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A review of entropic properties of quantum dynamical systems is pre-
sented.
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The lecture notes presented here are an attempt to give an introduction
to some concepts of quantum dynamical systems theory. As the subject of
the theory is very vast I have had to restrict myself to a very limited subset.
In these notes, I present only the latest developments in the study of entropic
properties of infinite quantum dynamical systems. In particular, I shall
concentrate upon relations between entropy increase, dynamical entropy,
convergence to equilibrium and randomness.

In order to fix notations let me start with the following definition.
Let (A, 7:,w) be a dynamical system where A is a C* algebra, 7; a one-
parameter semigroup of completely positive unital maps over A, w a ¢ -
invariant state. Let me recall that A represents the set of obsrevables and
T¢ a time evolution of physical system.

One of the most important concepts in the theory of classical dynamical
systems is the so-called dynamical entropy of flows, Kolmogorov-Sinai (K-S)
entropy [1-3]. This entropy gives a qualitative characterization of dynamical
maps with respect to mixing. Moreover, it can be also considered as a
quantitative measure how fast the system is mixed. Let me recall at this
point that various mixing properties are important ingredient of attempts
of physicists to understand the approach to equilibrium.
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Recently, a generalization of K-S entropy for quantum systems with
a number of promising properties [2-8] was obtained. This definition of
quantum dynamical entropy is very complicated and technical. 'Therefore,
let me present here the basic points of simplified definition. Let A be a
finite subalgebra of A. Then

H,(A)= _sup » XiS(wla,wila),

Ajwi=w

where S(u,v) is the relative entropy and the sup is taken over all decom-
position of w into states w;. Then, after the generalization of H,(A) to an
arbitrary finite number of subalgebras, H,(A4;,- -, A,), one can define

hoa(rid) = lim ~ Hy(4,7(4), 7" }(4)) (1)

Then, the quantum dynamical entropy h,, 4(7) is defined as

ho,a(T) = sup ho, a(T, A). (2)
ACA Afinite

Although this definition is rather complicated it was possible to prove
promising properties of s, 4 and to compute this quantity for several mod-
els. In particular, quantum dynamical entropy was explicitly computed for:
(i) a quantum lattice model with the space translations as ¢ [2].
(#i) infinite fermi systems with a quasi-free dynamics [9}.
(i) an infinite fermi system with a “mixture” of translations as ¢ [10].
(iv) an infinite bose system where 7¢ is the diffusion of an oscillator in the
infinite heat bath [11].
In order to make these notes more clear let me present the last example
in detail. Let A be the CCR algebra over one dimensional Hilbert space C,
i.e. A is generated by {W(z), 2 € C} where

W*(z) = W(-z2), W(z)W(z') = exp (%Imfz') W(z+2')
Further, let ¥g denote the Gibbs state. The GNS representation associated
with (A, ¥g) will be denoted by (II(A), M, f23) . I shall consider a semi-
group time evolution 7y , which one can interpret as describing the diffusion
of a quantum particle in a harmonic well [13, 14]

i Wi(z) — Wi(e™>z) exp ( - 3Qs|2% (- exp(—2/\t))),

where )\ , Qg are positive constants, t > 0, Wg(e) = IT o W(s). 7 has an
extension to a completely positive map on M = IT(A)". I shall denote the
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extension by the same letter 7. Thus, the dynamical system (M, 7¢, £2g)
has been defined. For this system h, 4(7) = 0. Therefore this evolution
can be considered as a regular one (in the sense of ergodic theory).

Now, let me pass to a brief description of the most important prop-
erties of quantum dynamical entropy A, 4(7). Again, as for classical dy-
namical systems, the basic property of h,, 4(7) is its conjugacy invariance
hw,a(T) = Byoo, aA(0™ 0 T 0 o) for an automorphism o of A. Further, a
very important property of h, a(7) is a quantum version of Kolmogorov—-
Sinai (K-S) theorem for the measure-theoretic entropy. As a corollary of
the quantum version of K-S theorem, it was possible to prove the scaling
property hy, a(7*) = |k| hy, 4(T) , k an arbitrary integer. I should add, that
for an abelian C'* algebra the quantum dynamical entropy is equal to the
original K-S entropy.

In examples (i44) and (i) h, 4(7) = 0. These results may surprise at
first glance because 7 in (i) and (iv) are contractions. (The generaliza-
tion of quantum dynamical entropy for completely positive maps was done
in [12]). In other words, maps which improve the convergence to equilib-
rium diminish the quantum dynamical entropy. But this can be understood
easily if one remembers that the contraction describing time evolution was
obtained as a reduction of an automorphism (Hamiltonian evolution) of a
larger system. Nevertheless, it should be pointed out that in example (iv)
the quantum dynamical entropy of dilation of 7 is equal to infinity! [15].

The entropic functional H,,(A) satisfies the following inequality:

Ho(A1, A2) < Hy(Ay) + Ho(Az)- (3)

Moreover
HwA®wB(A) = SWA(A)1 (4)

where S, ,(A) is the entropy of a normal state w4 over algebra A.
In the classical case, (3) is also valid:

H;lass (fl U 62) < H;lau (El) + H;lass (62)’ (38)

where u is a measure on a phase space, £; a partition and the equality
holds for independent partitions only. Hence, Hﬁl“’ can be considered as
a measure of independence of partitions. For the quantum case, we want
to keep this point of view, i.e. H,(A) is a measure of independence with
the change of partition ¢ for subalgebra A. The equality (4) implies that
the difference between functionals S, H , i.e. § — H , measures the lack of
product structure of a state. This remark was the starting point for serious
study of the third law of thermodynamics [5]. Namely, it was possible to
state the following quantum version of the third law: the entropy density
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goes to zero when the temperature T approaches zero and equilibrium states
cluster appropriately. In other words, the third law is considered as a deeper
property than a nondegeneracy of the ground state.

The theory of classical dynamical systems supplies us with K-systems
which show how random behaviour can result from a deterministic time
evolution [18,19]. Moreover, it seems to be a general agreement that classical
K-systems exhibit those mixing and chaotic properties which are necessary
for the foundation of statistical mechanics. Let me recall the definition [16]:
a classical dynamical systems (M, 7¢, 1) is called a K-system if there exists
a subalgebra A of the algebra M of all measurable sets satisfying

ACrniA. forany t>0

N #A=0

t=—o00

V #A=M, (5)
t=—o00

where O is the algebra of sets of measure 0 or 1, .4 V A' denotes the algebra
generated by A and A'.
K-system can be defined by the following, different but equivalent, con-
ditions: v
() Jm k(™ ) = Ha(e)
(ii) hu(7, £) > 0 for each finite partition §
(iit) 7 is K-mixing, i.e. for all finite {4;}f C M, n >0

Jim  sup |#(Ao N B) — p(Ao) u(B)| = 0.
BeV?:l 'A‘

For the quantum case one can partially “translate” the above results.
First of all, it is possible to introduce the quantum counterparts of K-
systems [4,7]. Namely, an entropic K-system is a quantum dynamical system
(A, T,w) such that for an arbitrary finite-dimensional subalgebra .A one has

nlgféo ho(A, ™) = Hu(A). (6)

The idea standing behind this definition is that there is the full memory
loss for every subalgebra.

We can also define an algebraic K-system as a quantum dynamical
system (A, T,w) such that w =wo T,

TA) D Ap
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— 00

/\ ™Ay = Al
n=0

oo

V m™4,=4 (7)
n=0

for any subalgebra Agq.

As we have seen, for classical dynamical systems these two notions are
equivalent. On the other hand, for quantum systems the situation changes.
Namely, there are some relations between algebraic K-systems and entropic
K-systems, but still we do not know whether one class contains the other.
In particular, one can prove [4] that

"li_l’%o hw(A, Tn) = Hw(A)s (8)
for each finite dimensional subalgebra A C A implies
ho(A,7) > 0. (9)

It should be noted that (8) means that there is no gain of information
after putting the dynamics into “the action”. In other words such a system
should be chaotic since it is impossible to gain any information from it.
Thus, the above discussion about K-systems can be summarized by saying
that the most important examples of deterministic chaotic classical systems
can be partially translated into the quantum language. Partially, because
there are open problems in this description,e.g. the question: Does (9)
tmply (8)? is still open. We close our discussion of entropic properties of
quantum dynamical systems with the short description of relations between
convergence to equilibrium and mixing-properties. One can prove [17] the
following statements:

(i) The system is mixing, i.e., lims—, o w(7¢(a)b) = w(a)w(d) if and only if
all states restricted to suitable algebras converge to equilibrium.

(#) The system is K-mixing if and only if all states restricted to suitable
subalgebras converge strongly to equilibrium.

Let us remark that (i) implies (i) but, in general, the reverse impli-
cation is false. So we can conclude our review of entropic properties of
quantum dynamical system saying that the key tool of classical dynamical
systems can be translated to the quantum theory.

The author thanks the Organizers of the IV Conference on Statistical
Physics, Zakopane 1991, for the invitation.
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