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The review of author’s results of computer simulation on homogeneous
and symmetric with respect to up-down symmetry, two dimensional cel-
lular automata is given. The classification problem of the cellular au-
tomata is revised via the distribution function of the probability to find
any neighbourhood on a lattice. The intrinsic structure of a rule has been
introduced to explain the results obtained.

PACS numbers: 05.40.4j, 05.50.4+q

1. Introduction

Cellular automata (CA) are the simplest models of nonlinear dynamical
systems. They attract the scientific attention becauce their evolution can be
observed in computer step-by-step simulations. There exist some distinct
approaches and many applications of the model [1,2 and references quoted
therein]. The purpose of this poster is to present one of the possible ways
of understanding the dynamics of CA. The poster sumarizes the results of
the author’s papers on homogeneous and symmetric CA [3,4,5].

Generally, in CA each site of a large lattice [0] = {o;} carries one
spin o;, pointing either up = 1 or down = 0. The orientation of any
spin at time £ 4 1 is determinded completely by its neighbourhood at time
t. In this paper I consider a square lattice with dimension L and only
nearest - neighbours interactions are taken into account. Thus, the state
of any o; at time ¢t + 1 is fixed exactly by the following neighbourhood:
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0:(t) = (Ei(t), Ni(t), Wi(t), Si(t)),
* ... N; ... x

W ... oi ... E; (1.1)
Y. PO
in the following sense:
ai(t + 1) = r(0;(t)), (1.2)

where r € R is a rule which gives a method of finding the new spin value.

Let me restrict the set of rules R to the rules which do not depend on
a lattice site (homogeneous CA). Since there are the great numbers of both
possible initial states of a lattice and homogeneous rules, the examination
of CA are aimed at dividing the huge problem into smaller parts. The
observation that after many time steps the evolution of CA stabilizes, is the
easiest way of the selection. The Wolfram-type classifications [1,2] group
different CA according to the final patterns. The number of CA attracted
to the same pattern gives the next possibility to go through the problem of
the classification, [6]. The mean field theory approach to the classification
has been proposed also, [7].

The rules leading to stabilization of CA can be called dissipative. The
stabilization of CA can occur in one of the following ways:

- the whole pattern is shifted in one direction; a rule works as a trans-

lation by 1 lattice site. This can be called fized point stabilization.

- the whole pattern is shifted in one direction together with flipping all

spins; a rule works as as the composition of a translation and a spin

value conjugation. This is the - oscillating fized point class.

- the spin configurations are repeated periodically and during one time

period the pattern is shifted by a spatial period in one direction; a rule

works as a periodic transformation which after some (often L/2, or L )

steps combiné to the translation - limit cycle.

Let me consider a subclass of rules, r, € Rg, symmetric with respect to
up-down symmetry:

rs(—0i(t)) =1 - r,(0;(t)) (1.3)

where —0Q;(t) = (1 — E;(t),1 ~ N;(t),1 — Wi(t),1 - Si(t)).

Notice that for any rule r, there exists in Rg an Anti-Rule, r‘} defined by
the following relation: r2(©;(t)) = 1-r,(9;(t)), and any CA [0A] governed
by & evolves in such a way that after each 2 steps both patterns [¢] and
[0A] are the same. Hence, if a rule stabilizes the system as a fixed point,
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then the corresponding Anti-Rule will lead the system to the oscilating fixed
point, and reversally (see [4] for details).

In the whole set 21 = 65536 of all homogeneous rules on a square
lattice, the percentages for rules stabilizing as a fixed or oscillating point
(classes 0 to 4 by [2]) are: 5.7 and 2.8, respectively. The class of symmetric
rules contains of 28 = 256 ones, which stands only for 0.39% of all rules. But
among them 136 rules always reach the stabilization and there is a suspicion
that only because of the short time of observation the stabilization of further
48 ones does not always appear.

There exist four patterns that play the significant role among all final
states obtained in the -evolution of symmetric cellular automata. These are
as follows:

cluster-board 0000 1111
0000 1111
0000 or 1111 (1.4)
0000 1111

chess-board 0101
1010
0101 (1.5)
1010

line-board 0000 1010
1111 1010
0000 or 1010 (1.6)
1111 1010

pair-board 0011 0011
0110 1001
1100 or 1100 (1.7)
1001 0110

Their meaning follows from the fact that all of them are stable points of
the evolution equation (1.2). It means that if one considers any symmetric
rule r, € Rs and the lattice [og] is in one of (1.4), (1.5), (1.6) or (1.7)
shapes, then [0g] = r,[0¢] where the equivalence is up to a translation or
a translation + conjugation. But starting from any random state of the
lattice only a few rules lead to the one of above patterns. The above given
patterns have one common feature: at least two neighbourhoods result in
building them. Hence rules can be uniquely characterized by the function
which point out the resulting neighbourhoods.

This paper is to give the computer results of simmulations of CA with
all symmetric rules. In Section 2 one can find the comparision between the
old description of CA by the functions known as Magnetization and Activity,
and the new one which is based on the distribution of neighbourhoods. In
Section 3 there is given an explanation to the obtained results. Because of
the unique correspondence between stabilizing rules and their distributions,
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our propositions can be considered as powerful tool in examinations of CA.

2. Simulation results

There are possible 16 different configurations of four nearest - neigh-
bours on the square lattice. They can be divided with respect to up-down
symmetry into 8 pairs. Since we consider symmetric rules only, we can
take into account one representative of each pair. Fig. 1 presents 8 config-
urations considered. One can assign a figure n ranging from 7 to 0 to the
configuration as indicated in Fig. 1.

0 0 1 0 0
o 0o o 1 o o0 1 o0 o0 o0
0 0 0 0 1
(M (6) (5) (4) (3)
1 0 0
o 1 1 1 o0 1
0 0 1
(2) (1) (0)

Fig. 1. Configurations and their numbers.

Any rule can be defined as the sequence of up and down spin states
which are taken by the central spin if the corresponding configuration sur-
rounds the spin. So, each symmetric rule r, can be identify by the following
number:

T
Ty = z oi(n)2™. (2.1)
n=0

Notice that an Anti- Rule number, rA, has the property r2 = 255 — r,.

The property (1.3) allows us to decrease the total number of considered
rules by half. Moreover, symmetries of the lattice (rotational and mirror
symetries), reduce it to 24 ones.. All 24 representantatives considered are
listed in the first column of Table I. The first 12 rules of the table always
stabilize CA. The next 5 sometimes can stabilize the system but for the last
7 rules stabilization of CA never occurs [4].

One can characterize the final lattice state by the following functions
[3,4]:

Magnetization - the number of spins being in up state. This is the mean
field characterization of CA [6].
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Activity - the number of spins changing theirs states in the last time
step.
They both can depend on P — the probability of a single spin to point
up in the initial random state. In Figs 2,3 the P-dependence is presented
for stabilizing rules. Magnetization and Activity of non-stabilizing rules are
independent of P. The presence or not of the dependency on P divide the
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TABLE I

The distributions of configurations 7, - -, 0 in final patterns for all symmetric rules.
L = 44 and P = 0.5, both probabilities and STD-errors are expressed in per cent.
The number of CA represented by each rule is given in the last column.

Conf.No ?(7) r(6) ?(5) r(4) Numbers
Rule No : _ of rules
1 479 4250 0.23+0.26 0.1840.45 0.221+0.26 8

6 47.0 +210 1374+0.93 0.01+0.04 1.37+0.93 8

9 6.3 &+ 0.60 6.2 +0.37 6.2 +0.44 6.3 +0.37 8

10 128 + 16 5659 +040 6.0 £041 59 +£0.34 16

11 89 4+ 096 48 +0.41 8.8 +0.39 4.8 4030 8

13 70 4+ 058 8.9 +0.42 4.7 +£0.34 9.0 £0.48 16

25 0.784 1.1 0.2840.59 0.25+0.22 0.28+0.59 16

27 14 4+ 1.0 0.03+0.08 0.80+0.69 0.031+0.08 16

41 0.00+ 0.01 0.2240.21 0.05+0.23 0.2310.22 8

45 0.00+ 0.00 1.2 +1.4 0.001+0.00 12 14 8

114 0.12+ 0.56 6.2 4+0.65 6.1 +042 6.2 +0.68 16

118 0.00+ 0.00 4.7 037 89 +050 4.7 £047 8

12 11.9 + 2.9 119 2.1 0.5340.21 119 £2.1 8

14 30,5 £12.0 6.3 +1.3 35 +14 62 £1.3 8

115 0.02+ 004 59 1.9 33 +£0.73 5.9 £+£1.9 8

116 0.56+ 0.17 0.514+0.14 12.2 +0.8 0.544+0.18 8

117 0.124 0.15 3.3 +0.8 6.0 +£0.8 34 +09 16

42 9.7+ 1.9 7.7+ 0.67 4.7+ 0.50 7.6+0.62 8

43 5.9+ 0.63 6.0 1 0.47 5.9+ 0.59 6.0+£0.33 8

49 5.540.89 7.7+ 0.51 4.7+ 0.38 7.6 £ 0.44 16

51 6.2+ 0.9 6.3+0.5 6.04+0.3 6.2+05 16

113 6.44 0.81 6.3 1+ 0.45 6.3+ 0.52 6.3 £ 0.55 8

121 5.0 4+ 0.67 4.7+ 0.37 7.340.50 4.6+ 0.44 8

124 6.2+ 0.60 6.210.48 6.240.33 6.3+ 0.42 8

TABLE I (continued)

Conf. No ?(3) ?7(2) (1) ?(0) Number
Rule No of rules
1 0.184+045 0.63+0.60 0.00+0.02 0.68+0.69 8

6 0.011+0.03 0.084+0.27 0.004+0.00 0.0910.29 8

9 6.3 +038 6.4 +057 6.3 +0.55 6.2 +0.54 8

10 6.0 £0.33 12.8 +£0.83 0.004+0.00 0.00+0.00 16

11 89 +042 7.2 £051 0.00+0.00 6.8 +0.56 8

13 4.7 +0.36 0.004+000 6.9 +039 88 +£0.53 16

25 10.254+0.22 475 t1.6 0.66+0.60 0.00+0.01 16
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TABLE I (continued)

Conf. No »(3) (2) (1) »(0) Number
Rule No of rules
27 0.80+0.69 475 +16 0341065 0.00+0.00 16

41 0.05+0.23 0.71+0.56 478 +1.6  0.811+0.62 8

45 0.01+£0.02 0.28+1.0 47.7 +£2.1 0.05 + 0.23 8

114 6.1 030 0.11%£055 125 £1.1 12.6 1.1 16

118 88 +054 7.0 060 88 054 7.0 £0.36 8

12 0.534+0.21 0.521+0.16 12.3 +2.4 0.521+0.16 8

14 3.6 +1.4 0.1240.14 0.02+0.04 0.10+0.12 8

115 3.3 +£0.71 0.12+40.12 30.9 2.7 0.1340.13 8

116 12.2 £0.7 11.7 £1.5 0.53+0.16 11.8 +1.3 8

117 6.1 +£08 30.7 +1.9 0.154+0.13 0.044:0.08 16

42 47+034 531+052 491052 5.4+0.53 8

43 6.0+0.47  63+055 65%£037 6.240.58 8

49 4.7£0.39 9.3+1.1 5.4+ 0.45 5.5+ 0.37 16

51 6.1+04 6.5+ 0.5 6.0+ 0.5 6.1+ 0.6 16

113 6.3 +0.47 6.140.67 6.3 +£0.44 6.3 £ 0.57 8

121 7.4+ 0.58 5.3+ 0.77 9.84+1.4 5.2+ 0.36 8

124 6.1+ 0.37 6.2+ 0.56 6.3 +0.38 6.3+ 0.45 8

whole set of symmetric rules. But the above defined functions do not
answer the questions about leading or not to the stabilization of CA.

The results of computer simulations on pattern distribution together

with their STD-errors are collected in Table I (see [5] for the description
of the computer experiments). One can see that there is a unique corre-
spondence between the distribution of configurations in final patterns and
dissipative rules. Because of the range of values of distribution functions,
it is easy to perform a general division of the set of dissipative rules into
two subsets: rules leading to the distributions of neighbourhoods with sharp
peaks: 1, 6, 25, 27, 41, 45;

rules leading to the distributions of neighbourhoods with strong zeros: 9, 10,
11, 13, 114, 118, 12, 14, 115, 116, 117.

The role of rule 9 will be explained in the next section.

Since STD- errors are small, this characterization can be extended to
the whole set of symmetric rules. The general difference between the stabi-
lizing and non- stabilizing cases consists in the fact that there are neither
peaks nor zeros in the distributions of non- stable automata.

One can check in computer simmulations that the properties of the
sharp peaks or the strong zeros are independent of P (see [5]).

Notice, that Magnetization can be easy expressed by the probabilities



306 DANUTA MAKOWIEC

pp(%) of finding the i neighbourhood in the final pattern:

215

M([o]) = — Z a;pp(i), (22)

where a; is the number of up states in the ¢ configuration, i = 0,.--,15.
Since the values of probabilities can depend on P, the index P is intro-
duced to notation of p%,(i). However, in case P = 0.5 the probabilities of
symmetric with respect to up-down symmetry configurations are the same.

3. Analysis of stabilities

A rule 7, viewed as a function over configurations, is a function of one
variable and its domain consists of 16 elements. Because of the spin values
taken by neighbours, the 8 elements of the domain of the symmetric rules
can be grouped as follows:

A={1, B=1{6,...,3}, C={2,1,0}. (3.1)

Hence, any r, can be defined as a mapping from the union of the separate
subdomains: A, Band Cto the set of “actions” which is also divided into
three parts, respectlvely to the actions on the subdomains:

(FF\

S

rstAUBUC — ((le), AES : (qs)) (3.2)
| S-E :
s

- N}
Notation introduced above can be easily explained by the following obser-
vations.

There exist two possible actions o;(t 4 1) of a spin o; in time ¢t + 1 in

the case when its neighborhood ©;(t) in time ¢ forms an A configuration:
one consists in following neighbours in a Ferro way,

oi(t+1)=0 if 0;(t) € A4 (3.3)
and the second one in Anti-Ferro way,

oit+1)=1 if 0O;(t) € A; (3.4)
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Let us denote them F and F A, respectively. Notice, that r, with property
(3.4) is called Anti-Rule in the previous Section .

The set of actions over B subdomain, B-actions, is the greatest one
because the number of B elements is the biggest one. All 16 = 24 B-actions
can be defined as:

- clustering: 2-actions

FF: oi(t+1)=0 if O4t) € B;
AF: oi(t+1)=1 if O;(t) e B;
- shifts: 8-actions
S: oi(t+1) = Si(t) if O(t) € B;
E,N,W: as above and the letter denotes the neighbour which is
shifted;
AS: oi(t+1)=1-8;(t) if ©O4t) € B;
AE, AN, AW: as above and letters denote both the spin value con-
jugation and the neighbour which is shifted;

- alternative shifts: 6-actions

S—-E: oi(t + 1) = max(S;(t), Ei(t)) if 0O;(t) € B;
S—N,S-W,E-W,E—~N,N—-W: as above with active neighbours
denoted by the letters.

The last part of r, is responsible for the rule action when neighbourhood
of a spin is C-type, C-action. One can see that it has to be one from below
listed shifts:

s: ogi(t+1) = Si(t) if Oi(t) € C;

e,n,w: as above and the letter denotes the neighbour which is
shifted;

as: oi(t+1)=1-S;(t) if 0O;(t)€C;

ae,an,aw: as above and letters denote both the spin value conju-
gation and the neighbour which is shifted.

The relations between the numbers of the rules (2.3) and actions (3.2)
as presented in Table I are given as

1=(F,FF,s) 6= (F,FF,as)

9=(F,S,8) 10=(F,S,w) 11=(F,S,an) 13 =(F,S,aw)
25=(F,W-5,s)27=(F,W-S8,an)41 = (F,S—N,s) 45 = (F,S—N, aw)
114 = (F, AS,w) 118 = (F,AS,as) 12=(F,S,n) 14 =(F,S,as)

115 = (F, AS,an) 116 = (F,AS,n) 117 = (F, AS, aw)

42 = (F,5—N,w)43 = (F,5—N,an)49 = (F,W-N, s)51 = (F,W—-N,an)
113 = (F, AS,s) 121 = (F,AF,s) 124 = (F, AF, as) (3.5)

The actions of any rule on the separated parts of domain are clearly
seen from Eqs (3.5). When one considers a lattice where spins with A4, B
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or C neighbourhoods are separated from each other, then one can observe
the evolution as a product of the actions:

r(AU BUC)=r(A)xr(B)xr(C). (3.6)

On a lattice the only way to see separatéd actions is to create a lattice
with all neighbourhoods belonging to one subdomain. One can check that
patterns (1.4) — (1.7) fulfill this condition. On random initial states the
elements from different subdomains are randomly mixed. If P = 0.5 then
the half of configurations belongs to B-subdomain, and therefore any aétion
on C elements is essential for the whole evolution of automata. This action
dominates over other partial movements in the following sense: automata
reach the stabilization almost always on a pattern where a rule can work
as a translation in the direction which agree with B-action. This occurs
almost always because there are two exeptions: when there exists a strong
contradiction between B and C-action (rules (F, S,n) and (F, AS,n)) and
when B-action does not determine any direction (rules (F, FF,.)-type). In
the first case the evolution has the property that all changes made during
one period combine to the translation by the'number of the period lenght
in the direction fixed by B-action. In the second case, the fixed point
stabilization rarely is net a translation in one direction but there are a few
parts in a final pattern shifted in different directions, [6].

The role of B-neighbourhood is easy to see when B-action is a shift,
see Table II.

Rules 9 = (F, S, s) and its Anti-Rule- 246 = (F A, AS, as) play a special
role. One can see that rule 9 is a translation from South, and then rule 246
is a composition of a translation from South and a spin conjugation, and any
initial pattern is its own attractor. The evolution with a rule r, which has
the same B-action but acts differently on C-subdomain, can be described as
the elimination of neighbourhoods on which the rule r, differs from one of
the pair 9 and 246. The smaller number of differences determines towards
which evolution the rule r, leads. When the same numbers of differences
appear, case 113=(F,AS,s), the stabilization cannot be reached. The conflict
in the directions of shifts over B and C subdomains is also reflected in the
increase of the length of time needed to reach the stabilization.

There is a reaction coming from C-action on B-subdomain, also. Ac-
cording to this process one obtains the same probabilities to find B configu-
rations having the same vertical (6, 4) and horizontal (5, 3) neighbours. The
strongest interaction is observed when the shifts have opposite directions,
as in rules: 12 = (F, §, n), 116 = (F, AS,n). The favoured pair is the one in
which B-actions NV and S or N and AS agree. (see Fig. 4) Other C-shifts:
w, e, s, do not change the initial distribution of B-neighbourhoods. They
are neutral. The influence of the an C-action can be explained in the same



Classtfication of Cellular Automeata 309
TABLE II

Differences between the rules and the property of a rule of leading to the stabi-
lization. There are given results of the lenght of time needed by CA to reach the
stabilization and the type of the observed stabilizations in case L=44, P=0.5 and
time of observation do not exceed 400 steps.

Rule number Odd config. to  Odd config. to {T) to Probability
and actions SHIFT SHIFT+CONJ.  stabilise and limit
9=(F,S,s) none T7,+++,0 (T)=0 1 -point
11 = (F, S, an) 1 Ty+0+,2,0 {T)=6 1 -point
13 = (F, S, aw) 2 7y+++,3,1,0 (T)=6 1 -point
10 = (F, S, w) 1,0 Tyooer2 (Ty=11 1 -point
12 = (F,5,n) 2,0 7,--+,3,1 (T)=50 1. Roiat
14 = (F, S, as) 2,1,0 7,3 (T) =206 0.5 -point
113 = (F, AS, s) 6,5,4,3 7,2,1,0 never 0

115 = (F, AS,an) _ 6,---,3,1 7,2,0 (TY=250 0.26 -oscil.
117 = (F, AS, aw) 6,---,3,2 7,1,0 (T) =206  0.53 -oscil.
116 = (F,AS,n) 6,-++,3,2,0 7,1 (T)y=50 1-2ity
114 = (F,AS,e) 6,---,3,1,0 7,2 (T) =12 1 -oscil.
118 = (F, AS,as) 6,--+,0 7 (T)="1 1 -oscil.
246 = (FA,AS,as) 1,---,0 none (T)=0 1 -oscil.

way as for n, by comparison of B-actions § with AN, and AS with AN
(see Fig. 5). The rest of C-actions: as, ae, aw favour the other pair than an
action does.

If the action over B is not of the shift-type, the evolution does not
only mean elimination of some A or C-neighbourhoods but it also works
on converting B-neighbourhoods into one from the list (1.4) — (1.7). Such
double effect needs more time than the destroying process. But the sta-
bilization at the one of the patterns from (1.4) — (1.7) is observed only if
C-action does not oppose B-action. It means that rules: 25 = (F,W - S, s),
27 = (F,W — S,an), 41 = (F,S — N, s), 45 = (F, S — N, aw) always lead
to stabilization (in time shorter than 100 steps if L = 44) as a trans-
lation with one from directions given by B-action. On the other hand,
rules: 42 = (F,§ — N,w), 43 = (F,S — N,an), 49 = (F,W - N,s),
51 = (F,W — N,an) never cause stabilization in my experiments. No-
tice, that stabilization is reached on the pattern where there are only such
C-neighbourhoods which have the property W; = §; in case of rules 25,26
and S§; = N; in cases 41,45.

The action FF over B-subdomain destroys B-neighbourhoods, inde-
pendently of C-shift, and also converts them into A neighbourhoods. In
this case B-action does not fix the translation direction and therefore the
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direction depends on C-action but it is not fixed, [6,7]). The rule with B-
action AF as a opposed to FF cannot give a stable solution.

4, Conclusions

The previous approaches to the CA classification were either phenome-
nological in the sense that do not touch the dynamical problems (1,2], or
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not sufficiently sensitive to reflect these problems [7]. Hence, they do not
give the answer to the question about the nature of CA. One can bridge the
gap between properties of the final CA states and the rules via neighbour-
hood distributions. The attracting patterns attainable by the automata are
firmly determinded in this picture if the initial states of automata are taken
randomly. The distribution functions as the macroscopic functions can give
answers to some global questions (for example it can be used to compute
Magnetization (2.2)). Moreover, they also give some new hints for concern-
ing the problem of classification of cellular automata. The final patterns
can be viewed not only as a mixture of zeros and ones but as well defined
structures which are conserved in time.

Since the properties of non-stabilizing rules expressed by the distribu-
tions of neighbourhoods are also firmly determinded, this approach can be
powerful in this case, either.

The introduced structure of the rules via the discussed actions makes
it possible to give a satisfactory explanation not only of the obtained neigh-
bourhoods distributions in the final patterns but also allows elucidation of
such properties of CA as: reaching or not the stabilization, the lenght of
time needed to stabilize the system and even type of stabilization.

The author thanks the Organizers of the IV Conference on Statistical
Physics, Zakopane 1991, for the invitation.
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