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The physical origin and the main ideas of the theory of quantum
stochastic differential equations are outlined. The related limit theorems
are briefly discussed.
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In classical statistical physics the influence of an environment on the
time evolution of a selected dynamical variable X, is described in terms of
the Langevine equation:

X¢ = F(Xy)+ G(Xe) xt (1)

where x; is a stochastic process describing noise. Typically {x:,t € [0,00)}
is assumed to be white noise i.e. “Gaussian stochastic process with §-like
autocorrelation function”. Obviously such noise is a singular object and one
needs a proper mathematical formulation of (1). It can be done using It6
formalism [1] which involves It integral

t2
J= [ fidB, (2)
/

with respect to the normalized Brownian motion B; (E(B;) = 0, E(B?) =
t, E(-) denotes expectation value). The random variable J in (2) is well
defined in the case of adapted (nonanticipating) stochastic process f;. Then
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the heuristic equation (1) with a white noise x; may be replaced by the It6
stochastic differential equation:

dXy = {F(X:) + 3G(Xt)V2G(Xy)}dt + G(X.)dB:, (3)

where in fact Eq. (3) is a short-hand notation for the associated integral
equation. The term !/,GV.G in (3) is sometimes called Wong—Zakai cor-
rection [1] and may be derived from Eq. (1) with a regular noise using a
limiting procedure. Starting with an equation of the type (3) one can find
stochastic differentials for functions of X, using the formal rule given by the
famous It6 formula

dB? = dt. (4)

Now we shall try to generalize the notion of stochastic differential equa-
tion into the quantum domain. First we consider the case of random time-
dependent Hamiltonian H(t) leading to a random Schrédinger equation

dw(t)

5 = —iH(t)¥(t), H(t) = H*(t), (5)
or in an equivalent form
dU(t) ,
— = HOUR), (6)

where U(t) is a unitary operator. Again one can study a white noise per-
turbation
H(t)=Ho+x:V, Ho=Hy, V=V (1)

The proper form of (6) in this case is given by the following operator valued
“Itd~Schrédinger equation”
dU(t) = {(-=iHo — 1V?)dt — iVdB,}U(¢). (8)

The equivalent description is given by the reduced dynamics A;, t > 0 on
density matrices defined as

pe = Ap = E{U(t)pU*(2)}. (9)

Using Eq. (8) and the Ité formula (4) one may easily check that A is a
quantum dynamical semigroup [2] satisfying the Markovian master equa-
tion:

%—t- = —i[Hp, p¢) — %[V’ [V, pe))- (10)
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The class of master equations obtained from (9) is rather restricted. For
example, if the entropy of p is given by

S(p) = —Trplnp, (11)
then for A, defined by equation (9) with any random U(t) we have [2]:
S(Aw) 2 5(0). (12)

Hence the model with stochastic Hamiltonians of the type (7) cannot de-
scribe the open systems in contact with a heat bath at finite temperatures.

It is known that the most general (completely positive, trace preserving)
master equation can be written as ([2] and references therein):

% = —i[H, p] + %;{[Wamtwﬂ + Wape, Wel} (%)

with H = H*, W, operators acting on the Hilbert space Hg. Quite formally
one may derive master equation (13) (with a single W, = W for simplicity)
using the following generalization of (8):

dU(t) = {(—iH — 3W*W)dt + i(W*dA, + WdA?)}U(2), (14)
if one assumes the following It6 rules for the “noises” A, A}

dA? = dA?? = dA}dA, =0,
dAdA} = dt. (15)

We see that this new type of noise is a noncomutative one (quantum
noise) and therefore should be realized in terms of operators on certain
Hilbert space. The presented below noncomutative generalization of the
stochastic differential calculus was proposed by Hudson and Parthasarathy
[3] and developed by many authors (see {4, 5] for reviews).

Let F(L?(R.)) be a Bose Fock space over a “single particle” Hilbert
space LZ(Ry) , (R4 = [0,00)). For any pair f,g € L?(Ry) we define
annihilation and creation operators a(f),a*(g) satisfying CCR:

[a(£),a*(9)] = (£, 9),

[a(£),a(g)] = [a*(f), a*(g)] = 0. (16)
The family of operators {A¢, A7,t € Ry} defined as:
A, = a(6y),

Af = a*(6,), 17)
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(0¢«(2z) = 1if 0 < z < t, and zero otherwise) is called quantum Brownian
motion (or quantum Winer process). One can check using (16) that formally
dAs, dA7 satisfy quantum It6 formula (15). The quantum Brownian motion
is a noncomutative generalization of the classical Wiener process in the sense
that a family of random variables {B¢,t > 0} is replaced by the family of
operators {A¢, A7,t > 0} and the classical expectation E(-) is replaced by
the quantum one Eg(-) such that:

Eg(A} Al,---4} )= (0,4} 4} ... 4! 0), (18)

where A} denotes 4; or A} and £2 is the vacuum state in F(LZ(R4)).
Moreover one can easy check that the commuting family of operators B; =
A: + A7 yields the quantum correlation functions at the state 2 which are

equal to the correlation functions for the Brownian motion and hence B,
can be identified with B, .

In order to define It6 integrals with respect to A;, A} one needs the
notion of adapted quantum process. For ¢t € [t,00) we have L?(R}) =
L2%([0,t)) ® L?([t, 00)) and hence

FEA(R) = F(T(0,1)) 8 F (L2 (1, )))-

The family {X¢} of operators on F(L?(R.)) is a quantum adapted (nonan-
ticipative) process if Xy = X, ® 1[¢,00) Where X, acts on F(L*([0,t))) and
1[¢,00) is an identity operator on F (z? (It 00))) . For such quantum pro-
cesses one may define the quantum It6 integral:

ty
"= / X.dAl, (19)
t

which exists as an operator on F(L?(R..)) defined by its action on coherent
states (exponential vectors):

-ne-Lof®fg..
=06 —Tme " re- (20)

Having the notion of It6 integral one can treat (14) as a short hand nota-
tion of the associated integral equation. The later may be solved in terms
of Dyson series involving quantum stochastic integrals. The solution U(t)
is a family of unitary maps on Ho ® F(L?(R4 )). Taking several indepen-
dent (commuting) quantum Brownian noises (A$, A{™*) one can generalize
equation (14) and obtain the unitary evolution U(t) such that:

Eq(U(t)pU*(t)) = e'Lp, (21)
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with L given by the right-hand side of the equation (13).

The quantum stochastic differential equation (QSDE) describe open
quantum systems driven by quantum white noise. It is well known that
generally white noise cannot be realized in real physical systems and may
be obtained by means of certain limit procedures. Therefore the natural
question arises: How to derive QSDE from the realistic quantum dynamics
of an open system coupled to a reservoir? Such program has been inves-
tigated in the pioneering work by Accardi, Frigerio and Lu (6] and is still
realized (see for example Refs [7-9]).

We shall describe very briefly the main ideas of this approach in the
case of the weak coupling limit [6]. Let Hg , Hy denote the Hilbert spaces
of the system S and the reservoir R respectively. The total Hamiltonian
involving a coupling constant ) is given by:

Hy=Hs+Hr + AV (22)

and the evolution in the interaction picture is governed by the family of
unitary operators on Hs ® Hp :

UM¢t) = exp{i(Hs + Hg)t} exp{—iH\t}. (23)

The limit theorems state the convergence U(t/A%) — U(t) where U(t) is
a solution of QSDE of the type (14) (notice the rescaled time t/A\? — van
Hove limit). Obviously U*(t) and U(t) act on different Hilbert spaces and
the convergence should be understand in a weak sense. In the simplest case
one proves the convergence of the matrix elements:

(u@ Yr, UM/ @ vs) = (uo g, Ulva )  (24)
for any u,v € Hg and {¢} C @, F(L?*(R+)). Moreover for any A 9, is
obtained from fixed ¥ € MR by a certain time averaging procedure and
there is a map ¢ +— ¢. Typically one chooses as {¢} coherent vectors
while the form of ¥ depends strongly on the interaction V. The known
limit theorems have been proved for the free Bose and Fermi reservoirs
with linear and bilinear interactions. In the linear (Bose) case ¢ may be
taken as coherent states while for the bilinear interaction one can choose
certain squeezed states. Besides the weak coupling limit the low density
limit has been studied [7-9]. In this case the varying coupling parameter bY
is replaced by the density of the reservoir’s gas. The obtained QSDE is more
complicated, it involves scattering matrix and the new type of quantum
noise (quantum Poisson process) being a linear combination of A, A} and
the so-called number process:

N, = ja‘(z)a(c)dz.
0
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Here [;° f(z)a¥(z)dz = ab(f). One should stress that these new limit
theorems are essential extensions of the usual Markovian limit procedures for
the reduced dynamics of given systems. The later involve a fixed equilibrium
state of the reservoir while the former provide a simplified description of the
total dynamics of the open system plus reservoir with large class of initial
conditions.

The formalism of QSDE found already applications in quantum optics
and measurement theory (see for example Refs [10, 11]) and for sure will be a
powerful mathematical tool in the quantum theory of irreversible processes.
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