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Statistical properties of the spectra of quantum two dimensional bil-
liards are shown to be linked to the nature of the dynamics of the corre-
sponding classical systems. Quantised pseudo-integrable billiard exhibits
level repulsion, in spite of non chaotic dynamics of its classical coun-
terpart. We conjecture that the level statistics of a quantum pseudo-
integrable system depends on the genus of the invariant manifold equiv-
alent to its classical phase space. A model of billiards with finite walls
suitable to investigate the problems of chaotic scattering is proposed.

PACS numbers: 05.45.+b, 03.65.-w

1. Introduction

Classical billiards where studied for several years by mathematicians
and physicists as simple dynamical systems of various interesting features.
A particle bouncing on a plane between hard elastic walls exhibits different
kind of dynamics depending on the shape of the billiard. Its motior is
regular in a rectangular or circular billiard and the system is integrable.
Two independent integrals of motion are known, the dynamics of the system
is restricted to an invariant two dimensional torus and each trajectory might
by predicted for arbitrary long times with arbitrary precision [1,2]. However,
if a circular obstacle is put inside the rectangle (Sinai billiard) or the circle
is transformed into a stadium (Bunimovich billiard) the system becomes
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chaotic [3,4]. The Kolomogorov entropy of the system is positive [5] and
two neighbouring trajectories in the phase space diverge exponentially in
time. This feature limits a possibility of computing the long time behaviour
of a trajectory starting from a given point in the phase space.

These different properties of the classical billiards exert an influence on
their quantum analogues. Chaotic behaviour of the classical model mani-
fests itself in the statistical properties of the spectrum of the corresponding
quantum system [6,7]. Whereas for integrable systems the Poisson distri-
bution of the level spacing statistics was found [7,8], the spectra of the
classically chaotic systems display level repulsion and the Wigner statistics
of level spacing was observed [8-11]. Interesting piece of information can
also be extracted from eigenfunctions of quantized billiards. In general the
classically chaotic systems produce irregular eigenstates - messy looking ob-
jects without any spatial correlations [12]. On the other hand it was shown
by Heller [13] that some eigenfunctions of chaotic system display regular
structures, which can be associated with classical periodic orbits. These
objects, called quantum scars were later analyzed by numerous authors {14-
17]. A theory linking the properties of spectrum of quantum system with the
presence of classically unstable periodic orbits has been established [18-20],
but several questions concerning the classical to quantum correspondence
for chaotic systems remain still open.

In this work we focus our attention on classical and quantum billiards.
Section 2 reviews main results obtained for classical integrable and chaotic
billiards, while the subsequent section concerns the pseudointegrable sys-
tems [21]. In particular the billiards in rational polygons provide variety of
pseudointegrable systems characterized by an integer genus g of the classical
phase space 1 > g > oo [22]. Such systems are nonintegrable but also non
chaotic: the largest Lapunov exponent (and the Kolomogorov entropy) is
not positive [23].

In Section 4 the quantized billiards are considered. We recall the sta-
tistical properties of spectra that allow to differentiate between classically
regular and chaotic systems and discuss the phenomenon of quantum scars
occurring for some eigenfunctions. In the next section the level statistics
for simple pseudointegrable system - the "L” shape billiard is presented. In
spite of the fact that the dynamics of the corresponding classical system
is not chaotic, the level repulsion, typical to classically chaotic models, is
observed. On the other hand, the nearest neigbour spacing distribution for
this case differs significantly from the Wigner surmise and we conjecture
that it depends only on the genus of the classical phase space. This hypoth-
esis might be supported by recent measurements of the absorption spectrum
of microwave resonators performed by Stéckmann and Stein [24,25].

In Section 6 we consider the billiards with penetrable walls and show
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their usefulness to study chaotic scattering [26-28]. Section 7 contains con-
cluding remarks and a list of open questions that require further investiga-
tion.

2. Classical chaotic billiards

A classical Hamiltonian system with n degrees of freedom is called inte-
grable, if there exist n independent integrals of motion [29], and the phase
space is homeomorphic with the n dimensional torus. Integrable systems
are analyzed in detail in every handbook for classical mechanics and usually
attract a lot of authors attention. One might think, therefore, that inte-
grability is in some sense typical to all Hamiltonian systems. This is not
the case - integrable systems are of measure zero in space of Hamiltonian
systems and are so often discussed in literature only because it is relatively
easier to find their solution.

A classical two dimensional billiard consists of a particle moving on a
plane between reflecting walls. Dynamics of this system depends on the
shape of the enclosure. Only for few particular boundaries the billiards
are integrable. Some of them like rectangle, equilateral triangle or circle
are depicted in figure 1. According to the Arnold theorem [29] the clas-
sical dynamics is restficted in this case to a 2-dimensional invariant torus
embedded in the 4 dimensional phase space, the motion of the particle is
regular and two close trajectories can diverge linearly in time. However, in
the generic case, the 2-dimensional billiard is non integrable, and a typical
trajectory explores 3-dimensional manifold of the constant energy. Distance
between two neighbouring trajectories D(t) grows exponentially in time and
the largest Lapunov exponent, defined as [2]

-1 - tm Ll (2()
A= Jim XD, AD)= tm 2 (28E)), (1)
is positive. The Lapunov exponent ) characterizes the local instability of
the classical motion, and may depend on the position of the initial point in
the phase space. A billiard with trajectory with positive A is called chaotic.
One may speculate that a billiard with a generic shape of the boundary
is typically chaotic, but it is not at all simple to find a precise condition
fulfilled by all chaotic billiards. In early seventies it was shown by Sinai
[30] that a rectangular billiard with a circular obstacle is chaotic — see
Fig. 1(b). The desymmetrised version of the system (right triangle with one
edge rounded — dashed lines) owns the same dynamical properties. One
eighth of the circle rounding one edge of the triangle is concave and Sinai
proved that due to this dispersing fragment of the boundary the billiard
becomes chaotic. This dispersing part of the enclosure plays the role of
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Fig. 1. Regular billiards ((a), (c), (e), (g)) and the corresponding chaotic billiards
((b), (d), (), (b))
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the negative curvature and the mechanism of stochasticity in such systems
is similar to that one present in geodesic flow on manifold with negative
curvature [31]. A billiard with convex fragments is also called dispersing or
hyperbolic.

The billiard in an ellipse is integrable. Lazutkin proved [32] that the
caustics exists also for a slightly deformed ellipse (curvature remains smooth
function of the arcs length) and the dynamics in such convex billiard is not
chaotic. One could speculate, that the elliptic (convex) billiards produce
stable behaviour, in contrast to the chaotic hyperbolic system of Sinai. This
picture became more confusing when Bunimovich presented an evidence
that the motion in the elliptic stadium billiard (Fig. 1(f)) is chaotic [4].
Moreover, he found a general rule to construct a chaotic billiard using arcs
of the circle and the straight lines [33]. It occurred that the billiard in a
half of a circle (or a smaller part of it - Fig. 1(g)) is regular, while a part
of the circle containing its diameter (Fig. 1(h)) is chaotic. At a first glance
is not easy differentiate regular and chaotic billiards even for the simplest
boundaries: the Figures 1(a),(c),(e),(g) present some examples of regular
systems and the Figures 1(b),(d),(f),(h) show the corresponding chaotic
billiards.

A problem of finding a general principle to design billiards with positive
Lapunov exponents attracts still a lot of attention. Wojtkowski found [34]
a wide class of the chaotic billiards build of convex fragments of variable
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curvature. For example the billiards in epicycloid, nephroid, cardioid or a
square with an obstacle in the shape of an astroid are shown to be chaotic.
These results have been further generalized by Markian [35] and Bunimovich
[36], but the question, what condition is fulfilled by all chaotic billiards,
remains still unsolved.

3. Rational polygons

The difference between the integrable and chaotic classical systems can
be easily seen if one investigates the behaviour of their trajectories in the
phase space. The trajectories of an integrable system are confined to an
invariant manifold R which is topologically equivalent to a torus (an object
with genus g equal to one), while the trajectories of a chaotic system explore
the whole available phase space. There are, however, also dynamical sys-
tems, the phase space trajectories of which are bounded on invariant mani-
folds which are topologically equivalent to multi-handled spheres with genus
g 2 2. These intermediate cases, called pseudo-integrable were analyzed first
by Zemlyakov and Katok [21]. A classical dynamics of such systems is not
chaotic [22,23] (zero Lapunov exponent and Kolomogorov entropy), but the
distance between two neighbouring trajectories grows quadratically in time
[37). It is due to singularities occurring in the enclosure of the billiard
[38,39] like edges, corners or point interactions [40], which split a beam of
trajectories into two separate parts.

In the following we shall focus our attention on the billiards with polyg-
onal enclosures. These systems may be divided in two classes. A polygon
billiard is called rational [23], if all angles between sides of the polygon P
are rational multiples of x. The phase space trajectories are than confined
to an invariant manifold R that is obtained by unfolding the original billiard
(38].

Let P be a rational polygon with vertex angles #n;/m;, i = 1,---,kand
let M be the least common multiple of the integer denominators m;. Each
trajectory in a rational polygon can take at most 2M different directions
after all successive collisions [41]. This stands in contrast to the dynamics
in an irrational billiard where the number of directions explored by a single
trajectory is infinite. The invariant manifold R of the rational billiard P
consists of 2M copies of the initial polygon. Identifying the corresponding
opposite sides of R one gets a surface of genus g (a ‘pretzel’ with g holes),
where [22,23]

Mi:kni_l
9—1+~2—i§=:1 mr (2)

One immediately sees that g equals to unity for all integrable billiards
depicted in Fig. 2(a): rectangle, equilateral triangle and triangles with an-
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gles equal to x/3,x/2,7/6 and x/2,x/4,x/4. Polygon R has in these cases
the shape of rectangle, parallelogram or regular hexagon and is (after iden-
tification of the opposite sides) topologically equivalent to a torus shown in

Fig. 2(b).
] A &
{a)

(b)

Fig. 2. (a) Integrable billiards in polygons; (b) the corresponding manifold of
genus 1 - torus. The angles in all pictures are equal ¢; = 7/4, @3 = x/3, 3 =
2x/3, w4 = x/6, p5 = 5x/6, pe = x/5.

A simple example of genus 2 billiard is the gnomon and, if it is symmet-
ric, also its half. Many other examples are known: the rhombus with vertex
angle equal to x/3, or, in general, a /3 parallelogram; the triangles with
the angels (2r/3,x/6,%/6), (3x/5,x/5,%/5), (x/2,3%/8,%/8), the deltoids
with angles (2x/3,7/3,2x/3,x/3) and (3x/4,x /4,37 /4,%/4) or the trapeze
(x/2,%/2,%/3,2n/3). Some of them are presented in Fig. 3(a), while the
Fig. 3(b) represents the topology of the genus 2 manifold R. Each orbit is
instantaneously moving on one torus (like in a regular system) but may skip
to the other coupled torus. These changes of the torus occur in an erratic
way and are responsible for certain degree of randomness in the dynamics
of the pseudointegrable system.

The genus 3 is characteristic for x /4 parallelogram or for a billiard in
the shape of 3 rectangular steps (an additional “step” added to the gnomon).
Also the triangles (3x/8,3x/8,x/4, (x/7,x/7,5%/7), (=/8,2%/8,5%/8),
(x/3,%/9,5%/9), a rectangle with the right triangle cut away along one
side or the trapeze (x/2,7/2,5%x/6,%/6) (Fig. 4(a)) lead to dynamics on a
‘tree holes’ object represented in Fig. 4(b).

Some examples of g = 4 billiards like /5 thombus, 2x/3 hexagon and
7/3 arrow are displayed in Fig. 5(a). Moreover, in agreement with the



Classical and Quanium Billiards ... 251

O 2\ ) @ A
V')

(b}

Fig. 3. (a) Billiards in polygons of genus 2; (b) and the manifold topologically
equivalent to the phase space.
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Fig. 4. As in Fig.3 for genus 3.
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Fig. 6. As in Fig.3 for genus 4.
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equation (2), the rhombus with vertex angle equal to /(N + 1) or the
N-steps rectangular staircase (Fig. 6(a)) correspond to manifolds of genus
g = N sketched in Fig. 6(b). Knowing examples of billiards belonging to
each of the classes labeled by the finite genus g one can study the transition
between rational and irrational billiards [41,42].

O [

Seoe
1 2 3 N
(b)

Fig. 6. (a) Scheme of billiards in polygons of genus N; (b) and the manifold
topologically equivalent to the phase space.

This approach was applied in [41] where a system consisting of the
rhombus with various vertex angles 8 = nw/m have been studied with
the ratio v = B8/ = n/m being the successive rational approximations
of the golden mean. The genus characterizing such system grows with the
denominator m and tends to infinity for irrational billiards. The topological
structure of the phase space becomes then more complicated what influences
the character of the classical dynamics. It has been conjectured that the
irrational billiards (the limiting case) typically allow for the ergodic motion
[23], but no rigorous prove have been found. The classical pseudointegrable
billiards can be thus considered as the intermediate case manifesting some
features of both integrable and chaotic systems.

4. Quantized billiards

Let us consider a point particle moving in the two dimensional infinite
potential well

0, {:c,y} Y
oo, {z,y}¢ N

where the compact set §2 is determined by the shape of the classical billiard
0f2. In order to analyze the corresponding quantum system one needs to

V(z, y) = { ‘ (3)
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solve the stationary Schrodinger equation, which in this case reduces to the
Helmholtz equation

(V2 + K )Y(z,y) =0 (4)

with the Dirichlet boundary condition ¥(z,y) = 0|(; }con- For the inte-
grable billiards presented in Fig. 2(a) this can be done analytically [43,44],
where in all other cases the numerical calculations are necessary [12,22,45].

As it has been discussed in Section 2 the classical dynamics depends
strongly on the shape of the billiard and can be characterized by the largest
value of the Lapunov exponent. Since the classical trajectory looses its
meaning in quantum mechanics the concept of the Lapunov exponent (1)
can not be easily generalized for quantum mechanics. Some progress in
this matter has already been achieved [46,47], but instead of analyzing the
time evolution of quantum wave packets it is far more convenient to inves-
tigate the statistical properties of the set of eigenvalues of the stationary
Schrodinger equation.

Let {Ey, E1, Ez,...} denotes the infinite sequence of the eigenvalues
and {9, #1, #2,...} the corresponding sequence of the eigenfunctions of the
equation (4). According to the Weyl formula [48] the mean spacing between
levels of the quantum billiard 3§ = (E;4+1 — E;) is in the first approximation
inversely proportional to the area of the billiard (2. Further corrections to
this formula take into account the specific features of the billiard’s enclosure
like corners and edges [48].

Defining the scaled spacing by s; := (E;4+1 — E;)/3 it is useful to study
the probability distribution P(s) for a given system. It has been demon-
strated [7,8] that for the classically integrable systems the level spacing
distribution is given by

Pp(s) =e"". (5

The above distribution is called Potsson, since it describes the statistics of
random numbers obtained in the Poisson Process. In other words the lev-
els of a typical regular system (harmonic oscillator is not generic!) do not
display any correlations and behave like random numbers. Poisson distri-
bution (5) is represented by a solid line in Fig. 7. The largest probability
occurs for small spacing s and it is probable to find two levels close to-
gether. This property is called level clustering. Numerical investigation of
a generic integrable billiard (rectangle with incommensurate sides) proved
[44] that its level spacing distribution is close to Poissonian. This property is
not restricted to the integrable billiards only, but is universal for classically
regular systems [8]. ;

The level spacing distribution for classically chaotic systems displays
quite different behaviour exhibiting the level repulsion (P(s — 0) — 0).
Numerous studies of various chaotic systems [6,8-12,49-52] showed that the
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Fig. 7. Level spacing distribution P(s) - bold line represents Poisson, dashed
line Wigner distributions and three faint lines result from additive ensemble with
coupling parameter A = 0.1, 0.3 and 0.5.

level statistics may be described by ensembles of random matrices [53,54].
For chaotic systems possessing the time reversal symmetry the Gaussian
Orthogonal Ensemble (GOE) is applicable [55]. It consists of symmetric
matrices build of random Gaussian numbers with zero mean and the vari-
ance inversely proportional to the matrix size N. The GOE level spacing
distribution, obtained in the limit N — oo, might be well approximated by
the Wigner surmise, received for 2 x 2 matrices [56,57]

Py(s) = s%e"'z"ﬂ. (6)

The accuracy of this approximation is sufficient to analyze a set of, say, 104
eigenvalues. For much larger samples, however the difference between the
numerical data and the Wigner formula (6) becomes visible [58].

The above distribution, represented by a dashed line in Fig. 7, displays
linear level repulsion: for small spacing P(s) ~ s7; 8 = 1. For systems with-
out generalized time-reversal symmetry, like billiards in magnetic field [59]
the Gaussian Unitary Ensemble (GUE) should be applied and the quadratic
level repulsion 8 = 2 was reported for Aharonov-Bohm billiards [60] and pe-
riodically kicked top [61].

Magnetic field also may change the properties of regular billiards. The
billiard in an ellipse becomes chaotic for sufficiently strong perpendicular
magnetic field [62]. In this case only a fraction b of the classical phase space
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is occupied by a chaotic layer. Fair approximation of the level spacing
distribution was proposed by Berry and Robnik [63] by superposition of
two independent spectra corresponding to regular and chaotic systems. The
obtained family of distributions is labeled by the parameter b ranging from
0 (Poisson distribution) and 1 (Wigner distribution).

Another family of distributions can be obtained by a composition of two
ensembles of random matrices [64,65). Consider an ensemble H) composed
of the diagonal random matrices with Poisson spectrum Hy and the GOE
member G

Hy = c(H, + AG), (7)

where the coefficient ¢ = (1 + A2)~1/2 s introduced to keep all eigenvalues
in a bounded energy range [65]. For A = 0 one starts with the Poisson
distribution obtaining GOE spectrum in the limit A — oo. In the simplest
case of 2 X 2 matrices the resulting level spacing distribution Py(s) can be
expressed in terms of the Tricomi function [65). Moreover, recent numerical
investigation proved [66] that it is also suitable for large matrices pertaining
to the additive ensemble Hy. Three cases of this distribution obtained for
A=10.1, A = 0.3 and A = 0.5 are represented by faint lines in Fig. 7. In
contrast to the Berry Robnik formula for arbitrary small positive values of
A P,(0) = 0 and the linear level repulsion occurs Py(s) ~ ts. The slope
t decreases with a growing parameter A and in the limiting case A — oo
approaches the value x/2 characteristic to the Wigner distribution.

Several other families of distributions interpolating between Poisson and
Wigner were found [67-70] and applied for investigation of various quantum
chaotic systems. Interestingly the Brody distribution [67] provides good
approximation of the level spacing distribution received for different sys-
tems, in spite of the fact that there is no physical arguments supporting
this choice. The GOE level distribution seems to be universal for quantum
chaotic systems, with an exception of the composite, elongated billiards or
systems like the quantum kicked rotator, where the dynamical localization
occurs. On the other hand the transition from regular to chaotic motion (or
from localization to delocalization) has not any universal properties and is
system dependant.

Apart of level spacing distribution, measuring the distribution of dis-
tances between neighbouring levels it is appropriate to analyze the number
variance $2(L) (average variance of the number of states in an interval con-
taining on average L levels) or the spectral rigidity As(L) [71,55]. These
quantities take into account higher correlations between eigenvalues and
are associated to the dynamics of the corresponding classical model. For
regular systems both measures grow linearly with L [72]. On the other
hand for chaotic systems, described by GOE, the spectral rigidity grows as
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A3 ~ In(L) [60]. This property is universal for small values of L, while for
L > L. the discrepancies from the above prediction are observed [73]. The
critical value L. is determined by the period of the shortest periodic orbit
and obviously depends on the system. Moreover, fluctuations of the spec-
tral rigidity A3 and the number variance £2 for large values of L may be
explained by the existence of classical periodic orbits [74]. These features,
specific to each particular chaotic system, cannot be described by the theory
of random matrices and universal ensembles.

In a classically chaotic system the unstable periodic orbits are of mea-
sure zero and their presence does not change the global properties of the
classical dynamics. On the other hand, the quantization can enhance role of
some of the periodic orbits and they may significantly influence the quan-
tum dynamics. They manifest themselves not only in the specific properties
of the spectrum (fluctuations of the density of the spectrum [18] and the
spectral rigidity [73]) but also affect some eigenstates of a quantum system.
In contrast to regular and organized eigenfunctions of integrable quantum
systems, the eigenstates of classically chaotic systems are usually irregular
and their nodal lines form an erratic pattern [12]. The values of the wave
function behave like a Gaussian random variable (with the zero mean and
the variance inversely proportional to the area of the billiard [12]), the path
correlation function of such eigenstate decays to zero and exhibits random
fluctuations [75] and the spatial correlation function is isotropic and oscil-
lates with the displagement length |s| like the Bessel function Jo(|s]) [12].
These quantitative description makes it possible to differentiate precisely
between regular and chaotic wave functions.

This simple picture has been changed when Heller found [13] that also
some eigenstates of the chaotic stadium billiard display easily recognizable
regular structures caused by classical periodic orbits and exhibit space cor-
relations different to those predicted for irregular states. Such objects, de-
tectable in the plot of a given eigenstate |@n(z,y)|? as increased density
of probability, are called quantum scars [13,14], and might be regarded as
fingerprints of the classical dynamics. The semiclassical theory of quantum
scars has been developed [15,76] providing an approximation for the wave
function, averaged over a small energy interval. Recently it has been sug-
gested [16,17] to investigate quantum scars not only in the configuration
space but in the phase space as well. The Wigner [16] or Husimi [17,77,78]
distributions of the eigenstate aid to associate a given scar with the periodic
orbits responsible for localization.

Even though this approach proved to be successful, the fundamental
question what eigenstates are at all scarred, still waits for its answer. Fur-
thermore one may address a question what eigenstates are scarred by a
given periodic orbit I'. Let us construct a coherent state ¥ 4(0) localized
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in the vicinity of a phase space point A that generates the periodic orbit
I'. Already the expansion of ¥ 4 in the complete basis of eigenfunctions ¢,
allows us to find relevant eigenstates yielding considerable scalar product
a; = [(Z4]4:)|?. The corresponding eigenvalues E; label eigenstates scarred
by the analyzed periodic orbit I" [79]. In order to work directly in the en-
ergy domain let us consider the time evolution ¥ 4(t) of the initially coherent
wave packet. Defining the autocorrelation function

C(t) = (#4(0)|¥A(2)), (8)

we pass to the energy domain by the Fourier transform

W) =1 [ C(t) exp(-iwr) dt).

The function |W(w)| provides an important piece of information: its peaks
indicate the energy intervals containing scarred eigenfunctions. This ap-
proach has been effectively applied to a simple time dependent system —
periodically kicked top [79]. The semiclassical approximation of the propa-
gator and autocorrelation function does not allow to locate a single scarred
eigenstate, however, it marks the quasienergy range where scarring is most
probable. Analogous method may be also applied to study the scarring
phenomenon in quantized billiards, particularly using the technique of semi-
classical approximation of the autocorrelation function developed recently
for the stadium billiard by Tomsovic and Heller [80].

Having computed numerically several eigenstates ¢, of a considered
system one may select the scarred states simply by analyzing the proba-
bility density |¢n(z,y)|2. In order to define quantitatively the the degree
of scarring it has been proposed [81,82] to integrate the density along each
periodic orbit I',. The quantity

=3 § 16atzn)lds 9)

measures the localization of the eigenstate ¢, along the orbit I'. and the
prefactor normalizes the mean value of I to unity. Here L stands for the
length of the orbit, S denotes the area of the billiard and the integration
variable ds = (dz? + dy?)!/2.

Defined above quantity I is useful to state whether n-th eigenfunction
is scarred by a given periodic orbit I', [81], but does not help to answer the
more general question, if a particular eigenstate is at all scarred. One may
compute the space correlation function or the distribution of the wave func-
tion values and compare the numerical results with the predictions obtained
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theoretically for irregular states [12] treating considerable discrepancies as
an evidence of scarring. This method, however, does not provide any infor-
mation, what periodic orbit is responsible for the detected scars. To com-
promise both goals we suggest to analyze the eigenstates in the momentum
representation

bulkarky) = 5= [ do [ dydale,v) explilhoz + k)

Working in radial coordinates k, = kcos(8),k, = ksin(d), we define for
each eigenstate the angular distribution function

Fal0) = [ I6alk,0)kdk. (10)
0

The function F(@) has a simple interpretation as the probability distribution
of angles in the momentum space. For a classical periodic orbit in a billiard
consisting of K segments the function F consists of, at most, 2K singular
lines in the range 8 € [0, 27) (the time-reversal symmetry is assumed). Their
positions on the @ axes are determined by the angles explored by the orbit
and their relative heights are proportional to the total length of the segments
laying at the selected angles. The sequence of these lines is characteristic
to each periodic orbit: knowing the classical angular distribution F(0) one
may uniquely point the appropriate periodic orbit or its associates. In the
opposite case of a classical ergodic trajectory the angular distribution is
continuous (all possible angles are explored) and fluctuates around its mean
value (F) = 1/2x.
The integrated squared deviation of the angular distribution

2r
- / (F(8) - (F))%d9 (11)
0

indicates the localization of the probability density around some distin-
guished angles. The formulae (10) and (11) can be directly applied to an-
alyze an eigenstate ¢,, of the quantum billiard. Large value of the factor
prn shows that the state ¢, is scarred. Moreover, the shape of the angular
distribution Fp(0) facilitates the correct identification of the penod1c orbit
responsible for the detected scars. Note, however, that the precision of this
method is limited. The scars - concentrations of the probability density
along the periodic orbit, have a finite width (depending on the eigenenergy)
what causes broadening of the peaks in the angular distribution and com-
plicates their interpretation. For eigenstates corresponding to higher levels
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the widths of the scars decrease but the periodic orbits become more com-
plicated and consist of a larger number of segments. It causes an increase
of the number of peaks in the angular distribution F(6) so some of them
may overlap.

5. Pseudo-integrable quantum billiards

Since it is not possible to get analytically the levels and eigenmodes
of the quantized pseudointegrable billiards one is left with the numerical
methods developed for quantum chaotic billiards [45,22]. As a simple ex-
ample of the pseudointegrable billiard we have taken the symmetric gnomon
depicted in Fig. 8(a). This system, also called “L - shape” billiard, has the
classical phase space of genus 2. This becomes clear after inquiring the man-
ifold R represented in Figs 8(b) and 8(c). It consists of four copies of the
original billiard. Identifying the corresponding opposite sides, as denoted
in Fig. 8(c), one obtains a pretzel with two holes indeed. The autocorre-
lation function for the classical L-billiard was investigated by Henyey and
Pomphrey [37] while its quantum analogue has been studied by Richens and
Berry [22].

]""a—’
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Fig. 8. Schematic picture of the billiard investigated (a); polygon R equivalent to
the corresponding invariant surface (b).

Every space reflection symmetry divides eigenstates of a quantum sys-
tem into two parity classes. Studying the spectral properties of a system it is
necessary to consider each class separately [8]. Applying the numerical tech-
nique presented in [22] we obtained about 3000 levels for the antisymmetric
parity class of the quantum L-billiard [83]. In order to avoid missing some
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eigenvalues the total number of levels evaluated was compared with the pre-
diction of the Weyl formula [48]. Since each half of the symmetric gnomon,
i.e. the trapeze (x/2,x/2,x/4,3x/4), has the phase space with the same
topological properties we may expect that both parity classes (symmetric,
with Neumann boundary conditions along the symmetry line or antisym-
metric, with the Dirichlet boundary conditions) have similar statistics of
the level spacing.

Let A denotes the length of each arm of the billiard and B its width
— see Fig. 8(a). We constructed a family of billiards of the same area
S = B2+2AB = 8x, to ensure the mean spacing for each parity classes equal
to unity. The level spacing distribution occurred to be almost independent
on the shape of the L billiard in a wide range of the parameter A. Also the
rationality of the number A/B, which plays an important role in the classical
dynamics [23], seems not to influence the character of the distribution P(s)
in quantum billiard [83]). The level spacing distribution does not depend
on the energy itself. The statistical analysis done separately for the highest
quarter of the energy range coincides, within the statistical error, with the
statistics obtained for the lowest levels.

A typical numerical results of the level spacing distribution obtained for
A = 8 are presented in Fig. 9. Note that the probability of level degeneration
in the system is negligible and the level repulsion characteristic to classically
chaotic systems is observed. This fact requires a comment, inasmuch as
the pseudointegrable L-billiard is not chaotic. The source of the pseudo
integrability — a corner in the enclosure of the billiard can not induce
chaos into the classical dynamics. The set of trajectories hitting the corner
is of measure zero. As discussed in the preceding section a single classical
periodic orbit can essentially affect the global properties of the quantum
system. In a similar manner one singular point in the boundary of the
billiard may modify the Poisson spectrum of a regular system.

The numerical results presented in the histogram in figure 9 do not co-
incide, however, to the GOE distribution (or to the Wigner surmise) typical
‘to classically chaotic systems [60]. The distribution resulting from the ad-
ditive random matrices (7) might be used instead [66]. Best fit obtained for
A = 0.38 is represented by the bold line in the picture. The simple model of
additive matrices is useful to describe the level statistics of pseudointegrable
system. One might interpret the coupling between two tori in the classical
phase space as the perturbation G in Eq. (7) changing the properties of
the Poisson term Hy corresponding to the regular motion on a torus. On
the other hand the quality of the fit is not excellent and suggests that the
employed distribution can only be regarded as a rough approximation of the
results obtained.

Numerical results for P(s) are similar for all the shapes of L-billiard
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Fig. 9. Level spacing distribution P(s) for the first 2673 levels of the antisymmetric
patrity class of the L-shape billiard with A = 8.0. Best fit of the additive random
matrices with A = 0.38.

considered (excluding the limiting cases of A — 0 and A — o0). It might
be therefore tempting to speculate that the level statistics of the pseudo-
integrable quantum billiards is determined only by the genus of its invariant
surface. Some preliminary results of the level distribution for other quan-
tum pseudointegrable systems of genus 2 seem to support this conjecture.
Shudo and Shimizu studied the quantum billiards in pseudointegrable tri-
angles of genus 2 (right triangles with vertex angle a equal to x/4 or /5
or 2r/5) and reported [84] similar properties of P(s). Seba gave another
example of the genus 2 billiard introducing a singular point interaction [40].
Shrinking the radius of the circular obstacle in the Sinai billiard to zero
one gets a pseudointegrable system. Its level spacing distribution displays
characteristic linear level repulsion with the slope different as this typical
to chaotic systems [85]. Comparable results were recently reported (86,87
for other pseudointegrable billiards with singular perturbation.

Up to now we discussed the theoretical studies of the quantized bil-
liards. An interesting complementary picture provide recent experiments
performed with microwave resonators. Stdckmann and Stein [24] trans-
mitted the microwaves through thin metallic resonators of different shapes
and measured the absorption spectra. Since the Schrodinger equation of
quantum billiard is equivalent to the Helmholtz equation (4) describing the
microwaves in 2 dimensional resonator, the observed absorption dips corre-
spond to eigenvalues of the billiard. The level statistics for the resonator
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in shape of Sinai billiard fits well [24] to the expected Wigner distribution
(6). The thin antenna, used to transport microwaves into resonator, may
be regarded as a point interaction and influences the measured spectrum.
Experimental results of level spacing distribution obtained for rectangular
resonator [25] are resembling these presented in Fig. 9, which are received
for pseudointegrable billiard of genus 2.

6. Quantum chaotic scattering

The classical dynamics of the Sinai billiard is equivalent to the be-
haviour of a point particle bouncing in an infinite lattice of the circular
elastic scatterers represented in Fig. 10(a). Its dependence on the radius
of scatterers R is given in [88]. Analogically, the equilateral triangular bil-
liard with the circular obstacle, corresponds to the scattering in an infinite
periodic hexagonal lattice — see Fig. 10(b).

o O O O
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Fig. 10. Scattering billiard systems: (a) Sinai billiard gives the rectangular lattice;
(b) circular obstacle in equilateral triangle leads to the haxagonal lattice.

In addition to investigation of the bounded systems (or infinite lattices)
it is interesting and instructive to study simple open systems consisting
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Fig. 11. Model of the billiard with penetrable walls suitable for study of chaotic
scattering.

of three [27,89] or four [90,91] reflecting disks. The classical scattering in
such systems is highly unstable and chaotic: the final direction of outgoing
trajectory depends strongly on the incoming angle and angular momentum
(measured respectively the center between disks). This classical feature
manifest itself in the corresponding quantum system. Differential cross sec-
tion do/df oscillates with the angle 8 and the total cross section o displays
erratic fluctuations as a function of energy [90,92]. Similar effects occur
in problems of quantum scattering not only on hard reflective walls of the
billiards [27,90], but likewise on soft [93-95] or singular [96,97] potentials
and are the subject of a considerable interest.

Consider a two dimensional billiard with hard impenetrable walls en-
circling the compact set £2.. In addition to study the bounded quantum
problem inside {2 one may analyze the open scattering problem outside the
set £2. Is is known that these two models are related [92]: a chaotic dy-
namics inside the billiard leads to the irregular scattering outside. Both
problems might by directly coupled by making the walls of the billiard pen-
etrable. Walls with finite height and width complicate the analysis, since
a resonant phenomena connected with the finite width of the walls appear.
In is therefore advantageous to consider the limit of very thin walls and to
discuss a model defined by a singular potential [98]

0, {z,y}¢0n

Lie), (mreon (12)

V(z,y) = {

where 312 is the boundary of the billiard and v is a coupling constant. A
scheme of this system is shown in Fig. 11. For zero coupling constant the
walls are not penetrable and one encounters two separate systems.
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In the case of a positive value of the coupling parameter 4 the wave
packet can penetrate the walls of the billiard. The resulting scattering
system may be described in the § matrix formalism [99]. The long living
quasistationary states (resonances) are represented by the complex poles
(z = E — ie) of the analytically continued Green’s function. For vy = 0 the
poles are located on the real energy axes and represent the eigenvalues of
the bounded billiard. With nonzero coupling constant they lay in the lower
part of the complex energy plane. The real part of the pole determines the
energy of the corresponding resonance and the imaginary part its width. For
small 4 all resonances are narrow and well separated. The average width
(€) grows with 4 and the resonances start to overlap. Due to this fact the
dependence of the total cross-section on energy becomes complicated [100].
This feature is known in the theory of nuclear reactions as the Ericson
fluctuations [101).

It is interesting to analyze the statistical properties of the resonant poles
on the complex plane. In the case of a weak coupling the poles are localized
close to the real axis and the statistics of spacing between neighbouring
resonances reveals the dynamics of the classical billiard in the set 2. For
chaotic billiards the Wigner distribution is expected. The statistics of the
resonance widths ¢ is given in this case by the Porter-Thomas distribution
[55]. Large value of the coupling constant 7 causes spreading of the poles far
into the lower half of the complex energy plane. It is then useful to study
the distribution of the distances ( in the two dimensional Euclidean met-
ric) between closest poles. The Poisson process on the plane (uncorrelated
random points uniformly drawn on the plane) the next neighbour distribu-
tion is given [8] by the Wigner formula (6) characterized by the linear point
repulsion. On the other hand, the statistics of poles of the chaotic billiard
with transparent walls displays cubic repulsion P(s) ~ s [97,100]. Similar
results were recently obtained for the distribution of complex quasiener-
gies of a periodically kicked system with dissipation [102] and may be well
approximated by the distribution of the 2 X 2 Ginibre ensemble [103]

Pg(s) = 2(97/16)%s® exp ( — 97s?/16). (13)

The statistical study of an open quantum system consists also on an
analysis of the properties of the unitary scattering matrix §. It has been
conjectured [28,90] that the S matrix of a system displaying chaotic irregular
system can be described by the Dysons circular orthogonal ensemble (COE)
[104). Several features of the distribution of the eigenphases of a COE mem-
ber on the unit circle are comparable to the corresponding characteristics
of the level distribution of GOE matrix [55]. In particular the spacing dis-
tributions are the same for both ensembles and are well approximated by
the Wigner surmise [8]. This property the § matrix has been checked by
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Bliimel and Smilansky for a system consisting of a periodic array of scat-
tering discs [105). In agreement to the predictions of the random matrix
theory [55] the statistics of the squared moduli of the elements y = |Smn|?
was found to be Poissonian. Both statistics P(s) and P(y) are different, if
the corresponding classical dynamics is regular [105], and thus are helpful
in studying the quantum chaotic scattering. It has to be noted, however,
that also non chaotic systems with COE like S matrix are known [106].

7. Concluding remarks

After many years of intensive studies several aspects of the dynamics of
classical billiards are well understood. In particular a general definition of
chaotic billiard (with positive Kolomogorov entropy) is established [1,31].
Some classical billiards are shown to be chaotic [3,4,33-36], but there are
still no universal methods allowing to state, whether the billiard in a given
two dimensional enclosure is chaotic.

Not so much is known about the corresponding quantum billiards, since
up to now no precise definition of quantum chaos has been formulated
[5,107). One is left with an phenomenological approach analyzing various
features of quantum systems [8]. It has been conjectured [50] and later
confirmed in series of numerical experiments [51,107] that quantum ana-
logues of classically chaotic systems display spectral fluctuations properly
described by ensembles of random matrices [54]. Several statistics quantita-
tively measuring the properties of spectrum of the quantum system allow to
determine the nature of the corresponding classical dynamics. As a simple
example let us mention the level spacing distribution P(s): it reveals the
level clustering for generic integrable systems and the level repulsion for
classically chaotic billiards.

A particular class of classical pseudointegrable systems, with the phase
space of genus g > 1, possess some properties of both categories and may be
regarded as an intermediate case. Classical pseudointegrable billiards are
not chaotic (zero Kolomogorov entropy), but their quantum counterparts
exhibit level repulsion. The level statistics differs, however, from the GOE
distribution typical to classically chaotic billiards. We conjecture that the
level spacing distribution of a quantum billiard depends solely on the genus
g of the corresponding classical phase space.

Moreover, the level spacing distribution Py(s), universal for all billiards
with genus g, approaches the Wigner surmise (6) (more precisely, the GOE
distribution) in the limiting case

Jlim_ Py(s) = Pw(s). (14)
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It is possible to find in the literature arguments supporting this the-
sis. Cheon and Cohen considered the approximation of the Sinai billiard
by a N-steps stair-like billiard [108]. The level statistics for this quantum
system of genus N becomes very close to the GOE predictions already for
N = 6. Further, Shudo and Shimizu analyzed the quantized rhombus bil-
liard with an irrational angle a, what corresponds to the case of g — oo
[84]. Although this system does not display the classical chaos (Lyapunov
exponents vanish), its quantum analogue shows level statistics very close to
the GOE distribution, characteristic to quantized chaotic systems.

However, the above conjecture can not be valid without restrictions.
Dittrich and Smilanski have shown [109] that the classically chaotic com-
posite billiard consisting of several cavities coupled by narrow holes displays
the Poissonian level statistics. This is due to the dynamical localization or,
in other words, due to superposition of several independent Wigner spec-
trae. The same reasoning might be applied to the elongated pseudointe-
grable billiards, so the statement (14) is not valid for composite systems
where localization occurs. Furthermore, in the limiting case of large inte-
gers IV, the pseudointegrable billiard of genus N approximating the chaotic
Sinai billiard displays different properties than the billiard of the same genus
approximating the integrable system.

The level distribution of quantum pseudointegrable systems confirms
the hypothesis that the singular points in the billiards boundary of mea-
sure zero strongly influence the quantum dynamics. In a similar matter
classical periodic orbits generate quantum scars — ordered structures ex-
isting for some eigenstates of the quantized chaotic billiards [13-15]. This
phenomenon is already understood to some extend [77-79], but the recently
developed semiclassical theory of scarring [16,17] is not capable to predict
what eigenstates are scarred by what periodic orbit. In spite of a consid-
erable effort [18,89,110-113] it is not yet clear how precisely the classical
periodic orbits determine the density of the spectrum of the corresponding
quantum system.

Billiard with penetrable walls may serve as a model open system suitable
to study properties of quantum scattering [98]. The statistical approach is
successful also in this case. The distribution of the complex poles of the
S matrix [97] or the statistics of the eigenphases of the unitary matrix §
[105] allows to distinguish between regular and chaotic scattering. For a
classically chaotic billiard 2 the open system, defined by potential (12),
leads to the scattering matrix § well described by the theory of random
matrices [53-55,104]. However, the properties of scattering system build
of a pseudointegrable billiard 2 have not been investigated in detail. In
general it would be interesting to investigate, in what manner the pseudo
integrability of a classical system and the topology of the phase space affect
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the fundamental properties of the quantum analogue; studying for example,
the quantum propagators obtained from the classical trajectories.

A further work is also needed to elucidate the role of quantum scars in
chaotic scattering. One might expect that some resonances, corresponding
to scarred eigenstates of the bounded billiard, are influenced by classical pe-
riodic orbits. This leads to the specific behaviour of the angular dependence
of the differential cross section.
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integrable systems and to Stefan Thomae, who encouraged me to study
classical billiards. I have also benefited from numerous discussions with A.
Csordas, M. Feingold, F. Haake, G. Lenz, J. Stein and H-J. Stockmann. The
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