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1. Introduction

Basic ideas of nonlinear dynamics are put forward to explain compli-
cated behaviour in various fields of research. Relevant experiments can be
classified arbitrarily into three classes. First, there are simple, well con-
trolled laboratory experiments, usually dealing with electronic circuits or
mechanics. In this case the underlying equations can be easily written and
sometimes an experiment is even carried out to model some known equa-
tions. Complete control of the system and low level of intrinsic random
noise enable us to observe nearly all effects predicted by theory. Spatially
extended systems in the regime of homogeneous distribution of parameters
can be considered as the second class. For this regime, partial differential
equations that are required to model the spatially extended system, often
can be reduced to balance equations. A small number of degrees of freedom
involved in the dynamics and strong nonlinearity lead to the appearance
of various nonlinear effects, such as different routes to chaos, various types
of intermittency, evolution of chaos. These effects have been observed in
semiconductor experiments [1-5], and corresponding dimensions, entropies
and Liapunov exponents have been estimated for the chaotic regimes. How-
ever, results obtained are often not so clear as compared to the first type
experiments due to impossibility to control precisely system parameters and
due to higher level of intrinsic noise.

Experiments with complicated spatio—temporal behaviour belong to the
third class. For this most interesting case a large number of degrees of
freedom is essential and the low-dimensional dynamics can manifest itself
only locally. In numerical investigations, spatially extended systems are fre-
quently represented as collections of coupled nonlinear subsystems. Possibil-
ity of such a reduction depends on spatial correlations, including nonlinear
ones, in the experiment.

Our work is aiming to develop methods for estimation of nonlinear
interaction. In the next Section a method of estimating nonlinear interre-
lation from experimental time series is presented {6], and advantages of the
method in comparison with other methods are discussed. A simple model
of two coupled nonlinear systems is considered as an example in Section 3.
The problem of the best choice of variables is discussed in Section 4. In
Section 5 we present results of the analysis for a semiconductor experiment.

2. Estimation of interrelation

A method for estimation of nonlinear interrelation proposed in Ref. [6]
is based on the dynamical nature of considered observables z(t) and y(t).
Underlying ideas have been formulated by Pacard et al. [7] and have been
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used to estimate the number of degrees of freedom [8]. The m-dimensional
point 2* = {z(t:), 2(t; + 7),..., 2[t1 + (m — 1)7]} in the reconstructed
phase space (7 is delay time of the reconstruction) completely characterizes
state of dynamical system for a high embedding dimension. Sufficient value
of m is defined by Taken’s theorem as m > 2d + 1, where d is the dimension
of the attractor. If both observables z and y are generated by the same
system, small distance between points |y ~ y;"| ~ ¢ in the reconstructed
phase space of variable y(t) is expected, when |z — z;”| < €. For the
independent observables z and y we expect |y — 7| to be constant. The
mean conditional dispersion

Bly™ — y™20(e — 2™ — 2™|)) 1/2
ly™ - y*|°0(e — |2 — ] l)} (1)

omy(€) = { Z6(e - |z - 7))

should be calculated taking into account all points of the time series. Here
O(z) is Heaviside function. Presence of interrelation can be detected from
the dependence of o7 on £. Thus observables z and y are interrelated if
the conditional dispersion o7, decreases with the decrease of ¢, and are
independent if o7} does not depend on ¢. To estimate a magnitude of the
interrelation let us consider the following dynamical equations for variables
z and y:

d m

& = fE™) +1=F @™ y™),

dy™ m m .m

7=9(?/ )+ 7,G(=™, y™). (2)

Here indices m point out the vector form of the equations. Functions f
and g define subsystem dynamics and the second terms are responsible for
the interrelation. When coupling parameters v, and 7, differ, essentially
nonsymmetric interrelation takes place. Having in mind Eqs (2) we suppose
that more precise coincidences between points are needed to find weaker
coupling. Dependence of the conditional dispersion 7% on ¢ should appear
only for £ smaller than some £¢. It can be expected tﬁlat magnitude of &g
depends on the magnitude of the coupling and

m
€p

M0 Eax

Kyy =

(3)

can be chosen as an interrelation parameter. Parameter e, characterizes
the size of the attractor in m-dimensional space. Definition of conditional
dispersion (2) is not symmetric for the interchange of the observables z
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and y. Therefore the introduced interrelation parameter K.y is also not
symmetric, K.y # K., and shows nonsymmetry of coupling.

The relation between €9 and coupling parameters v, existence of the
limit (3), and the possibility to find out nonsymmetry of coupling were
proved numerically for coupled Henon maps in a previous paper [6]. In
Section 3 we shall present results for another simple model. Here we would
like to point out advantages of the suggested method. 1° — this is the only
method to find out nonsymmetry of interrelation. 2° — it takes into account
nonlinearity of interrelation and has statistics ~ N? (N is the number of
points in the time series), when statistics of the usual correlator is ~ N.
3° — formula for calculation of conditional dispersion is very simple and
similar to the formula for calculation of correlation integral [9]. Numerical
efforts in both cases are similar, but estimation of interrelation is easier due
to necessity to find only knee in the curve o, (¢) instead of the power law.
Calculation of the mutual information [10], which also allows us to estimate
nonlinear interrelation, is significantly more complicated.

3. Simple model

As an example of the most simple coupled system we investigated two
independent chaotic signals passing through coupled linear filters:

Tp4l = Az&n + Valn + hfz )
Yn+1 = Qy¥Yn + Yy2n + h?,, . (4)

Independent chaotic time series h* and hY have been generated by the same
Henon map with essentially different initial conditions. Calculations of the
conditional dispersion ¢, have been performed for a, = a; = 0.5 using
time series of N = 5000 points.

Dependence of 0.4 on ¢ for different embedding dimensions m is shown
in Fig. 1a for coupling parameter v = 9, = 7y = 0.1. As it can be seen
from the figure, all curves tend to an asymptotic one and a limiting value
of e7* can be estimated for m > 6. Numerical values of ¢7* have been deter-
mined from the condition o7} (¢7*) = 0.9max (07}. In Fig. 1b the values are
shown by arrows for different magnitudes of symmetric coupling. Correla-
tion between coupling parameter 4 and introduced interrelation parameter
K.y is shown in Fig. 1c. We obtained almost linear dependence, which can
be caused by our choice of model, but in general, it can be more compli-
cated. Possibility to detect nonsymmetry of interrelation is demonstrated
in Fig. 1d. As it can be seen, curves o.,(¢) and 0y (¢) differ essentially for -
nonsymmetric coupling v, == 0.1, v, = 0.01.



Analysis of Spatial Correlations in Chaotic Systems 361

' @l & ' ' ' (b) ]
| |
a ;
2 16,E Y " 2 i9,€

InK,, T T T

{e)
-3F .
-5 .

A A
- -2 Ing
6 ¥ H ¥

i (d)1

T
; N T ]

05

-6 -4 -2 1g,€

Fig. 1. Conditional dispersion ¢, as a function of ¢ for model system: (a) — for
various embedding dimensions m, denoted by numbers (y; = vy = 0.1); (b) — for
m = 7 and various symmetric coupling parameters y = v; =vy: I —7v=10.3,2—
¥=0.1,8—v=0.03, § —v =0.01; (d) 1 — o2y and 2 — oy, for nonsymmetric
coupling v, = 0.1, 9, = 0.01. Curve in (c) shows dependence of interrelation
parameter K, on coupling v.
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The difference between interrelation parameters K., and Ky, calcu-
lated from these curves points out nonsymmetry of interrelation.

4. Choice of variables

As we have mentioned in the Introduction, representation of a compli-
cated spatially extended system as a collection of coupled subsystems is very
attractive, especially when coupling is weak. This method is widely used
for linear systems, and the concept of phonons in solid state theory is per-
haps the simplest example. In practice localized weakly coupled regions can
be found experimentally estimating interrelation between different points of
the system. However, estimation of interrelation can reveal localized sub-
systems only when time series are recorded directly within the investigated
system. In some experiments such direct measurements are impossible. For
example in biology EEG can be recorded only on the surface of the head. In
such cases experimental time series seem to be the combined effect of the in-
trinsic signals, and interrelation between recorded time series is expected to
be strong. Reconstruction of intrinsic signals by transformation of variables
is needed to detect weakly coupled regions in the system, if they exist.

The situation described above can be formulated mathematically in the
following way: Spatially extended dynamical system can be described by
a large number of ordinary differential equations or, as a limit, by partial
a differential equation. Weakly coupled regions in physical systems corre-
spond to the subsystems of equations with weak coupling between them.
However, the coupling strength depends on the choice of variables and can
be reduced by a proper choice. The method to eliminate linear correlation
is well known and is used in singular value analysis [9]. Finding the general
transformation of variables which minimizes nonlinear interrelation seems
to be hardly solvable problem, especially from experimental data. Below
we shall consider the simplest case of two signals. Moreover, we will search
‘only for the best linear transformation minimizing nonlinear interrelation.

Let us consider two normalized time series z(t) and y(t) ({(z) = (¥) =
0, (2%) = (¥%) = 1, here (---) is time average). We suppose that interre-
lation between z(t) and y(t), estimated by the above described method, is
strong. Our aim is to find pdrameters of the linear transformation

u(t) = Al=(t) + ay(1)],
v(t) = BlBz(t) + 3(1)], (5)

which minimize nonlinear interrelation between the new variables u(t) and
v(t). Constants A and B are defined by normalization conditions for new
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variables. Straightforward minimization, however, is complicated due to
numerical effort required. More rational way is to fulfill condition for linear
correlator (uv) = 0, which leads to the following relation

_ (=) +a
A=-1 + alzy) (6)

Thus, only one independent parameter a remains.
As an example, we shall consider again the model (4) of coupled systems.
Let us assume that only linear transformation of the original signals

2'(2) = az(t) + by(t),
y'(#) = ca(t) + dy(t) (1)
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Fig. 2. Dependence of interrelation K., on minimization parameter a for model
system with various magnitude of coupling 7 — v = 0.01, 2 — 4y = 0.1, 3 —
¥ =0.3.

is observed. In numerical calculations we have used a = d = 1, b = 0.3,
and ¢ = 0.5. Applying the above described procedure we have calculated
dependence of the interrelation parameter K., on a for various values of
symmetric coupling parameter . As it ca be seen from Fig. 2, this depen-
dence has a sharp minima for small coupling. The transformation (7) only
slightly influences the interrelation for the strong coupling. Value of a cor-
responding to the minima in K., curve along with 8 determined by relation
(6), defines linear transformation (5) inverse to (7). Therefore, the linear
transformation minimizing nonlinear interrelation enables us to reconstruct
original variables for the considered simple model.
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5. Experiment

Experimental system consisted of monocrystalline p-doped germanium,
electrically driven into the low-temperature avalanche breakdown via impu-
rity impact ionization. The sample geometry and the electronic measuring
configuration are schematically shown in Fig. 3. The sample dimensions
were 0.25 x 0.25mm?. Ohmic contacts were properly arranged on one of the
two largest surfaces as indicated in Fig. 3. Bias voltage Vy was applied to
a series combination of sample and load resistor R, (Ry = 100Q). A d.c.
magnetic field B perpendicular to the broad surfaces was applied by a super-
conducting solenoid surrounding the semiconductor sample. The potentials
V1 and V; were detected by means of the inner probe contacts (of about
0.2mm diameter). During the experiment, the semiconductor sample was
kept at liquid-helium temperature and carefully protected against external
electromagnetic irradiation. Further details of the experimental techniques
can be found in [12].

Ge sample

Vo

Fig. 3. Scheme of the experimental setup.

Time series of two voltage signals V;(t) and V2(t) were analyzed nu-
merically with respect to their chaotic properties. Results of calculations
of fractal dimension and Liapunov exponents have already been reported
elsewhere [13]). Recently, the evidence of complicated spatial organization
has been found. Namely, existence of local oscillation centers and interac-
tion between them, leading to quasi-periodical behaviour, has been shown
experimentally [14]. The analysis of nonlinear correlation between spatially
separated regions has been presented in [15].

Parameter of nonlinear interrelation between signals V;(t) = 2(t) and
Va(t) = y(t) is calculated in the situation when the system evolves from
the chaotic state to hyperchaotic with the increase of magnetic field [4].
As is seen from Fig. 4 interrelation decreases with the evolution of chaos.
Decrease of interrelation along with the increase of nonsymmetry demon-
strates complicated spatial behaviour of the system in the case of transition
from chaotic to hyperchaotic state. The signals from other points of sam-
ple are needed-for more detailed analysis of correlation and localization of
generation of chaotic oscillations.
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Fig. 4. Evolution of interrelation parameters: ! — K., and 2 — K, for transition
from chaotic state to hyperchaotic in semiconductor experiment.
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