v'cr)ll2 ' (16)
where N, is the number of spins per crystallite and Ny is, as before, the

number of spins per domain. Now N, ~ £¢, and combining Eqs (7), (14)
and (16) yields:

Atot ~ (L/a)d{ - -D(Em/fc)‘_d/2 + J(&m/a)-z} . (17)
Minimizing this for d < 4 yields:
Em ~ E{(€c/a)?A} (D (18)

The smallest size of a magnetic domain must now be §; the existence of
CSG (&m > €c)or SM phases is now governed by the parameter 4 =A({./a)?.

3.5.3. Magnetic susceptibility

From here on we return to systems in which the magnetic easy axes are
not correlated from site to site. In order to calculate the magnetic suscepti-
bility xm we need to take account of the energy of interaction between the
spins and an imposed magnetic field H. The total free energy change per
site will be:

Ae = Aegeld + A€attice s (19)

where Ae€j,i¢ice comes from the change in energy of the terms due to ex-
change and anisotropy, and Aeg.q comes from the magnetic field. Now,
suppose that the effect of the magnetic field is to shift the mean direction
at each site ¢ by an angle §4;. The magnetisation in the direction of the
field at site ¢ is m;, and the shift as a response to the field H is §m;. Now
dm; = §(cos 8;) ~ §0;, and hence:

 Aegera = —((mi + 6m;)H) ~ —ém;H ~ —H50; . (20)

On the other hand, the shift in the lattice energy is necessarily positive and
quadratic in §6;, because in the absence of the field the enérgy is minimal.
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Indeed the order of magnitude of the shift will be given by the energy in
the absence of the field, and that has been implicitly calculated in Eqs (14)
and (15). Thus:

Aqattice ~ elattice(sat')z ~ D)‘d/“_d) . (21)

Equilibrium will occur when Aegeyq and Ae€jageice are of the same order of
magnitude; this is equivalent to minimising the expression (19). Comparing
Eqs (20) and (21), we obtain that:

dm; ~ 66; ~ H/H,, (22)

with the characteristic field H. = DA%/(4=9), Thus the magnetic suscepti-
bility is given by:

Xm ~ Hc—-l ~ D—l(J/D)d/(4~d) ~ D—4/(4—d). (23)

This result is particularly interesting as it predicts a finite magnetic sus-
ceptibility in the low temperature phase, in contrast to the prediction of
Aharony and Pytte [22], who predicted an infinite susceptibility phase. The
field H, has the following significance: it is that field at which the approxi-
mation that the angular shift at each site be small breaks down. For H < H,
the original domain structure is maintained, but each spin is somewhat per-
turbed in order to appease the magnetic field. Beyond H. a new situation
obtains, in which the spins are primarily aligned in the field direction, and
one must consider perturbations from that primary direction. We discuss
this situation in the next section.

3.54. Ferromagnet with wandering axes

In the high magnetic field limit the spins primarily align themselves in
the direction of the field. However, there are deviations from this direction
which occur in the attempt to keep the random anisotropy and the exchange
happy. As in the last section we can write the total energy per spin as a
sum of the three contributions:

€ = €exch T €field - (24)

Let us now suppose that a typical deviation of the spin from the field
direction is 0, and that such deviations are typically correlated over distances
£r7. The system is now broken up into clusters of size {7 each pointing more
or less uniformly in a direction departing from the mean direction by angle
of order 8, giving rise to the idea of a ferromagnet with wandering axes. The
separate contributions can now be evaluated. Following the ideas of Eq. (9),
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€exch ~ J(a0/€1)?. The magnetic field contribution, measured from a zero
in which all spins are aligned, is €gejq ~ mH ~ H(1 — cosf) ~ HE>.
The effect of the anisotropy is also measured with respect to a zero in the
fully aligned state. The mean alignment energy available per spin, on the
assumption that each domain were completely aligned with the average local
axis, is now, following the discussion accompanying Eq. (7), —D(a/¢x)?%/2.
However, the mean canting toward the direction (&, say) is only 6, and so
the energy shift is:

€anis ™~ D(a/EH)d/z{ cos?($ — 6) — cos? $} ~ —-D(a/tx)%/?0.  (25)

In equilibrium the three contributions will have equal order of magni-
tude, yielding equations for 6 and {y:

En ~ a(J/H)/?; (26)

and
0 ~ (Ho/H)'/A, (27)
where the characteristic field H. has been defined in Eq. (23) above. The

crucial experimental quantity is now the departure §m of the magnetisation
from the saturated value; this is:

§m~ 0% ~ (H./H)'/2. (28)

This argument will work so long as the cluster dimension size £y can
be regarded as variable. This will not be the case for a SM (in which case
£y ~ a always) or for a CSG in the high field régime, for which {y ~ a,
or equivalently H > H.; ~ J. In either of these situations the exchange
energy can be ignored, and now the condition that eg.1q ~ €anis yields:

Do ~ HO?, (29)
or
¢~D/H, (30)
yielding
ém~ (D/H)™2. (31)

3.5.5. Coherent anisotropy

In the final section of domains we discuss the effect of reintroducing a
non-random anisotropy (CA) to the system. This is the third term in the
Hamiltonian (3). As discussed above this might be caused by externally
imposed stress and a magnetoelastic effect. A non-random anisotropy by



Random Anisoiropy Magneis 233

itself favours the presence of a ferromagnetic ground state. The obvious
question to pose is whether the same effect is induced in the presence of the
RAM. The answer to this question seems likely to be yes, so long as the CA
is large enough. The following Imry-Ma-Chudnovsky argument provides
an order of magnitude estimate.

We first calculate the thickness of the Bloch wall between two domains
of opposite polarity in the presence of CA of magnitude Dgy. The anisotropy
energy associated with a region of thickness §p in which the spins are turn-
ing is approximately Dg(6p/a). The angle between spins in this region is
of order a/ép, and hence the exchange energy price to be paid per spin
is approximately J(a/ép)%. The total exchange energy price comes from
multiplying this by the number of spins, ~ §p/a, participating in the wall
region; this is ~ J(a/§p). The thickness g can be calculated by requiring
that the exchange and anisotropy energies are of the same order of magni-

tude:
J(a/6B) ~ Do(én/a); (32)

> §g ~ a(Do/J)"3/2. (33)

The Bloch wall thickness §p must be compared with the characteristic
domain dimension £, in the presence of the random anisotropy. The length
§p is the minimum length scale over which the system can respond to the
presence of a non-zero Dy. However, due to the random anisotropy term
the system is in any case changing its magnetism on length scales of order
&m. Thus if §p > £, the CA will simply be ignored. However, if the reverse
is the case, the system can respond to the CA, and so magnetism will be
restored. The condition for magnetism can be reexpressed as:

(Do/J) > (D/J)¥/ (=D, (34)

Interesting problems which have not so far been addressed in the liter-
ature, but which can surely be discussed using this approach, include the
behaviour of the critical temperature and the low temperature magnetic
susceptibility in the presence of CA.

3.6. The two dimensional XY model

The system with smallest m and d for which there are non-trivial mag-
netic effects is the two dimensional XY model, for which m = 2 and d = 2.
From a computational point of view is important; one always starts with
the system which will run in the shortest amount of time and use the small-
est amount of memory! Unfortunately, as is by now well-known, the two
dimensional XY model in fact exhibits kighly non trivial behaviour.
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We first recall the salient features of the non-random, D = 0, two dimen-
sional XY model. The high temperature phase is paramagnetic, with only
local magnetic correlations, which decay exponentially, with (m(0)-m(r)) ~
e~7/¢, where the magnetic correlation length increases with decreasing tem-
perature. On the other hand, relatively simple spin wave arguments show
that there is no low temperature ferromagnetic phase. Nevertheless, the
magnetic correlations only die off algebraically, with (m(0) - m(r)) ~ r=7.
The exponent n{T') increases from 0 at T = 0, where the system is perfectly
ordered, to 1/4 at a phase transition temperature Tx T, beyond which the
system is paramagnetic. The first detailed analysis of the low tempera-
ture properties of this somewhat anomalous system was made about twenty
years ago by Kosterlitz and Thouless [36, 37] emphasized the importance
of vortices as important excitations whose interactions must be described
accurately in any theory. Thus for this case the low temperature phase can
truthfully be said to be almost magnetic. The question is to what extent
does any added random anisotropy disrupt this almost magnetism. It is
interesting to note that this model is also applicable to the study of liquid
helium absorbed on rough surfaces.

The problem has been attacked theoretically by Dotsenko and Feigel-
man [38], Houghton, Kenway and Ying [39], and Cardy and Ostlund [25].
These authors use the replica trick and derive renormalisation group equa-
tions which generalise the classic studies of the XY model by Kosterlitz [37]
and Young [40]. The general consensus is that, for a given degree of random-
ness, the Kosterlitz—Thouless algebraically ordered phase does survive, but
that at lower temperatures still, there will be, for sufficiently large number
p of axes of anisotropy, some kind of glassy phase. In the study of Cardy
and Ostlund the critical value of p is 3; our case (p = 2) is really outside
the range of validity of that theory. We shall see below, however, that even
the p = 2 case exhibits this general property.

4. Review of previous computational work

The variety of theoretical predictions for the phase behaviour of the
HPZ model have inspired attempts to determine this behaviour ezperimen-
tally. In this case the experiments are Monte Carlo simulations of the statis-
tical mechanics, using the Metropolis algorithm [41] and variations thereof.
In practice, however, the application of the Metropolis algorithm in ran-
dom systems is beset with difficulties and dangers, some of which we have
encountered ourselves, and shall describe below in greater detail.

Early studies by Chi and Alben [42] working with the HPZ model on
a random lattice, indicated that, even in the presence of randomness, the
ground state of the HPZ model was magnetic. Subsequent work by Chi
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and Egami [43], who used, not a Monte Carlo algorithm, but a molecular
dynamical relaxation algorithm, showed that this was merely a finite size
effect. These studies showed a qualitative resemblence between the finite
field properties and real experimental behaviour in RAMs. However, they
were hampered by simple problems of the computational power available at
that time; both these studies used only 103 sites. Further work was carried
out by Harris and Sung [44,45], who faced similar problems in determining
the nature of the low temperature phase with even fewer lattice sites.

Jayaprakash and Kirkpatrick [34] studied in great detail the Ising limit
discussed in §3.2 above. Their systems were larger; up to 20° sites, and
their simulations ran for up to 4 x 10° Monte Carlo cycles (1 cycle = 1
Monte Carlo move for each particle). Their conclusion was that although
there was evidence for a stable low temperature phase, but there is no long
range ferromagnetic order in this phase, and no obvious critical behaviour
delineating the crossover from the low temperature to the high temperature
régime. Nevertheless there was a relatively narrow peak in the specific
heat Cy which presumably marked the onset of the low temperature phase,
and, more interestingly, measurements of hysteresis curves gave signatures
which might have been thought to be consistent with magnetic phases. In
particular, a remanent magnetisation was observed, and a coercive field
which increases with decreasing temperature.

Chakrabarti [46] took one aspect of this work further and calculated
spin” glass order parameters, concluding that the low temperature phase
was characterised by long-time local spin correlations, as would be expected
in a spin glass. These systems were smaller, however: only 40% in two
dimensions, and 122 in three dimensions. This work has in any case been
criticized by Fisch [47], who pointed out that, for any dynamical studies, the
classical Monte Carlo algorithm (in which each spin is moved independently
of its neighbours) can give rise to extremely long relaxation, thus calling into
question spin glass order parameter data. Fisch’s paper made a very careful
stude of the ground state of a HPZ XY system (in the “Ising” limit in the
sense of §2.2) with 163 sites, using a sophisticated Monte Carlo algorithm
which allowed for small clusters to rotate, as well as single spins. He found a
well-defined ground state, with algebraic correlations. In further work [48],
he has extended this to finite temperatures (and large lattices), showing that
a well-defined “freezing” temperature exists in which there are algebraic spin
correlations which seem to be consistent with some experimental results.

Finally some mention should be made of some work by Serota and Lee
[49] who investigated the ground state of a one dimensional RAM model,
and by Dieny and Barbara [50], who investigated the behaviour of a two
dimensional HPZ XY model in a finite field. This work discovered that the
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magnetic relaxation is heavily affected by vortex dynamics and in particular
by vortex-antivortex annihilation.

5. Monte Carlo study of 2D XY random anisotropy magnet
5.1. Preliminaries and computational details

We have made a detailed study of the properties of the two dimensional
XY HPZ model given by Eq. (3). We have not considered the effect of coher-
ent anisotropy, but we have considered the effect of changing temperature
T, randomness A = D/J and magnetic field H. We have looked at system
sizes between 82 and 1282, using the traditional Monte Carlo algorithm in
which each spin is moved independently of all others, and have examined
results of simulations with variable run times between 500 and 106 cycles.
Among physical variables monitored were hysteresis curves with associated
coercive fields and remanent magnetisations, magnetic susceptibility, spe-
cific heat and spin-spin correlations as a function of both space and Monte
Carlo time. A preliminary report of some of these results has been presented
elsewhere [51], and a more detailed presentation will also be made.

The simulations were run on a Meiko system with a parallel architecture,
with 32 T-800 transputers contributing to the simulation. Each transputer
carries 256 kbytes of memory and contributes roughly 1 Mflop (10° floating
point operations per second). Most of our production runs were made on
systems of 642 lattice sites, though since one of the transputers developed
a hardware fault this has been rediiced to 622. A schematic diagram of the
computational system is shown in Fig. 6.

5.2. Results

A common criterion for the existence of magnetism in a given material
is the presence of hysteresis loops in the M vs H characteristic and wew
have seen that the hysteresis loops of amorphous rare earth alloys show
bumpy and irreproducible features. In Fig. 7, we show a typical hysteresis
loop observed in one of our computer experiments. (Irreproducible) steps in
the M vs H characteristic, which bear considerable resemblance to features
observed experimentally, can be seen. Similar curves were seen by Dieny
and Barbara [51] in their zero temperature simulations of precisely the same
model. We can identify two crucial magnetic fields in this run;

a) the coercive field H.,, required to (just) reverse the magnetisation direc-
tion, and

b) the critical reversible field Hyey, required that the same magnetisation
be no matter what the history of the sample.
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It is helpful to collect together the hysteresis data from many different
simulations. The curve H;.y(T') for a given D may be thought of as analo-
gous to the De Almeida—Thouless line [5] separating ergodic and non-ergodic
regions in the spin-glass phase diagram. We find that it is easier computa-
tionally to plot H¢o(T); the ratio of H., and H,.y is more or less constant in
any given situation. A series of such plots, for various values od D, is shown
in Fig. 8. It will be seen that all hysteresis ceases above T, ~ 1.0, which
we identify with the Kosterlitz—Thouless ordering temperature, but that for
low values of D hysteresis appears to cease at lower temperatures. There is,
however, only very weak dependence of these curves on the magnetic field
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sweep rate dH/dt; these simulations typically involve 5000 cycles per field
point.

We have also studied the behaviour of gquenched systems. In Fig. 9 we
show the behaviour of M(T) at zero magnetic field for a system quenched
from a random configuration to T = 0 and slowly heated up. It will be seen
that the magnetisation reaches a maximum at T =~ 0.4, suggesting a glas-
sification transition at about this temperature. Further studies over very
long relaxation times confirm this point of view. These studies start with
a perfectly aligned state and run for 10% cycles. From these long runs the
following picture emerges. At very low temperatures the system is glassified
and the final (stable) configuration remembers the initial configuration. At
higher temperatures the initial configuration is forgotten and the system
on average lies along the easy anisotropy direction closest to the initial di-
rection. At higher temperatures still, even this memory is forgotten, and
the system is in a Kosterlitz—Thouless state; apparently in this regime the
randomness is irrelevant. Finally above the Kosterlitz—Thouless tempera-
ture the spins are completely disordered. This seems to be more or less
independent of D in the systems we have tested, and finite size scaling
studies identify reasonably unambiguously the crossover between the last
two behaviours.

The intersting régime is the Kosterlitz—Thouless region. Here there is a
characteristic “flip-time” over which the system reverses its direction from
one easy axis to the other. This flip time increases with D and system
size, and decreases as a function of temperature. We have not, however,
yet been able to make a definitive prediction about how it extrapolates to
infinite system size. More detailed studies of this relaxation and of the
relaxation of the spin glass order parameter suggest that a general property
of the Kosterlitz—Thouless phase is that relaxation times increase with a
power law dependence on system size, although we have not been able to
determine that power law. This would be consistent with the idea that
this phase is everywhere critical. Thus the distinction that we draw above
between flips and one which does not seems to depend on the time scale
of the experiment; for sufficiently long times at any given system size the
system will flip. Conversely, for any given time scale, a sufficiently large
system will not flip.

Other measurements reinforce this view of three separate phases, which,
incidentally, is consistent with the theoretical picture which emerged in
Refs [25,38,39). Measurements of |M|? as a function of T, for different val-
ues of D, are shown in Fig. 10. In these studies the systems were cooled
slowly. Whilst this quantity is surely not a thermodynamic quantity (it is
dependent on system size L), the differences between the curves do indi-
cate at what point the randomness causes the system not to be Kosterlitz—
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Thouless-like, and hence, presumably, delineates a phase boundary. We
have also examined the spin correlations, both for cool and for quenched
samples. The spin correlations have been fitted to the form:

g(r) ~r " Texp —(r/§). (35)

The results for n(T) for a number of different values of D in the case of
the cooled samples are shown in Fig. 11. They show a dramatic difference
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between the intermediate temperature régime, in which the spin correlations
are algebraic and exactly as predicted in the Kosterlitz—Thouless theory, and
a low temperature régime. In this region the spin correlations fall off more
quickly, the form of g(r) can not be fitted well to the hypothetical form of
Eq. (35), and, interestingly, the form of g(r) itself seems to depend on the
history of the sample. In the high temperature régime the correlations fall
off exponentially.

KT

0 1
— A
}\’,' Y

Fig. 12. Phase diagram resulting from computational study in parameter space of
T =T/J and A = D/J, showing paramagnetic (P), Kosterlitz—Thouless (KT}, and

glassy (G) phases.

Finally putting together these studies, we are able to draw a tentative
phase diagram, shown in Fig. 12, which delineates the various régimes.

6. Conclusions

In this article we have given a review of recent work on random anisot-
ropy magnets, concentrating on theoretical and computational studies. We
have presented some of our own recent results on the XY model in two
dimensions with random anisotropy. We find, as do other authors, strong
evidence of irreversible behaviour and a glassy phase in the low temperature
régime, but at this stage it is not yet clear whether this is true spin-glass-
like order. Further studies will enable one to do more detailed comparison
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between simulation and both experiment and theory; space has precluded
us giving a more detailed description of the evidence we have gathered so
far.
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