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In this contribution, scaling properties of hyperbolic and nonhyper-
bolic model systems are discussed by using the generalized thermody-
namic formalismi. The central quantity for the investigation is the gener-
alized entropy function. With the help of this approach, insight into the
possible occurrence of phase transitions in the various entropy-like scal-
ing functions can be gained. It is shown how this effect is determined by
the existence of a critical line in the surface described by the generalized
entropy function.

PACS numbers: 05.70. Ce, 05.70. Fh, 05.45. +b

1. Introduction

In this work, the generalized thermodynamic formalism, so far demon-
strated to provide an elegant and complete means for characterizing chaotic
dynamical systems, is applied to a simple hyperbolic and a nonhyperbolic
system. The latter systems are of special interest because generic systems
are believed to be of nonhyperbolic nature. In the pioneering work “ther-
modynamic formalism” of Ruelle [1] the topic is to deduce the macroscopic
behaviour from the microscopic knowledge of a dynamical system (of axiom
A-type). As the most prominent one, the phenomenon of phase transitions
should be described. In going from the microscopic to the macroscopic
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point of view, an averaging process over a certain ensemble (canonical, mi-
crocanonical, grandcanonical ensembles) is involved, and the relevant prob-
ability measure, the Gibbs measure, is specified.

In subsequent years, this formalism has been applied to the characteriza-
tion of experimental systems and artificial models focusing on two different
aspects. From one point of view, the probability distributien in the phase
space is described with the help of the family of Renyi dimensions [2-4], or
their Legendre transform f(a). The other lends itself to the study of the
distribution of exponential stretching rates in the tangent bundle along the
flow of the system, which leads to a closely related formalism [5-9]. In spite
of the similarity between the two approaches, only little use has been made
of the possibility to unify the two approaches [9-16], and applications of
the latter concept to real systems or models have been scarce so far. How-
ever, an understanding of this approach is advantageous for the discussion
of important effects a dynamical system can undergo, such as, e.g., phase
transitions, which cannot only be detected for the probabilistic, but also for
the temporal description of experimental systems [17, 18].

2. The generalized thermodynamic formalism

As a starting point, let us make the observation that, to incorporate
both points of view, a generating partition suitable for symbolic dynamics
should be chosen. Then the partition function [4} for a system can be written

as
Ze(e.8m)= Y, pl, (1)
JjEQ,...,.M)"

where the sum extends over all non-forbidden sequences of length n which
can be obtained by using the M symbols needed for the symbolic description.
Here, the size of the j-th region R; of the partition is denoted by /;, whereas
the probability of falling into this region is denoted by p; (p; = [ R; p(z)de,

where p(z) denotes the natural measure). Local scaling of £ and pin n
(where n denotes the “level” of the partition) is expected. In this way, the
length scale £ and the probability p give rise to scaling exponents € and a
through

Li=e"", (2)
pi=4". (3)
Let us underline that the above partition takes into account both the length

scales and the probabilities in an independent way. This is necessary for
a refined description of the scaling behaviour, since no general dependence
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between the two aspects is given. Owing to this fact, in contrast to partition
functions involving only length or only probability scales, the treatment
leading to the associated averages is termed the “generalized” or “bivariate”
thermodynamic formalism. From the partition function the generalized free
energy Fg can be derived [9, 10]:

FG(% ,3) = n]i_)moo;l"-log Z e"’“j(a,'q+ﬁ) , (4)
J€(1,..., M)

where log denotes a natural logarithm. Note that for G(8,¢) = — %Fg(q, ),
the term “Gibbs potential” is used [11].

From the generalized free energy, the generalized entropy function can
be derived as [10, 17]

Se(a, €) = Fa(g, B) + ({(a)g + B)(e) . (5)

The angular brackets indicate those values of a and € which yield the most
dominant contribution to Zg (for the given values of ¢ and ). The free
energy Fg or the generalized entropy Sg describe in this way the scaling
behaviour of the dynamical system in an equivalent way.

3. Hyperbolic and nonhyperbolic examples

As a first example for the application of the thermodynamic formalism,
let us consider a hyperbolic model with a symbolic description by three
symbols, with unrestricted grammar (for the effect of incomplete grammars
on the generalized entropy see [14]). In Fig. 1 we show the associated
generalized entropy function, where the contour lines indicate the values of
the function.

Furthermore, the lines are pointed out along which different, more
specific entropy functions are evaluated: Sg(e) = Sg(a,é€)lq=0, f(a) =

§qj€a_,e)| Fg(q,8)=0s and g(A) [8], the Legendre transform associated with
the Renyi-entropies Sg(a, €)|g=o. As a consequence of the hyperbolicity of
the system, all of these entropy-like scaling functions (not to be mistaken
with the scaling functions of the Feigenbaum type) are strictly convex.
This situation changes drastically, if a nonhyperbolic system is consid-
ered. To illustrate this, we shall investigate a second model (closely related
to a model which has been first introduced by Kovéacs and Tél [15]). The
support of this model is generated by the elements of a partition generated
from a hyperbolic map, whereas the measure attributed to the support is
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Fig. 1. Scaling behaviour of a hyperbolic three-scale Cantor set with restriction.
The figure shows the a —e—area on which the entropy Sg(a, €) is positive. The lines
- are shown along which the functions Sg(¢) (dashed-doubledotted), g(A) (dashed)
and f(a) (dashed-dottied) are evaluated. In the case of hyperbolic systems, these
functions are analytic. To give more detailed information on the function Sg,
contour lines are indicated, increasing in steps of 0.1.

given by the corresponding elements of a nonhyperbolic map. As a very
simple example of a hyperbolic support map, the tent map

f - z/ll ; forz € [0,[1/(11 +l2)],
z— (1—=2)/L2, for z € [l2/({1 + £2),1], (6)

is taken, where for the numerical treatment {; = % and {; = ?,— The map
of the measure, instead, is given by

g:z—4(1-2z)z, )

the fully developed logistic map. Note that, in this way, no restriction is
imposed on the associated binary grammar and, since the measure map is
nonhyperbolic, we deal with a nonhyperbolic system. It is easily seen that,
in this way, a two-scale Cantor set with measure is obtained. The three-
scale Cantor sets described above arise from a generalization of the latter
model to three linear pieces. Moreover, also the behaviour of maps from
the interval can be fitted into this description. While the behaviour of the
support is given by the map itself, the measure map has to be determined
from additional considerations involving specific properties of the map [15].

For this model, the generalized entropy function is displayed in Fig. 2,
as obtained from a numerical approximation of level n = 10. As can be
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Fig. 2. Support of Sg(a, €) for the nonhyperbolic model, using an approximation
of level n = 10. The lines are shown along which the functions S¢(€), g(4) and
f(a) are evaluated (dashed-doubledotted, dashed, dashed-dotted, respectively).
The contour lines obtained from (1) are indicated, increasing in steps of 0.1. The
circular-shaped dashed line indicates the location of the critical line. From level
n = 10, this property is not indicated sufficiently by the contour lines.
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Fig. 3. f(a)-spectrum for the nonhyperbolic model. The dashed branches indi-
cate the hyperbolic contribution. The phase-transition point is situated at the
intersection of the straight line with the curved lines.

demonstrated explicitly from an eigenvalue formalism involving a general-
ized Frobenius—Perron equation, a critical line emanates in the surface of
the values provided by the generalized entropy function, which connects
all points of nonanalytical behaviour (the circular-shaped dashed line in
Fig. 2). Note that the results obtained in Ref. [15] also apply to the present
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model, where the phase transitions are shown to be generically of first or-
der. Typically, the scaling functions are characterized by the form shown
in Fig. 3 (for the f(a)-spectrum), in many cases (but not necessarily) with
a straight-line behaviour at one of the tails. From the approximation of
a given level alone, it would be concluded that also the Sg(€) spectrum
undergoes a phase-transition-like behaviour. However, a more careful inves-
tigation of the asymptotic situation suggests a different insight, illustrated
in Fig. 4. The critical line, in the asymptotic case n — o0, is situated
exactly above the bottom border of the support of the generalized entropy
function. Therefore, Sg(¢), being confined to this line in the asymptotic
limit, shows no phase transition.

0

1 1.7
€ 5

Fig. 4. Asymptotic form of the generalized entropy function Sg(«, €). The critical
line has moved towars the bottom line. No contour lines are shown.

4. Conclusions

With the help of appropriate models, the theoretical tools have been
outlined which_permit one to predict and understand the different combi-
nations of first-order phase transitions which appear for generic dynamical
systems. Apart from this, using the generalized thermodynamic formalism,
a more detailed and refined description of the system considered can be
given. This fact, in addition, could be of valuable help for the development
of realistic models for experimental systems.
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