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A new theory is presented for elastic deformations of linear polymer
chains and phantom polymer networks. It is shown that most of the
conclusions of the classical theory of rubber elasticity either are incorrect
or inaccurate. Appropriate modifications of the theory are proposed. In
particular, we show that for a Gaussian chain network it is the internal
energy and not the entropy that is the thermodynamic function mostly
responsible for the elasticity of rubbers. Furthermore, an attractive part of
the segmental bond potential is essential to account for the thermoelastic
inversion and for the basic features of Mooney plots. Simple models of
ideal polymer chains and networks are analyzed.

PACS numbers: 05.70. Ce, 36.20. —r

1. Introduction

The theoretical predictions of the traditional molecular theory of elas-
ticity of polymer chains and networks do, in some cases, deviate markedly
from experimental observations.

In an attempt to improve this situation, Altenberger and Dahler (Refs
[1] and [2]) have recently developed a new theory which shows, among other
things, that there are energetic as well as entropic contributions to the
thermoelastic properties of elastomeric networks.

The main purpose of the present work is to produce theoretical predic-
tions by applying the theory developed by Altenberger and Dahler to simple
mechanical models.

* Presented at the IV Symposium on Statistical Physics, Zakopane, Poland,
September 19-29, 1991
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A brief historical background is given in Section 2. In Section 3 the
basic assumptions of the traditional model are presented and in Section 4
experimental results as well as the difficulties of the traditional theory are
pointed out. Section 5 is dedicated to a short presentation of the new
theory. In Section 6 three simple mechanical models are used and theoretical
predictions are obtained and illustrated by proper plots. The conclusions
are reserved to. the last section.

2. Historical background

Hevea Brasiliensis is the name of the tree from which the original ma-
terial of commerce known as rubber is obtained in the form of latex. The
word rubber comes from the property of this material to remove marks
from paper. Nowadays the term rubber is applied to any material exhibit-
ing mechanical properties analogous to those of natural rubber. The term
elastomer is now much used in connection with synthetic materials with
rubber-like properties. Throughout this work the word rubber will apply to
any rubber-like material, regardless of its chemical constitution.

There are two main properties that characterize rubbers, the capability
of large deformations without rapture, and the capacity to recover spon-
taneously very nearly to its initial dimensions after the agent causing the
deformation is removed. The large deformation capability is illustrated by
the typical stress-strain isotherm shown in Fig. 1 (Ref. [3], p.15).
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Fig. 1. Stress-strain curve for natural rubber in the vicinity of room temperature.

The earliest experiments on rubber elasticity were performed in 1805 by
John Gough. He interpreted the results as evidence of the then prevailing
caloric fluid theory of heat. His observations on thermoelastic effects can
be summarized as follows:
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1) rubber held under a constant load (stretched state) contracts {reversibly)
on heating; and
2) when stretched, rubber gives off heat (reversibly).

With the discovery of vulcanization in 1839 by Goodyear and Hyward,
experimental investigations were facilitated and in 1859, Joule, working with
vulcanized rubber, confirmed Gough’s observations. The two thermoelastic
effects referred to above are known as the Gough-Joule effects and their full
significance could be better appreciated after the formulation of the second
law of thermodynamics by Kelvin and Clausius in the early 1850’s.

Another important experimental result observed by several workers was
that deformations (other than swelling) of rubbers occurred essentially at
constant volume, without the occurrence of crystallization.

Early attempts to relate rubber mechanical properties to classical con-
cepts of molecular structure encountered great difficulties. Some hydro-
carbons with apparently the same chemical constitution as natural rubber
(the only type of rubber then available) were invariably ordinary liquids or
solids. Also, the classical model, which pictured a solid as an array of atoms
(or molecules) maintained in fixed relative positions by well-defined .inter-
atomic forces, was incapable of supporting extensions of magnitude greater
than about ten per cent. It was unable to serve as a basis for interpret-
ing the deformations of one hundred times this magnitude, which occurs
for rubbers. This major difficulty could in some sense be avoided by pos-
tulating a sort of open network structure. The “two-phase” theories were
examples of this approach. Another way to circumvent this problem was
to postulate a helical or coil-spring type of molecule. In both ways large
total deformations could be obtained without introducing large strains of
the elastic elements of the structure.

The above theories (and others that were similar) tried to explain rub-
ber’s large-extension elasticity at a time when natural rubber was the only
elastomer available. Their explanations of rubber’s mechanical properties
were not convincing and they completely failed to account for rubber’s ther-
moelastic properties.

An important step toward the understanding of rubber elasticity was
the recognition that natural rubber was intimately related (in both struc-
ture and properties) to other materials (gelatin, muscle fibres, silk, etc.)
generally known as colloids, but with very distinct chemical constitution.

As improved methods and technology allowed better measurements of
very high molecular weight compounds and with the recognition of the exis-
tence of new and remarkable entities called polymers (with molecular weights
in the range 100 000-1 000 000), it became evident that this kind of molecule
could not be considered as a rigid structure constrained by static internal
forces. There should be flexibility, internal vibrations and rotations, due to



340 E. RosA Jr., A.R. ALTENBERGER, J.S. DAHLER

thermal fluctuations.

In 1932, Meyer, vonSusich, and Valko developed a theory of rubber
elasticity in which the thermal energy of the atoms in a long chain molecule
was assumed to induce greater amplitudes of vibration in directions per-
pendicular to the chain than in the direction of the chain itself. This was
the first insight into the now generally accepted theory of rubber elasticity,
which was mainly developed by Frederich T. Wall, Paul J. Flory and L.R.G.
Treloar.

3. Standard model assumptions

The basic assumptions that constitute the basis of the now generally
accepted theory of rubber elasticity are:

a) The intermolecular interactions that occur in rubbers are independent
of configuration, so that each molecule contributes separately to the
thermodynamic and mechanical properties of the sample (the “ideal
gas” model).

b) The junction points of the chain are assumed to be embedded in the
network constituted by the other chains, which are responsible for the
transmission of deformations of the macroscopic sample into deforma-
tions of the single chain (affine deformation). Figure 2 shows a sample
in the unstrained and strained states and equations (3.1) come from the
affine deformation.
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Fig. 2. Unstrained (i) and strained (i) states of & sample.

¢) The chains (if sufficiently long) will exhibit Gaussian statistics, i.e., the
probability distribution function for the end-to-end vector Q is given
by

1 3 \3/2 ~3 )
R (mz—) “P('z‘,;z' 3 (gi/ ) ) , (32)

=1
where
b = (g*)o (3.3)
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is the mean square of the end-to-end vector of the undeformed chain

(a; = 1). Here
a; = i" = \/ ((:: >> (3.4)

is the deformation ratio (or strain) in the ¢ direction.
The connection with thermodynamics is made through the expression

¥(q)
Yo(q)

for the entropy of deformation. In the case of a Gaussian chain, this
becomes

= —k / dq¥(q)in 5 & (3.5)

—k
68 = -2—(a§ +ai+al-3). (3.6)

Because the deformation change of internal energy was assumed to be
of negligible magnitude, the free energy of deformation is given by

0F = -T4S. (3.7)
By applying proper constraints, the nominal stress (ratio of force to the
initial area on which this force acts) can be evaluated from § F. The
constraint appropriate to an isochoric deformation is

ajazaz =1 (3.8)
and, in the case of uniaxial extension along the 1 axis

az = as. (3.9)

Therefore, for uniaxial extension in the 1 direction,

1
2 2
=ai=— 1
ay =03 =~ (3.10)
and the nominal stress per chain is
O0F  -2kT 1
= ——= — - — A1
hH 7 0 (011 af) (3.11)

with £2 denoting the volume of the sample.
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4. Experimental results and difficulties

The early experiments of Meyer and Ferri (1935) showed that, for a
given state of strain (change due to force in the size or shape of a body
relative to its original size or shape), the stretching force is proportional to
the absolute temperature. This was valid for sufficiently large extensions
(Fig. 3), the behaviour appearing anomalous for lower strains with the force
increasing less rapidly or even decreasing with rising temperature (Fig. 4).
These observations have been confirmed by many others. The reversal in
slope of the stress-temperature plots is called the thermoelastic inversion
and cannot be predicted from the formula for §.5 of the previously described
standard model.
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Fig. 3. Force at constant length as function of absolute temperature. Extension
350 per cent. (After Treloar, Ref. [4], p. 25.)

The stress-strain curves predicted by the Gaussian chain standard mo-
del are in rather poor agreement with experimental results (Fig. 5). How-
ever, according to Treloar [4] this theory is valid only for moderate exten-
sions. When the extensions are very large, non-Gaussian corrections must
be introduced. However, even with these corrections, large discrepancies be-
tween theory and experiment persist for intermediate values of the strain.

Experimental data often are represented in terms of the reduced stress
(f1] defined as

h

2¢(a; — aj’?) .

[f1]

(4.1)

Here the subscript 1 refers to the direction of the uniaxial deformation and
c is a coefficient that depends on the model to be used. The so called
Mooney plots are of [f] versus the inverse deformation ratio a~!. For
rubber, the Mooney plot illustrates the previously described (Fig. 1) large
and rather abrupt increase in the stress that occurs at high elongation. The
disagreement between theoretical and experimental results is apparent from
Fig. 6.
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Fig. 4. Force at constant length as function of temperature. Elongation as indi-
cated.(After Treloar, Ref. [4], p. 25.)

There also is a difficulty with the formula for the entropy of deformation,

= —k / dq¥(q)In W((q)) (4.2)

which is inconsistent with the accepted formula for entropy that comes from
statistical mechanics and information theory, namely,

5(@) =k [ dg¥(a)n¥(q). (43)

Thus, according to this statistical mechanical formula for entropy, the en-
tropy of deformation should be given by expression

55 = S(¥) - S(¥) (4.4)

and not by (4.2).
When (4.3) is applied to the Gaussian chain, the results are

2
S(¥g) = k(lnalagas + 3h12—1r§lL) + —3- (4.5)

and
§S = klnajazaz. (4.6)

From this we conclude that the entropy of deformation vanishes for isochoric
deformations of a Gaussian chain!
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Fig. 5. Simple extension. Comparison of experimental curve with theoretical form.
(After Treloar, Ref. [4], p. 87.)
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Fig. 6. Stress-strain isotherm for an unfilled rubber network in the vicinity of room
temperature. (After Mark, Ref. [3], p. 92.)
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5. New approach
5.1 Assumptions

Altenberger and Dahler [1, 2] have recently developed a new theory
which is based on assumptions that are somewhat similar to those previously
discussed, namely:

a) The “ideal polymer gas” model (the intermolecular interactions are in-
dependent of configuration).
b) The model adopted is the relatively simple and widely used beads-and

-springs model of a polymeric chain, illustrated by Fig. 7.

Fig. 7. The beads-and-springs model. (N beads) Q is the end-to-end vector gq; is
the i-th segment vector, and E and — F are the forces applied to the ends of chain.

c¢) The heat and work related to an infinitesimal, quasistatic chain defor-
mation are given, respectively, by

dQaer = T d5S (5.1)

and

dW3. = R-dE (5.2)

with R denoting the mean end-to-end vector of chain.
5.2 The theory

The polymer is treated as a three-dimensional curve with its mass evenly
distributed along the contour. The curve is divided into small segments,
each with a center of mass which is treated as a material point or “bead”.
The potential energy necessary to hold the “beads” together is identified
with the energy of the connecting bonds or “springs”. Fig. 7 shows a rep-
resentation of this model, with the forces E and —FE applied to the ends of
the chain.
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The Hamiltonian of the chain is

H= Z(m/2)r + E V(rig1 —rs|) + E-(rn — 1) (5.3)

=1 =1

with m the segment mass and N the number of segments. »; and #;, respec-
tively, denote the position and velocity of the i-th segment and V(|q;,|) is
the bond potential (g;,; = ri4.1 — r; being the (i + 1)-th segment vector).

The Gibbs canonical distribution function for the stretched chain is

given by
~BH

p(#N, v B) = o h:NQ(ﬂ, 5 (5.4)
The quantity Q(3, F) appearing here is the chain partition function
3/2N
e B = 3:(ZHT) 26, B) (5.5)
and
2(p, B) = [ dr™ exp(-pU)(r"; B) (5.6)

is the configuration integral with U(r"; E) representing the potential en-
ergy (second and third of the Hamiltonian, Eq. (5.3)).
The segmental configuration integral is

6, B) = [ da exp(-p[V (|a]) + E-q) (5.7)
and the segmental probability distribution function is

exp(—B[V(lql) +q- E])
z(B, E)

From statistical thermodynamics, the thermodynamic functions (free
energy, internal energy and entropy) of deformation are, respectively

¥(q, E) =

(5.8)

§F(B, E) = —B~1(N - 1)m‘((‘;” f)) (5.9)
6U(p, B) = —67 (N - 1) 5 1n 250, (5.10)

§S(B, E) = 1(8U(B, E) - §F(B, E)). (5.11)
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The deformation ratios for the segment are

— 2In 2 2 2
ofseg (B, E) = GOE) ot (%li;)
se ? 2 L)
D e (),
2 ?L.(ﬂ9 E) -OE%IEZ'
a_Lseg(B’ E)= > 0 = T oInz (5.12)
Q_L(ﬂ$ ) (m) B=o
and for the chain
o (8, E) = BeB . (N - 2)—.22"———(ﬂ’ 5)
I\ _}-{ﬁ-(ﬂ, 0) = “|seg ?”(ﬂ, 0) ’
ai(ﬂ’ E) = a?l_seg(ﬂ’ E). (5-13)
Here
dln z(B, E)

R(B, E) = -~ (N -1) = (N - 1)@(8, E) (5.14)

o0F

is the mean end-to-end distance vector and g;;(8, E) and g, (8, E), respec-
tively, are the components of ¢ parallel and perpendicular to the direction
of the applied force.

6. Simple mechanical models

We now study the elastic properties of systems with three different
segmental binding potentials.

6.1 Finitely extendible, infinitely flezible dumbbell chain

According to this model the beads are connected by flexible strings
that cannot exceed a finite extension ¢go. The binding potential has the
square-well form

V(g)=05;9<qo
00;¢> qo (6.1)

and the segmental configuration integral is given by the formula

(B, E) = 2(8, 0)W(BEq), (6.2)
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where , .
W(z) = ;(coshz - = )- (6.3)
The thermodynamic functions of deformation are

BUGE) el (6.
A 611;;([’ ] 1E) _InW(Xo), (6.5)
ﬂ:(féﬂ_’ f‘;) = v -sp), (6.6)

with
Xo = BEqo (6.7)

and
w(z) = 0T (6.8)

We want to express these thermodynamic functions in terms of the uniaxial
deformation ratio a;. To accomplish this a relationship must be established
between X and a;. For this purpose we use the relationships (Ref. [1])

P(a)=o" -3 (6.9)

and
(6.10)

Then, by expressing gﬁ and gﬁ_ in terms of Xo, we find that

P(Xo) =2+ ;02 [ ;;(();“))] +(N - 2){%[1 - V"I’,((?)))] }2. (6.11)

Finally, by invoking the two constraints (3.8) and (3.9) we can write (6.9)
in the form

2
P(ag) =a? + a 3 (6.12)

and also, with the help of (6.11), express X in terms of a;. This allows us to
express the thermodynamic functions in terms of the uniaxial deformation
ratio ay. This procedure produces the results presented in Fig. 8, where the
internal energy, free energy and entropy of deformation are plotted versus
the uniaxial deformation ratio a;. In Fig. 9 the nominal stress is plotted
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Finitely Extendible, Infinitely Flexible
Dumbbell Chain
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Fig. 8. Internal energy, free energy and entropy of deformation vs the uniaxial
deformation ratio.

versus the uniaxial deformation ratio and Fig. 10 is a Mooney plot on which
the reduced force is plotted versus the inverse of the deformation ratio ai'] .

6.2 The model of a randomly jointed chain

In this model the chain consists of rigid rod segments. The binding
potential can be written as

V(g) =00;¢<q
0; 90 <go <go+dqgo
00; g +8g0<q. (6.13)

The segmental configuration integral then becomes

(8, B) = {(a + 500 WIBE(@ + 500)] - §W(0Ew)}  (6.14)

with W(z) defined by (6.3).
The thermodynamic functions of deformation are given by the formulas

N_1 1- Xo COthXo N (6.15)
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Nominal Stress vs. Uniaxial Deformation Ratio
Finitely Extendible, Infinitely Fiexible Dumbbell Chain
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Fig. 9. Nominal stress vs uniaxial deformation ratio.

Mooney Plot for the Finitely Extendible,
[f Infinitely Flexible Dumbbel Chain
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Fig. 10. Reduced force vs the inverse of deformation ratio.
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fi‘f%(:.ﬂ_’_lﬂ = —Inw(Xo), (6.16)
§S(B,E) _ B

RV oT) = N 10U 0P (6.17)

The same procedure as before is used to express the function P(Xg) in the

form

P(Xo) = 3(NV — 2)}13(1 _ Xo coth Xo)?. (6.18)
0
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Fig. 11. Internal energy, free energy and entropy of deformation vs the uniaxial

deformation ratio.

The results are presented in Figs 11, 12 and 13. In Fig. 11 the thermo-
dynamic functions are plotted versus the uniaxial deformation ratio. Fig. 12
shows the nominal stress plotted versus the uniaxial deformation ratio, and
Fig. 13 is the Mooney plot.
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Nominal Stress vs. Uniaxial Deformation Ratio
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Fig. 12. Nominal stress vs uniaxial deformation ratio.

Mooney plot for the randomly jointed
chain-network deformation
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Fig. 13. Reduced force vs the inverse of the uniaxial deformation ratio (Mooney
plot).




Model Calculations of Rubber Elasticity 353
6.3 The two-level square-well bonded chain

We now incorporate attractive interactions between neighboring beads.
The studies performed by Altenberger and Dahler on the rubber elasticity
problem [1, 2] showed that in order to obtain a qualitatively correct de-
scription of the deformed rubber, attractive contributions to the interaction
potential were essential.

Two-Level Square-Well Bonded Chain
Compression and Extension (E1=-8)
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Fig. 14. Internal energy, free energy and entropy of deformation vs uniaxial defor-
mation ratio.

The two-level square-well potential can be expressed as follows:

V(g)=0; ¢< 0o,
Vijo0<g¢<oi,
V2501 <¢< o2,
©;02<(q. (6.19)

The segmental configuration integral corresponding to this potential is
given by the formula

(B, B) = e PV [0iW(8Ea) - o} W(BEa0)]



354 E. Rosa JR., A.R. ALTENBERGER, J.S. DAHLER

+ %e—ﬁ"n [03W(BEo2) — o3 W(BEa,)]. (6.20)

The depth of the attractive well, V3, is chosen to be negative and V; is
set equal to zero. The three characteristic length parameters o;(¢ = 0,1,2)
can be expressed in units of an arbitrary length a. Calculations were per-
formed for o9 = 0.1a, 03 = 0.5a and ¢2 = 2a. The reduced external
force X = SEa was used as an argument and calculations were performed
for the reduced depth E; = BV; = —8 (of the attractive well). The same
procedure described in the two previous subsections, 6.1 and 6.2, was fol-
lowed here. This produced expressions for the thermodynamic functions of
deformation and the function P(X,) that were similar to those obtained in
preceding subsections. Actually, in the present case we get expressions that
are algebraically more complicated. Plots of these are shown in Figs. 14,
15 and 16. From Fig. 14 we see that the behaviour of the free energy is
qualitatively the same as before. However, this is not true for the entropy
and internal energy. The energy of deformation becomes positive for ranges
of aj, both in extension and compression. Furthermore, the thermoelastic
inversion occurs both in extension and compression.

Nominal Stress vs. Uniaxial Deformation Ratio
Two-Level Square-Well Bonded Chain (E1=-8)
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Fig. 15. Nominal stress vs uniaxial deformation ratio.
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Mooney Ploot for Two-Level Square-Well

[ Bonded Chain (E1=-8)

0.20 1;
0.18 1
0.16 F
0.14
0.12]
0.10 1

0.08 [

0.06[

0.04 . : . . .
00 10 20 30 40 50 yq4

Fig. 16. Reduced force vs the inverse of uniaxial deformation ratio (Mooney plot).

7. Conclusions

For equilibrium elastic deformations of rubber-like materials, the new
theory developed by Altenberger and Dahler provides results that are con-
sistent with experimental data. In this new theory, based on a well known
mechanical model of polymer chains, the thermodynamic and mechanical
properties of elastomers are defined very explicitly. As a consequence, it is
possible to explain some unclear points of the standard theory.

The results obtained in the present work show that the type of bonds
that hold the segments (or beads) together play an essential role with re-
spect to the elastic behaviour of the chain. This can be observed from the
differences appearing in the plots of subsection 6.3 in comparison with the
plots of subsection 6.1 and 6.2. The introduction of attractive interactions
between neighboring beads plays a crucial role in explaining the very un-
usual behaviour of rubbers, for instance, the thermoelastic inversion and
the extensional dependence of the reduced force.

As previously pointed out, the results so far obtained are in very good
qualitative agreement with experimental data. Much more could be done
to apply and even extend Altenberger and Dahler’s theory, but that would
be beyond the purpose of this work.
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