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Among the various systems that are analysed in terms of Hamiltonian
chaos, the Coulomb potential perturbed by an external electro-magnetic
field is of special importance in microscopic physics. We ptesent here
a view of the group-theoretical techniques that have been used in or-
der to reduce the non-integrable dynamics to its smallest possible ex-
tent. Chaotic diffusion in a driven Coulomb potential is analyzed and
results presented: fixed points, periodic orbits, deflection functions, in-
elastic cross-sections. The essentially mixed character of phase space is
underlined. As a foreseeable consequence, the deflection function does not
display a full self-similar structure after a few generations in the fractal
structure.

PACS numbers: 05.45.+-b, 03.65.Fd, 03.65.Nk

1. Introduction

On several instances in this conference has the topic of chaotic scat-
tering been addresed to, in different contexts. From the general classical
and semi-classical considerations of Jung, a precise definition of the chaotic
saddle (chaotic repellor) may be drawn, that explains the fractal array of
singularities in deflection functions and classical cross-sections. Global char-
acterization of Hamiltonian chaos is especially easy in the case of chaotic
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272 L. WIESENFELD

diffusion, as almost all trajectories spend only a finite period of time within
the system. The outgoing asymptotic motion acts as a projection tool of
the finite distance properties towards the plane at infinity, which coincides
with the observation region. As was explained by T¢l and Stoop, this finite
observation window allows one to extract useful global information about
the classical chaos directly connected with the asymptotic regions, through
the knowledge of deflection functions and cross-sections. It is most probable
that in quantum mechanics, too, the information about quantum chaos —
whatever this exactly means — should be readily extracted from asymptotic
properties as opposed to bound eigenstates (see [1]).

We shall here emphasize different aspect of scattering chaos. We shall
try to implement several of the general, successful ideas of hyperbolic scat-
tering chaos into an essentially non-hyperbolic system, the perturbed Cou-
lomb system.

The pure Coulomb system, with its long range 1/r potential, is at the
cornerstone of the microscopic understanding of chaos, theoretically and ex-
perimentally. Very detailed work has been achieved in both the diamagnetic
and driven atomic hydrogen systems, which test several aspects of the clas-
sical, semi-classical and quantum approaches to highly symmetric, strongly
perturbed systems. In the diamagnetic case which, in the author’s opinion,
is well understood, it is through a full analysis of the dynamical symmetry
of the Coulomb system that progress could be made, both conceptually and
technically. In the driven case, full understanding is not at hand, despite
the very large amount of work. As due to the infinity of bound trajectories
that are supported by this non-linear oscillator, that extent from 0 to oo,
every external frequency is in resonance only with a fraction of the bound
system, leaving tightly and loosely bound states untouched. Phase space
is of intrinsic mixed character, with all its hierarchy of stable islands and
islets. On the other hand, the high symmetry of the problem at hand al-
lows one to construct representation that incorporate a lot of information
about invariant quantities, and that are tailored for the perturbation to be
as constrained as possible.

We divide that report into two sections. . Section 2 tries to give the
reader a glimpse on the different dynamical symmetries of the Coulomb
system, and to begin with, its 4D harmonic oscillator image. Introduction
of the perturbation in different representation is described. In Section 3, our
own results in the scattering chaos will be presented, along with the deriva-
tion of a divergence- and ambiguity-free representation. Some provisional
conclusions end this report.
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2. Symmetries of the Coulomb system
2.1. Dynamical group

Let us start with the usual Coulomb Hamiltonian, adopting the same

framework for quantum or classical mechanics:
2 2
P 1 Ze (1)
2m 4xeg

We implicitely assume that the two-body motion of two charged particles
moving under mutual influence and subjected to an external field may be
reduced to the motion of a test particle, mass m, in a pure Coulomb po-
tential, and some external influence. A discussion of that reduction will be
put forward in the next Chapter. Our first task is to find the most com-
plete and systematic way to take into account all the symmetries hidden in
this innocent-looking Hamiltonian. In doing so, any perturbation of that
Hamiltonian should be recast into the symmetry elements of the Coulomb
problem. Also, this approach should give us at the end clues about adi-
abatically conserved quantities, if any. The procedure rests mainly in an
algebraic recasting of the Hamiltonian in Lie group generators; this group
should describe as accurately as possible all the symmetries present in the
problem, when described in phase space. The material presented here has
been known for some of its aspects for a fairly long time. The 4D symmetry
of atomic hydrogen dates back to Pauli [2] and Bragmann [3]; dynamical
group properties, which connect trajectories wavefunctions or matrix ele-
ments at different energies, have also been known by physicists since the
sixties, [4], particularly by the works of Barut [5]. A recent and particu-
larly lucid presentation of the atomic hydrogen symmetry may be found (in
French !) in Ref. [6], on which this Section rests heavily. We shall thus de-
velop here a particular representation of some of the Coulomb Hamiltonian
symmetries. That representation is well adapted to the different problems at
hand, and makes explicit the connection between the Coulomb and the har-
monic oscillators. The reader interested in more general derivations should
consult the references cited above.

Let us first get rid of the physical constants, by switching to atomic
units:

h=lej]=m=4re =1,
c=1/a~1317.

Uiit of length is of course Bohr’s radius ap = 0.529 A; unit of electric field
is Fy = 5.14 10° V/cm. With Z = 1, the Hamiltonian (1) reads:

1
-

p2
H="F- (2)
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The traditionnal way of deriving the properties of  is to write it down
in some system of coordinates, say spherical, and — clasically — to find
the corresponding actions. Equivalently, one separates the Hamilton-Jacobi
equations. This is the normal access towards a semi-classical quantization,
following the Einstein-Brillouin-Kramers scheme [7]. One has, in spherical
coordinates r,0,¢ :

1 2. P 1
H=5(i+’—"’-+——"——)——- (3)

r? ' p25in?9 r

To each coordinate corresponds an action, noted Iy, Iy, I'y. Upon substitu-
tion by their expression in terms of 7, 8, ¢, one gets the following Hamiltonian
(for negative energies, i.e. bound motion):

H=-2x? (I, + I+ 1,)"". (4)

Quantization of these actions leads to the usual quantum numbers n,, {, m.
That the full symmetry has not been taken into account is obvious, as
the three characteristic frequencies in this representation are degenerate :
w = w;, Vi, where w; = —9H/8I;, i = r,0, . This is the exact classical ana-
log of the so-called “accidental” degeneracy in n? for the atomic hydrogen
levels. This degeneracy is fully explained if we recall that both the angu-
lar momentum L = r X p and the Runge-Lenz vector A = p X L — r/r are
conserved quantities. Let us define A' = A/4/|2E|. One has the following
algebra, where [ , | denotes a Poisson bracket, classically, or a commutator,
quantum mechanically (7,5 = 1,2,3; €;;; is the fully antisymmetic tensor):

[Li, Lj] = i€;jp Li,
[Li, &) = ieyjn A,
[Az, A;] = ﬂ:if,'jk Lk. (5)

Sign + is for negative energies and sign — for positive ones. These structures
are the ones that define so(4) (E > 0) or so(3,1) (E < 0)) Lie algebras,
leading to a SO(4) (resp. SO(3,1)) symmetry of the bound (resp. unbound)
Coulomb problem. It explains the complete degeneracy of the levels, which
are fully characterized by one sole quantum member n, or equivalently, by
one action I, in terms of which all observables that do not lift the degeneracy
may be recast.

Now let us follow a heuristic approach in order to make clear the anal-
ogy between the Coulomb oscillator and the coupled harmonic oscillator
problems. In order to simplify the representation, we particularize one axis,
say O,, and just consider invariance around that direction. It means that
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we consider the following subgroup chain: SO(4) D SO(3); D SO(2),. Let
us begin in the natural cylindrical coordinates (r? = p? + z%;L, = m;):

2
m
+_£._
p2

7

H= E"l‘

S8
‘I.l [

(6)

We introduce now semi-parabolic coordinates in order to regularize the
Coulomb motion nearby the origin:

Zortz; V=r-2z (7
We get:
_ 1 2, ™ 2, ™

Motions in g and v decouple if we introduce the new generator H, and
extend phase space:

0=H=(H-E)®++?)

1/, m2 2 1( 4 m2 2

This amounts to a change of time ¢ as an independent variable to a fictitious
time 7, with:

dr 1

— = . 10

dt p?+ 02 (10)

Consequently, we have, in time 7, two rotating 2D harmonic oscillators,

with an identical frequency 2 = (—2E)Y/2. For E > 0, it leads to repulsive
harmonic oscillators, whose solutions are the hyperbolic lines. One has (for
L, = 0, for simplicity):

bound motion unbound motion
p=(—2E)"12cos N7/2 p = (2E)~1/2 cosh N7/2
Pu = 2sin27/2 Pu = 2sinh 27/2
v =(-2E)"12cos(27/2 + Ap) v = (2E)~1/2 cosh(027/2 + 6¢)
Py = 2sin(27/2 + A¢) Py = 2sinh(027/2 + Ag)

One sees that, when comparing these equations with the solutions of the
Coulomb equation in ordinary space, recalling the relations (7) — e is the
eccentry:
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bound motion unbound motion

r=(—-2E)"}(1 - ecosu) r=(2E)"(1 — ecoshu)

o 2 2 2 =12 2 2
2 _(_omsin“ut+(l—e)costu| o _ —sinh® u 4 (1 — €*) cosh® u
P =(-2E) (1 - ecosu)® P =(2E) (1 — ecoshu)®
t=T(u— esinu) t = T(esinhu — u)

the ficticious time 7 is in fact proportional to the anomalic eccentry u =
27 /2. In this representation, the total symmetry of the original system is
0(3) D 0(2) ® O(2), that is the restriction of the full O(4) symmetry by
the L, = cte condition. Moreover, it is easier in this picture to find out the
dynamical group associated with those two harmonic oscillators: now we
still keep O, as a particular invariant direction in space, but let the energy
vary. The dynamical group associated with one 2D oscillators is SO(2,1).

One of the generator (namely Sga)) is a dilatation operation which directly
connects levels of different energies. The two oscillators coupled together
yield the total dynamical symmetry $O(2,2) = SO(2,1), ® SO(2,1),. All
trajectories (or levels, matrix elements) are connected together by successive
operation of the group generator, as long as they share the same L, (or m;).

2.2, Perturbation

The preceeding Section has shown how peculiar the Coulomb system is,
with respect to group properties. Its symmetry is so large (SO(4, 2)) that an
external field does not suppress it altogether. As a consequence, the phase
space remains of mixed character, with regular motion dominating parts of
it. Even for a very strongly perturbed H atom, the doubly excited He**, is
the symmetry not fully broken, and large islands of regular motion persist

[9].
2.2.1. Diamagnetic Coulomb problem

The image of the two oscillators, running at a same frequency and

! Generators for L, = 0 are ( a, a parameter):

a) o(a)} _ ()
S(a)—~~P2+La2 [S( ' S3 ] +Sg
S = ~1up, [47,587) = -si
S = +902 + Lu? [562, 5()] = —s{

Casimir operator: S3 — 53 — S7 = 0. Lie algebra: so(2,1).
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Fig. 1. Poincaré sections in the u,p, plane (here labelled as v, p,), showing the
progressive disappearence of elliptic islands with increasing v (from Ref. [10]).
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keeping the same relative phase is very useful to show how perturbations
will destroy that nice integrable motion. The diamagnetic Coulomb problem
has been considered for a long time as a paradigmatic example for chaos in
the microscopic world (see [8,10] for recent reviews). In atomic units, with
4 the reduced magnetic field, the Hamiltonian reads:

~ o~ ~ 1
H = Hosc(#) + Hosc(v) + §72F2”2(V2 + “2)) (11)
where (x = p,v)
~ P2 m? "
Hoae(x) = 5 + 77 — 2BX". (12)

A < O (vibrational motion |}

1

-"W -x/2 | '
° A = 0 {seporatrix] A> 0 {rotational motion)

Fig. 2. Poincaré sections in the u,p, plane, showing the regularity of the orbits,
when the A quantity is an adiabatic invariant (from Ref. [6]). X{*) = s{®) — T{*),
difference in energy of the two oscillators; A¢ is its associated phase.

The coupling comes about with two sextic terms in g,»v. A full series of
Poincaré sections, showing the progressive disappearance of elliptic islands
have been published (in [10], for example) (see Fig. 1). Large quantum
calculations are made possible in the framework of Lie group generators
representations. From the knowledge of the full dynamical symmetry, ma-
trix elements are constructed that bind all relevant states, by successive
applications of the Wigner-Eckhardt theorem. Also continuum and bound
state wavefunctions are built in the same discrete basis of Sturmian func-
tions, and related to each other by dilatation operator belonging to the full



Scattering Chaos in @ Non-Generic Case 279

dynamical symmetry (for example Sga))«. Results and comparison with ex-
periments on lithium are to be found in [11,12]. More interestingly, by use
of the proper generators of SO(2,2) dynamical symmetry, Delande obtained
readily the adiabatic invariants of the motion, by calculating the mean value
of A = (u2v?(u? + v?)) over one cycle of the angular variables associated
with SO(2,2). An example of phase space is shown in Fig. 2.

2.2.2. Driven Coulomb problem

We couple now the two oscillators with a time dependent perturbation.
Recalling that the u and the v oscillators vibrate at the same frequency
2 = /—-2F, the coupling comes about as —F is the conjugate variable to ;
that isosynchronism is here the driving mechanism. In the non-relativistic
appproximation [13], with a linearly polarized electric field F coswt, the
Hamiltonian reads:

H = Hose(p) + ﬁo,c(u) + g— (u* = v*) cos wt. (13)

This Hamiltonian, often recast in usual coordinates, serves as a basis for
the numerous calculations pertaining to the ionisation of excited hydrogen
by microwaves (see next paragraph). However, there has not been, to the
best of the author’s knowledge, any systematic attempt to rewrite a classi-
cal/quantum calculation into group-symmetry adapted coordinates or even
into the double pendulum picture. It is clear that only such an approach,
besides its built-in regularization, would yield the right adiabatic invariants
at once, if any exists. A fully algebraic approach is thus lacking?.

We shall thus in this report resort either to ordinary or to regularized
coordination in order to represent the motion, and to action-angle variables
to analyze it. However, as stated above, no attempt has been made to
formulate the driven Coulomb motion fully into the invariance or dynamical
group generators.

3. The driven Coulomb problem: Scattering chaos
3.1. Introduction

Considerable amounts of work have been devoted to study and under-
stand the dynamics of excited hydrogen in an intense micro-wave field:

H*+ Nhv — HY +e + Mho.

2 Let us note in passing that large amounts of work have been devoted to group
theoretical techniques and chaos in vibrating molecules [17,18].
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Many experiments, classical and quantum calculations have been per-
formed, in the slow or fast driving frequencies regimes (Wariving § Kepler)-
We shall not attempt here to summarize the numerous results; for reviews,

ee [21,22]. Many important results have been obtained; the validity of
classical/semi-classical approximations has been precised. Quantum locali-
sation appeared as a relevant concept.

Here, we shall deal only with the scattering part of the classical phase
spaces, that is, we shall deliberately ignore both the quantum effects and
the tightly bound orbits. Experimentally, hints of chaotic scattering have
very recently appeared in the litterature, in plasma physics [19] or in cooled
ions experiments [20].

3.2. Scattering chaos - generalities

Let us recall the assumptions we make in order to analyse the inelastic
scattering process:

e~ (E)+Ht *=8M o~ (g L HT

We suppose that [13,14]:
a. the oscillatory electro-magnetic field is classical, linearly polarized along
the incoming electron motion (O0.);
b. the ions are sufficiently far apart so that screening of the Coulomb
potential is unphysical®;
c. the oscillatory field does not die out at infinity, so that no spurious non-
linearity is introduced, through ponderomotive potential gradients;
d. oscillatory field intensity is low enough to neglect all relativistic effects:
B fields, self-forces;
e. the mass of the ion is infinite; no recoil is taken into account.
In this framework, the Hamiltonian reads, in length-gauge (atomic units):

p?
H= 5 -:t Fzcoswt. (14)

e

These assumptions (b—e) are the ones under which all calculations have
undertaken up to now. Also a reduction to discrete maps (the so-called
Kepler Map) is particularly useful in 2D and in 1D configurational spaces,
for exploring the quantum regimes [22]. Here we shall deal only with the

3 This is the situation prevailing in low-density ionic beams, such as those emerg-
ing form Electron-Cyclotron-Resonance sources.
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Fig. 3. Center-of-mass and relative coordinates

scattering part of the classical phase space, that is, we shall ignore both
quantum effects and thightly bound orbits.

It is quite instructive to precise now the exact realm of the potential
approach to this driven two-body problem. Let us first suppose that the
two particles i and j have equal masses (Fig. 3). Center of mass is 2¢ =
(=i + =;) /2; relative coordinate z;; = (z; — zj). We have the following
Newton equations, with g;, ¢; the charges and Q = ¢;¢g; (in atomic units):

) s
2= Q——Q—g + g; Fcoswt,

|24
= zji (15)
#; = Q—L5 + gjFcosut,
|25
yielding :
2c = 0+ 1(gi + ¢j) Feosuwt,
2
2 =2Q ”3 + (gi — g;) Feoswt. (16)
|21

We note that for m; = m; and ¢; = ¢;, motion is separable, at least in this
non-relativistic limit. This is the all-important case of electron-electron
and proton-proton scattering, in the presence of a moderately intense laser
field®. Also, if m; # mj, but ¢; = g;, the relative motion remains integrable,
i.e. eT — HT scattering (a physical reason for this absence of chaos is the
absence of bound Coulomb states). However, as soon as ¢; # g; either
the c.o.m. or the relative notion become chaotic. In order to restrict the
number of physical parameters, let us recall now the classical scaling laws,

4 For example, dynamics of the electrons in the free electron laser is integrable
is the absence of B field, as long as the kinematics remain non relativistic.
The author knows no exemple of chaos analysis in the relativistic domain.
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which pertain to Kepler motion and harmonic driving [14,15]. Dynamics
remains unchanged when scales are modified according to:

r—qr

t— 3/2t F — ,y—ZF
P —)lyy_l/zp w—= 7_3/2“" (17)
H - 7\H P —*P

where P in the laser power (or energy flux). As a consequence, structure of
phase space is determined by one scale-invariant parameter, say Fw—4/3,
and one trajectory is fixed by another independent scale-independent con-
dition, as Jw=3 [23). I, the action, scales as I — 41/2I, so that scaling
properties do not translate into quantum mechanics, which sets an absolute
scale through A.

Before embarking on real calculations, some short comments are in or-
der to discuss dimensionality. For linear polarization of the F'field, parallel
to incoming electron momentum p, the classical problem is clearly 2D in
configuration space, yielding 6D extended phase space. Consequently, the
4D Poincaré or plane at infinity sections are too complicated do depict.
However, some qualitative work has shown that a chaotic saddle exists in
the 6D phase space [13]. We restrict ourselves in the following to 1D con-
figurationnal space (back-scattering, {. = 0 quantum state), yielding 4D
extended phase space and 2D sections. In the two oscillators pictures, we
retain only one of them, namely u. The physical quantity of interest, in-
elastic cross-sections are of the form (2, solid angle):

d’o .
d2dE

The discussion that follows is divided into the following sections: Section 3.3.
is devoted to the finite distance properties of the driven Coulomb potential,
derived in regularized coordinates and depicted in stroboscopic Poincaré
sections. Section 3.4. explains briefly the techniques needed to get rid of
unnecessary infinities and oscillations when studying asymptotic properties;
these are presented in Section 3.5. (deflection functions, cross-sections).
Some comparison with elementary quantum-mechanical treatment are pre-
sented by then.

do
E (2 =0). (18)

3.3. Finite distance properties

As mentioned in the previous Section, one scale-independent parameter
determines the overall dynamics at hand (structure of the Poincaré section).
An analysis of the main resonances appeared some time ago [23]. We shall
present here an overview of results obtained at a sufficiently weak field
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(Fw=%/3 =~ 0.1) so that both stable and unstable periodic orbits survive
at finite distance. In order to represent trajectories hitting the r — 0
singularity, one has to resort to regularized coordinates equivalent to the
oscillator picture (retaining u, Eq. (9)); the Hamilton equations read:

i‘ = Pus 3

b, = 2Epu — 2Fp° coswt

f“: #, ! ’ , (19)
E= —% Fuwpy* sinwt,

where t and E are considered as dynamical quantities and the dot denotes
d/dr. For F = 0, phase space looks like Fig. 4.

15

10 1

-10

-15 T - . T
-15 -10 -5 0 ) 10 15
M

Fig. 4. Phase space of the Coulomb oscillator in the u, p, representation, in the
absence of F'field. Points C, C’, coordinates u = 0, p, = +2 are both representing
the origin. In ordinary phase space, it corresponds to r = 0, p, — +00. The ellipses
are the bound trajectories, the two straight lines, the zero-energy trajectory and
the hyperbolas, the scattering ones.

The origin is a symmetry center: (u,p,) is identical to (—u, —p,). One
recognizes in Fig. 5 the bound, unbound and zero energy trajectories in an
attractive Coulomb potential. Fig. 5 shows full trajectories in u,p, plane
and Figs 6, 7 a full trajectory in the r,¢ plane. All the peculiarities of
the harmonically driven Coulomb potential show up here: coexistence of
thightly and loosely bound trajectories, with vastly different resonance fre-
quencies; exchange of energy occuring only nearly the origin; asymptotic
motion that is a simple superposition of Coulomb drift + oscillatory mo-
tion. The chaotic saddle lies thus in between the tightly bound trajectories,
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Fig. 5. A trajectory in u,p, phase space, in the presence of Coulomb and driving
field.

nearly unperturbed for these relatively weak fields and the loosely bound
trajectories, that bear no non-linear coupling between fields.

Fig. 8 support these views: it shows two stroboscopic Poincaré sections
in the g, p, plane, at wt = /2. Each trajectory has an identical energy at
infinity, bu they differ in their phase with respect to the driving field (see
next Section for a precise definition of those quantities). The one trajectory
shown with crosses ( x) is immedialtely sent away after one reflection, with a
slightly higher energy, while the other trajectory, shown with triangles (A)
undergoes several reflections and goes through some three Rydberg states
before being sent off with a slightly lower energy.

- A Poincaré section of innermost part of the phase space is shown in
Fig. 9. It differs from analogous figures from the works of Richards [23] by
the choice of the stroboscopic phase: we chose wt = x/2 vs wt = 0; see
also Jensen et al. [21] who presented an analogous figure, but in the r,p
plane, where the singularity at r — 0, p — oo makes interpretation less
easy. Also shown in Fig. 9 are the first periodic orbits, stable and unstable,
of periods 1 and 2 (recall the symmetry u,p, < —p,—p,). Some orbits
are shown in Figs 10-11, through a Lissajous plot u(t) = L(F coswt). The
stable or unstable character of a given orbit is readily apparent; the force
exerted on the particle are on the one hand, the driving force —F coswt,
and on the other hand, the restoring force —1/u%. The restoring force and
the driving force add up to pull back the particle towards the origin in the
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Fig. 6. A trajectory in configurational space r = r(t). It displays all peculiarities
of the Coulomb scattering: 1. far from the origin, a simple linear superposition
of oscillations, amplitude quivering length ! = F/w?; 2. exchange of energy only
nearby the origin; 3. two kinds of bound states, either tightly bound, weakly
influenced by the driving field (r) ~ 10...15s.u., or loosely bound (Rydberg state)
and intermediate influence of both fields. T is the period of the driving field; T and
R are the classical analogues of respectively a tightly bound or a Rydberg state.
A detalil is found in Fig. 7.
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Fig. 7. Detail of Fig. 6, showing the tight part of the trajectory.
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Fig. 8. Two stroboscopic Poincaré sections. Both trajectories have the same
asymptotic energy, but differ in their phase ¥ (Eq. (29)).

stable orbit of period 1, or for most part of the stable orbit of period 2. On
the contrary, just a delicate balance of them both makes the unstable orbits
periodic, as driving and restoring forces act one against the other, Fig. 10.
Also the beginning of a symbolic dynamics appears here, as to a period 1-2
corresponds 1-2 oscillations in this Lissajous picture.

3.4. Symmetry-adapted Hamiltonian

On the Hamiltonian (14), several transformations have to be performed
in order to get finite quantities in the asymptotic plane, defined indepen-
dently of the driving field phase. We shall present here only a brief sketch
of the sequence of canonical transformations, leaving to reference [16] the
details.

First, let us get rid of the explicit time dependence of the Hamiltonian,
by the usual extension of the phase space: {r,p,} — {r,pr;t,—E}. The
new motion generator H = H — E is a constant of motion, set arbitrarily
to zero. Consequently —F is just the energy of the driving field. We label
that energy by N = E/w, the action of the field; time is then labelled by
¢ = wt, the associated angle of the field. In velocity gauge, we get (atomic
units):

~ 1 1
0="Hy =2 (pv + aAsing)® — ~ + Nyw, (20)
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Faf 50-5

1.5 r

1 -

5 F
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Fig. 9. Inner Poincaré seclion. Phase reference: ¢ = x/2. Parameters in
atomic units: F = 6.5107%, w = 0.004. Shown are the first periodic orbits: S,
stable, period 1; U, unstable, direct hyperbolic, period 1; $1, S2, stable, period 2;
U1,U2, unstable, inverse hyperbolic, period 2. The last full KAM torus encircles
S but leaves S1, S2 outside.

pv, rv have their usual meaning in velocity gauge; A is the vector potential.
In order to get rid of the linear superposition of oscillatory motion and
Coulomb drift, in the asymptotic domain, it is quite usual to opt for another
gauge, the acceleration gauge [33], defined as:

ra=p—lcosd=ry —lcosg, (21)
PA =1r+lwsin¢=va

p,x are the ordinary position and velocity. ! = F/w? is the quivering
length. Absorbing the instantaneous oscillating energy of the free field into
the definition of Nj, one gets:

'HA:‘—Z—'—;;‘}'T'*‘NAW: (22)
1 1
T . S
Vi = ra  |ra +lcosg|’ (23)
0="H3 +VF. (24)

One sees at once that ﬁoA' is an integrable Hamiltonian, that generates the
desired superposition of Coulomb motion (first two terms) and oscillatory
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Fig. 10. Stable periodic orbit corresponding to the point S in Fig. 9. Shown is
a Lissajous picture u(t) as a function of F coswt. The driving field exerts a force
f=—Fcos wtf“, while the Coulomb force is always directed towards small u. The
number of points shown corresponds to the actual number of Richardson extrapo-
lation steps.
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Fig. 11. Stable periodic orbit, period 2, corresponding to points U1,U2. Shown is
a Lissajous picture u(t) as a function of F cos wt.

motion (signalled by the A-gauge). Also, the third term is the so-called
ponderomotive potential term, which remains here at a constant value and
sets the origin of the energy scale. The last term is just the energy of the free
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electro-magnetic field. The coupling comes about through Vf , mediated by
the dynamical variables r,, ¢.

Now, in a fashion parallel to Section 2.1., we switch to action-angle
variables, taking due care whether the motion is instantaneously bound or
unbound (E s 0) [25,26]. If I, is the usual Coulomb action, analogous to
the quantum number n, but defined in the acceleration gauge, one has for
the Coulomb part:

unbound motion bound motion
H= %j{ H= ﬁ%
Iy, <0 Ipn >0

ra =2I3sinh®u | rp =2I%sin?u
PA = r’;cothu PA = -rl.-cotu
0a =sinh2u ~2u| 6p = 2u—sin2u

(25)

04 is the angle variable conjugated to I, and u is the eccentric anomaly.
The full free motion generator is now written as:

~ 1

— 140 2,2
0=H, 42212 +le + Njw. (26)
It is as simple and as complete as possible. If one likes to recast the Hamil-
tonian in its Lie group generators (see Section 2.1.), it would look like:

H = -::S( *) 42 12w2 + Npw, (27)

with a = F4/[2E|. The price to pay is that VC cannot anymore be ex-
pressed in closed form, because of the Kepler law 6, = 6(u) (Eq. (25)).
However, its asymptotic limit is given by:

= L c
i VX = fim VK = l°°s¢1402’

(28)
recovering thus a rapidly decreasing perturbation.

Labelling of asymptotes is made on the basis of these action-angle vari-
ables {04,Ia;p,Na}. As the angle variable has to remain finite, we define
a reduced angle by analogy to [34]:

¢Al=¢—nAs oAs, (29)
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where the frequency !)ﬁ‘ = 02' is associated with the asymptotic Coulomb

motion. Both N 2’ and gbﬁ‘ are finite and defined properly for any asymp-
totic time, independently of the phase of the stroboscopic Poincaré section.

3.5. Properties at infinity

3.5.1. Deflection functions

In order to stay consistent with our previous simulations we keep the
same value of Fuw=4/3 ~ 0.1, that determines the phase space structure. As
is depicted in Fig. 9, that field is sufficently low so that the primary 1/1
elliptic resonance is still weakly connected to the asymptotic region; however
the two elliptic secondary resonances remain and might influence the overall
dynamics. Also, the previous studies of that system were performed at
a definite frequency w, in the CO; laser fequency range. We set thus w =
0.004a.u. ~ 0.1eV, thereby setting F' = 6.5 a.u..
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Fig. 12.  Overall regular, irregular Coulomb and hard-wall deflection functions.
Total deflection functions N(out) = N (¥(in)) are shown for 0 < ¥(in) < 2x. For
irregular scattering (N(in) = —1 = I, = 11.2a.u.), deflection function displays
the coexistence of a regular region (¢ < 3.8 rad, ¥ > 5.7 rad) and an irregular
one, in between. Details are shown in Figs 13-14. At a higher incoming energy,
(N(in) = —5 = I, = 11.2a.u.), only regular deflection is observed. Comparison is
then made with scattering on a hard wall, with identical asymptotic energy.
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Let us recall that we label the in-coming and out-going asymptotes by
the asymptotic dynamical variables N ﬁ‘s, 1[12’, as defined in equation (29).
A deflection function is just a mapping of in-coming into out-going asymp-
totes. In order to be able to derive inelastic cross-sections, we plot systemat-
ically N2%(out) = N (4%(in)), 0 < 4%(in) < 2, for an arbitrarily chosen
energy at infinity: N2 %(in) = —1. A full deflection function is depicted in
Fig. 12, for 0 < ¥45(in) < 27. The mechanism through which the irregu-
lar scattering shows up in the asymptotic regions is readily apparent. For
01,/)&‘ < 3.8, the function is regular and displays a sine-like feature. It bears
some similarity with scattering over a hard wall, with the same superim-
posed oscillating field. Accordingly, Fig. 12 also presents a typical defection
function for hard-wall scattering with no multiple boucings. It shows the
same general feature as the regular part of the Coulomb driven scattering;
however, the amount of momentum exchange may be vastly different, as
due to the singular character of 1/ |rp — lcos ¢| as rp — o0, and hence the
impossibility to neglect non-linear couplings between field and particles in
some region of space, for any set of parameters. This situation has been
discussed in a different context by Casati et al. [22], in order to determine
the outgoing electron energy, in a microwave ionisation experiment.
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Fig. 13. Total irregular part of the deflection function N(out) = N (¥(in)), with
the same parameters as in Fig. 12. 6000 points simulation, the line connecting
the points is a simple guide for the eye.
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For 3.8 < 94%(in) < 5.7, the deflection function is characteristic of
a chaotic scattering process, as depicted in Fig. 13. The mechanism through
which irregular scattering comes out in the deflection function is the follow-
ing: as soon as the deflection curve would dive into bound states (reso-
nances), with N{(out) > 0, it is reflected back into the N{*(out) > 0
domainas the trajectory cycles one time more (or less) nearby a bound

unstable periodic orbit. Its delay time, measured with reference to 'Hg,
jumps from —oo to 400 [15]. The different points on which such an acci-
dent occurs are the intersection of the periodic orbit stable manifolds with
the plane at infinity., This explains how fractal-like structures appear in
Fig. 13. A blow-up of the deflection function shows that the scattering
behaviour in non-generic, at least for sufficiently a weak field. The fractal-
-like structure seems to have disappeared after a 10* magnification, (Fig. 14).
While it is not clear yet whether the inner tori (tightly bound-states, elliptic
islands) or the outer tori (Rydberg states) dominate the dynamics at long
delays, the exponential scaling is clearly lost. Such a behaviour has been
already described by Ott et al. [29], and is conjectured to be characteristic
of a non hyperbolic chaotic saddle.
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Fig. 14. Enlargement of Fig. 13, by a factor 225 ( 2000points/10~3rad). The
angle ¥ = ¢(in) — 4.13. Any structure seems to have non-scaling behaviour of the
scattering process.
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3.5.2. Cross-sections

From the knowledge of deflection functions N(out) = N (¢(in)), the
classical differential cross-sections may be derived:

-1

do dN (out)
—_— = —r s 30
dN(out) N=N; %k: l d¢(m) Y(in)=4y; ( )

the sum being taken at the different ¢ leading to N;. A discontinuity
(rainbow) in do/dN occurs for each stationary point Ny in N = N(¥).
One has limy_, . — do/dN = 0 and limy_, 5 + do/dN = (N — Ny,) /2.
The discontinuity is sharp and integrable, leading to a finite 0y,¢,1- Now,
each generation of continuity g; contributes to its own set of rainbows, but
its integrated contribution will decrease with increasing generation i. For
exponential scaling, the whole set of rainbows is a projection of the chaotic
saddle fractal structure.

Of course, a deflection function like the one of Fig. 14 should contribute
to nearly no integrated oy,ial, even if the number of singularities is huge.
This amounts to a practical limit to the number of peaks appearing in
do/dN. The diffential cross-section do/dN for the whole range of v (in)
corresponding to irregular scattering is depicted in Fig. 15 and should show
few more details at a more refined scale. Let us point out again that do/dN
is a way of labelling do/dE (E, outgoing electron energy at infinity) by
imposing equation (26) to hold in the asymptotic plane and by recalling
27As - E1/2,

A

It is most instructive to compare the cross-sections derived here with
the quantum predictions of Kroll and Watson [32], which might at least
give an order of magnitude of the exchanged energy. Let us recall that in
the soft photon limit and with at most one resonance involved, one has for
N 5 0 photons:

do(N) p(out) , | dog(Ap)

doo(Ap)/dN is the elastic cross section at Ap = |p(out) — p(in)|, p being
the electron momentum. x = —AaAp/w(a.u.) is the scaling parameter, as
JN(x) decreases exponentially with N, if N 3> x. For our set of parame-
ters, assuming Ap ~ (2E)!/2, x = 0.36. These lines (N = N,jastic + X) are
shown in Fig. 15, together with the elastic line at N, j,4;c = —1. One sees
that most of the do/dN peaks fall well within the N — N_ja5¢5c < X limit. It
shows thus that even if the classical motion displays all characteristics of ir-
regular scattering, the magnitude of the quantum of energy in photon space
completely washes out any possible manifestation of chaotic behaviour in
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Fig. 15. Differential cross-section do/dN, with total & normalized to unity.
Deflection function of Fig. 13 is used for the derivation. Elastic scattering is
shown as the dashed line, as well as the two lines N¢jastic + X, a8 short-dashed lines
(see text). The upsurge at N > —0.05 is due to numerical errors.

a semiclassical point of view. However, there seems to exist very few avail-
able quantum calculations in a Coulomb potential, even 1D, as underlined
for example in reference [30]. A calculation was put forward [24], but in
circular polarization of the field, which considerably simplifies the system.
In Ref. [31] which also deals with circularly polarized light, the scaled pa-
rameters (with w =~ 0.37 a.u.) are quite similar to ours. Unfortunately no
do[dE are presented. Let us thus consider the classical cross-sections as
incentives for a quantum calculation, which could take into account the full
symmetry of the Coulomb oscillator.

4. Conclusion

The Coulomb problem, perturbed by an external field, has two prop-
erties that make it lie at the heart of the microcopic chaos problem. First,
and most important, it is readily accessible for the experimentalist, either
through the observation of H and its excited states [28,27], or through
the Rydberg states of the alkali atoms [12], or else by use of the exter-
nal Coulomb potential of an ion. Second, the simplicity of the Hamiltonian,
and the plain fact that it is perfectly known (in contrast to the vibrations
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of nuclei or molecules) gives credit to the highly sophisticated experiments
and calculations involved, and to the use of the powerful tools of group the-
ory. It makes possible to shrink the non-integrable part of the dynamics to
its smallest extent. However, the 1/r potential is known to be non-generic,
with an essential singularity at infinity. One singularity at » — 0 is easily
removed, through regularization, and provides a coherent, simple picture of
chaos at finite distances. If three particles interact with the 1/r;; potential
as in He**, the situation would be more intricate as an essential singularity
is created with all particles at a single point.

The situation at infinity is more diffcult to cope with, as that singular-
ity is non-removable. If the perturbed motion is compared with ordinary
free motion, infinite time delays and action integrals plague all calculations.
It is a nessary perequisite to switch to a picture where the pure Coulomb
motion is taken as the reference. That point of view is analogous of either
the quantum defect approach to Rydberg states, or to the use of Coulomb-
Born approximation in quantum scattering theory. However, the singularity
at infinity being essential, the section at infinity is non-generic, as the It-
erated Scattering map might show [16]. In the harmonically driven case,
the coexistence of loosely and tightly bound trajectories complicates the
analysis. The Fourier components of all the Coulomb states do not couple
all at a time with the external driving frequency, leaving most untouched
and the phase space of intrinsically mixed nature. An opportunity is thus
given here to study chaotic scattering in a complex situation, and to look
whether the global analysis put forward in the introduction do really apply
here.
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