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1. Introduction

During the last decades it has been recognized that chemical reactions
play an important role not only in chemistry, but also in many fields of
theoretical physics and applied mathematics, such as statistical mechanics or
dynamics of unstable systems. For instance, they provide beautiful examples
of transitions between several locally stable states, and chemical kinetics
shows numerous cases of nonlinear systems where organized structures, as
well as chaos, appear and can be studied theoretically or experimentally.

From this vast domain, we only address a small area in order to show
how a stochastic environment can act upon the deterministic evolution of a
chemical system, thus permitting behaviours that will otherwise be forbid-
den, such as bifurcations and transitions towards new stationary states. We
first study the microscopic point of view of this problem with the theory
of reaction rates; then we treat its macroscopic counterpart, which is the
stochastic kinetics of chemical concentrations. In each case we focus on the
effect of external noises, leaving aside all internal fluctuations, due to the
limited scope of the present article.

The comparison of the microscopic and macroscopic problems is not
only adequate because of the similarity of the mathematical formalism: it
also yields a fruitful transposition of the microscopic definition of rate con-
stants to the time constant of noise induced transitions.

2. Microscopic theory of reaction rates in a stochastic medium
2.1 Diffusion in a field and chemical reaction

In many cases the evolution of a reaction can be approximately de-
scribed as the one-dimensional motion of a “particle” submitted to a bistable
or multistable potential U(z), and to a random force f(z) due to the envi-
ronment [1-3]. Here the position z of this particle is the reaction coordinate:
it represents the configuration of the reacting complex measured along the
most probable path from the initial stable species A ((reactant) to the final
form B (product); A and B correspond to minima of the potential U(z) at
a and b, separated by a maximum at ¢ (Fig. 1).

The random force f can be decomposed into its average (f(z)), which
is a viscous force —adz/dt, and the fluctuation 6 f, which is often approx-
imated by a white noise. In the simplest case the system evolution is de-
scribed by the Langevin equations [2, 3]

dz
7= (1a)
dv OU

m— = 5 — v+ 7€), (1b)
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Fig. 1. The bistable potential U(z).

where the reduced mass m, the viscous coefficient a and the coefficient ¥
are constants; the random variable {(t) satisfies

(€@) =0
(€()e(t+ 7)) =C(r), (2)
and in the white noise approximation the correlation function C(7) is a

Dirac distribution §(7). Then system (1) corresponds to the Ito stochastic
differential equations [1-3]

dz = vdt, (3)
10U a
dv = —;;5;‘- ; v+ — dW (4)

where (2, v) is the two-dimensional random process representing the phase
space coordinates of the system, and W is the Wiener process.

Eq. (3) is equivalent [3] to the following Fokker-Planck equation for
the conditional probability density p(z,v,t|zo,vo,%0) to find the particle at
(z,v) at time ¢, knowing its coordinates (zg, vg) at time £y < ¢; this equation
was first used by Kramers [4] in this context:

b} 1 /08U 72 8%p
= (w(m o) o g ©
= "'V -J ’ (5')
J being the probability current with components

o _1(8U 12 8p "
Jz—‘UP, J,,-—;(F;+av)p—-—2;%. (5)
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It is well known [3] that thermodynamic equilibrium corresponds to the
stationary solution of (5):

po(z,v) o exp [ - (%mv2 + U(z)) /kT] (6)

provided the fluctuation-dissipation relation 72 = 2akT holds. In general,
however, the time-dependent solutions of (5) are unknown, and one often
replaces (5) by the high friction approzimation.

To obtain it, one replaces (1b) by the equivalent equation

o(t) = e~/ ™o(0) + = / [- 5 + 76| Zem=-Omar . 1)

If m/a < 7, where T is some characteristic variation time of — +7E , one
has for t > :

o) = [- 5+ 60 (®)

Eq. (8) corresponds to the overdamped motion of the particle, in which case
the right-hand side of (1b) is equated to 0. Then p(z,t) = [dvp(z,v,t)
obeys the Smoluchowski equation [3):

8_ 18[00 0*p
7= = 5| (52)8] + 4755 Q)
_ 8J ,
=% (9")
with the current 119U P
J:p‘:-—-[a p+kTap] (9")

The 0-current stationary solution corresponds to thermostatic equilib-
rium:

7°(2) o« exp[-U(z)/kT]. (10)

The time-dependent solution of (9) cannot be found easily in general, but it
will be shown that the Smoluchowski equation is nevertheless well adapted
for the calculation of the reaction rates in the high friction limit.

2.2. Definition of the reaction rate constant

Let us consider NV particles evolving independently in the bistable po-
tential U(z) (see Fig. 1). Each of them will spend most of the time in the
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neighborhood of the minima a and b of U, corresponding to the chemical
species A and B. In order to define the rate constants K4 p and Kp4,
corresponding to the reactions A — B and B — A respectively, it is first
necessary to decide in which conditions the species A and B can be identi-
fied. We just consider two possibilities:

(i) species A is detected as soon as z < ¢, and B is detected as soon as
z > ¢, ¢ being the intermediary maximum of U. This convention is applied
because it gives a reasonable clear cut definition of 4 and B. However,
it is not too realistic, unless z = ¢ corresponds to a physically identified
complex, which is doubtful in many cases. Otherwise, there is practically
no difference between the system for z < ¢ and z > ¢, and its evolution
around ¢, where the external field vanishes, is a kind of a random walk
implying many recrossings of ¢. In order for the species A and B to be
defined with some stability, it is better to decide that

(1) species A is recognized when z € (a',a") where @' < a < a" <o,
(a'ya") being the “bottom” of the potential well around a; species B is
recognized if z € (b',5"), which is the bottom of the potential well around
b, with ¢ < b’ < b < b"'; the region (a",b') is the potential barrier. (a',a")
and (b',b") can be defined more precisely as the regions where the harmonic
approximations of U are valid:

U(z) 2 U(a) + Imwl(z — a)? if ze€(d,a"), (11a)

U(z) 2 U(b) + Imwi(z - b)® if =z € (V,b") (11b)
whereas the top of the potential barrier (¢, c") C (a"”,d') is such that

U(z) 2 U(c) - imuwi(z —c)® if z2(,c") (11c)

It should be understood that the definition of two stable species 4 and
B only makes sense if the mean residence time in regions A and B is much
longer then the passage from A to B or from B to A, that we always assume.
Now, to define the rate constant K 4p for A — B independently from
the reverse one Kp4, it is convenient to imagine a process in which the
reaction B — A is prevented by extracting B as soon as it formed. This
amounts to make region (b',5") absorbing: when a particle reaches it, it
is trapped and never comes back. The kinetics of the passage A — B is
not changed by the absorbing condition, because in the time scale of this
passage, the residence time of the particle in B seems to be infinite. Then
there are two main definitions of K 45:
(i) K 4B can be defined from the relative time variation of the number
N4 of particles A:
1 dNy, 1 dNp

KAB(t) = e e

= 12
Ny dt Ny dt ( )
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dNp = —dN 4 being the number of particles B created between ¢ and t 4 dt.
This ratio generally depends on t but tends to an asymptotic value K 45
when t — oo: that is the rate constant, which is related to the stationary
probability fluz in an open system where A is continuously refilled in order
to establish a steady state.
(#) The rate constant can also be deduced from the mean reaction time

TAB:

1 o0
AB = F05 o/ tdNp(t) (13)

dNp(t) being the number of particles reaching region B between t and ¢+ dt.
Then one can define the reaction rate as

Kap =1/taB,

and relate it with the mean first grrival time at region B, starting from
A initially. It is clear that K 4p = Ksp when N4(t) and Np(t) vary
exponentially with ¢; otherwise these two rate constants can differ, but one
expects that the difference, if any, is not significant in all cases where the
rate constant can be given its usual meaning: this implies that N ;1 dN4/dt
relaxes to its asymptotic value on a time scale much shorter than the mean
reaction time 74 5.

With the aid of this discussion we now review some of the many esti-
mations of the rate constant. A more complete review will be found, for
instance, in Ref. [5].

2.3. Estimations of K 4p

(i) Transition State Theory [5]. In the simplest version of this theory,

it is supposed that

— species B is obtained as soon as 2 > ¢;

— thermodynamic equilibrium (6) is realized in region A = (—o0, c);

— the rate constant K X%T is the probability flux c, that is to say, it is
the equilibrium average of positive v at ¢ (there is no return from B,
according to 2.2). Then one has:

c

KIST o (%)1/2[/ exp (— %)dz]—l exp—(%) (14)

- 00

or with approximation (11):

KI3T ~ (;—;) exp — (————————U(C)I&,U(a)) . (14")
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However, it is clear from discussion in section 2.2. that a detailed de-
scription of the barrier crossing, involving possible returns to A, is necessary
to obtain an accurate expression of the rate constant. Such a dynamics is
not taken into account in the TST theory: it can be given by the Kramers
or Smoluchowski equations.

(#) In the high friction limit Kramers [4] used Eq. (9). When N4
is kept constant and Np is kept 0, a steady state can be established, with a
current of particles A continuously introduced at = —oo in order to com-
pensate exactly the reactive flux N4 K 4p of particles transformed into B.

Then it corresponds to a probability current J = K 4g. This current
should be such that the stationary solution p;(z) of (9) with current J
practically vanishes for # = b, which gives

b
ri(z) = JkT (%) /exp (UT(;—Z) dz'.

z

The normalization of p; yields:

KAB=J=%{/bdzexp(—Uk(z) /dz exp U( '))} (15)

or with the harmonic approximations (11a)-(11c):

Kun (B2 (- LI2UE)

This method has been generalized to a n-dimensional space; in par-
ticular, Langer and other authors [6-8] used it to compute the lifetime of
metastables states in the general case.

We just mention its application [5, 9] to the complete Kramers equation
(7). In the phase space (z,v) the regions A and B are naturally separated
by the plane z = ¢. The flux of the probability current J through this
plane vanishes for the equilibrium solution po(z,v). The steady state ob-
tained when extracting molecules B and maintaining constant the number
of molecules A corresponds to another stationary solution p;(z, 0), such that
P1 = 0 in region Bj; it can be formed by writing pi(z,v) = po(z,v) ¢(2,v)
and calculating ¢ approximately in the neighborhood of ¢ in such a way that
g2 0if z 2b. The flux of the corresponding current J; through the plane
z=cis

Kap= [ doupi(erv) (16)
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which gives, with the harmonic approximations (11) of U:

KABE( Ya ){[a_2+w3]1/2_§%}exp[_gw] (16")

2w, 4m? kT

If a 3> 2mw, the high friction result (15) is recovered, whereas if a < 2mw,
one obtains the TST value (14').

(1#1i) It has been seen that the rate constant can also be deduced from
first passage time considerations. Let us assume that the particle obeys
the high friction equation (8), and let 6(y|z) be the first arrival time at
y, starting from z at time 0. The probability for @ to be < t is also the
probability P(y, t|z) for the particle to be in y at ¢ if y is an absorbing point:

Proba (6(y|z) < t) = P(y,t|z). (17)

It is known {3] that P(y,t|z) satisfies the backward Fokker-Planck equation
corresponding to (8), so that G(t,z) = Proba (6(y|z) > t) also satisfies this
equation:

0G 19U 8G 1 4% 8*G

%" Ttz 0z 2a? 022 (18)

with the boundary conditions

G(0,z) =1 ifze<y; G(t,y)=0ift > 0; (19a)

(,%G(t,z) -0 ifz—>o0 (19b)
the last condition ensuring that # = —oo is a reflecting boundary [3] (no
particle can escape or stay at z = —o0).

From (18) it results that the mean value of 6:

B(yl2)) = / dtt(5:6(z,1)) / dt G(z, 1) (20)

satisfies:

_10U 560) | 17 0%0) -
adz 0z  2a 022 °

With the boundary condition corresponding to (19), it is found that

H ) n
01e) = o [ ae'exp (522) / e (- 220, )
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It can be seen [3] that the variations of {(6(y|z)) are very small when z
is moved in region A and when y is moved in region B (Fig. 2); thus the
mean time needed by a particle A to pass into region B is well defined and
is given, after reversing the order of the integrations, by

TAB = (9(bla))~(9(bl 00))
i [ (-5 [ (U)o

It is seen that K4p = (t4B) ™! agrees with the estimation (15), but in
general such an exact agreement cannot be expected. In several dimensions,
the present method cannot be easily handled, and the flux definition of
K 4p is more practicable. We now give its most general and convenient
formulation.

<8 (®jx) >

.

a (8 b *

Fig. 2. Meand first arrival time (6(b|z)).

2.4. General definition of the rate constant K 4p

Modern theories define the rate constant in terms of correlation func-
tions. Following Chandler [10], and Northrup and Hynes [11], we write

C(t) = (§N4(0)- 6 N5(1)), (24)

where N(t) is the number of particles a at time t, and § N, is its fluctuation
from the equilibrium value N3, with Ny +Np.= N. ( ) denotes the average
over equilibrium initial conditions in A and on stochastic evolution when
the regions A and B are absorbing. Then K 4p is defined by

1 dC

A
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This definition is similar to definition (8), but it only counts the molecules

leaving A that finally reach B; it implies a careful description of the motion

on the potential barrier. Using this method, Northrup, Hynes and coworkers

(11, 12] computed the reaction constant in a number of cases, with the aid of

projection techniques that will not be presented here. However, it is useful

to give more explicit and general forms to rate constant defined by (25).
Using (24) and (25) one can present K 4p in the form [14]:

Kap=— / dS/dvn vp°(r,v)P(B|r,v), (26)
4%

where r is the position of the particle in a n-dimensional space, v the veloc-
ity, (S) a surface separating the regions (A) and (B); n is the unit vector
normal to (5) and pointing towards (B); P(B|r,v) is the probability to be
absorbed in (B), starting from (r,v); po(r,v) is the equilibrium probability
density at (r,v) and p% is the equilibrium probability of (4) (po(r,v) and
U being computed for the complete dynamics including (4) and (B)).

Finally, formula (26) can be extended to any Markov process in a
m-dimensional space, the probability density of which obeys the general-
ized Fokker—Planck equation [3] in a n-dimensional phase-space:

P20 == o (Fp) + 52 (Dup) + [ W (elulplos )

- W(ylw)p(z, t)] ) (27)

where @ = {z;}i=1,...m specifies the state of the system; {Fi(«)}i=1,...m is
the drift force, {D;;} is the diffusion matrix, and W(y|z) is the transition
rate from 2 to y if the particle can experience jumps; Einstein summation
on repeated indices is implied in (27) and in the following formulae.

The probability P(B|z,t) to be absorbed in B, starting from  at time ¢,
satisfies then the backward equation associated with (27) [3]. If we assume
that the possible jumps do not permit to cross the surface (X) that will
be chosen to separate species A and B (see Section 3 for application) the
reaction rate K 4p can be defined as the surface integral

Ka = [ 4o { P(Ble)[F® - 5 (D))
e

+2(&)Dis5 P (Ble)} (28)

where (X) is an hypersurfa.ce separating the regions R4 and Rp defining
species A and B, n* is the unit vector to (2) pointing toward B; P%(B|z) is
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the stationary value of P(B|,t) (or P(B|z,t) itself for a time-homogeneous
process); p®(z) is the stationary probability density for the complete dy-
namics (including R4 and Rp) (see Fig. 3). It can be shown that K 4p,
as defined by (28), is independent of the particular choice of the separatriz
(Z). Formula (28) reduces to simpler form in important particular cases, for
instance if n* D;; = 0. This occurs in formula (26), (£) being the cartesian
product of (§) by the complete velocity space; however, if (£) was defined
by conditions involving velocity or energy, we would have to apply (28).

Fig. 3. Regions A and B, and separatrix Z.

2.5. A simple solvable model

Let us assume that the motion of the particle in a bistable potential

(see Fig. 1) is mimicked in the following way [13,14]:

— when the particle is in the potential well (—oo,¢') it can be either in
a bound state A corresponding to the stable species A, either in an
excited state A*; similarly if 2 is in (¢!, +00) the particle can be either
in a bound state B, or in an excited state B*;

— when the particle is on the top of the barrier (¢, ¢"), it moves with two
possible velocities v, the sign being reversed when a collision with a
solvent molecule occurs;

— when the particle reaches c¢", it enters B*; it can only pass to the bound
state B if it is deexcited from B* to B by a collision. If no collision
occurs while in B*, the particle returns to ¢ after a finite time g, and
reenters the barrier (¢, c""). The behaviour is similar in A*, which also
have a finite deterministic lifetime 74;

— while in A the collisions can excite the particle and inject it in the barrier
through c'; the rate of excitation, normalized by the equilibrium number

of particles A, is just the Transition State Theory constant K LSBT;
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— once the particle is introduced in (¢’, ¢''), the bound state A and B are
considered to be absorbing, in conformity with the discussion in 2.2.
Despite its simplicity, this model includes some features that are not
present in the purely classical descriptions by Smoluchowski or Kramers
equations, such as a crude notion of a quantum state in the well. It assumes
that classical mechanics applies on the barrier, which is certainly not true in
general, but is an acceptable approximation for some reactions, such as, for
example, butane isomerization. In any case, a realistic quantum treatment
is out of the scope of the present paper.

Then, the rate constant is, by (26):

1
Kap = 5-P(BI¢',o)up"(cv) = KXETP(BIE'v).
A

The probability to reach the bound state B starting from ¢’ with positive
velocity, can be found after some calculations [13,14], and one gets the exact
formula:

KT 1

1
Kap - exp(/\r)A— 1 + eXp(/\T)B— 1 +Ar+1, (29)

where ) is the collision frequency (supposed to be constant) and 7 =
(c" = ¢)/v' is the time needed to cross the barrier in absence of collisions.

XIST

Kas

040}

0.201

s L s "
2.0 4.0 6.0 8.0
At

Fig. 4. Rate constant in function of noise frequency.

This result is a qualitatively correct (Fig. 4) for all values of the colli-
sion frequency )\, and it agrees with numerical simulations by Chandler [10]
and Berne and coworkers [15]. The corresponding time-dependent problem
can also be solved [13]. The model can be improved in number of ways,
although an exact solution is generally not possible in more complicated
cases: for instance, the constant velocity v can be replaced by a position
dependent velocity; one can introduce continuous velocities, with random-
ization at each collision; one can also replace the motion on the barrier by an
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overdamped motion in a harmonic potential (Orstein-Uhlenbeck process).
Complex reaction schemes can be studied [14], and random potentials can
be considered [16]. This last point is one of the more interesting general-
izations; in the next section it will be studied in details in the scope of the
macroscopic theory.

3. Chemical kinetics in a fluctuating medium

We now consider chemical reaction on a macroscopic level: the sys-
tem contains a large number of molecules of different species, and we want
to study the evolution of the concentrations in time. Their determinis-
tic behaviour is given by the laws of classical chemical kinetics; however,
many internal or external factors can cause these concentrations to fluctuate
around their deterministic value, and a stochastic description is needed.

This subject has been extensively studied and reviewed in papers and
books during the last three decades [3,4,18,19]. Here we only address the
problem of external noise in simple cases, before presenting new results on
the stationary states that can appear due to fluctuating environment; then
we show that the theory developed in the previous section applies and can
provide the time scale of the noise induced transitions.

3.1. Ezternal noise with vanishing correlation time

Let us consider the chemical system

k
X+A?2X, (30a)

x X B, (30b)

where the reaction constants are k, k and k' as indicated. We suppose
that the concentrations a and b of 4 and B are kept constant by convenient
flows of A and B, and that the medium remains homogeneous and in thermal
equilibrium. Then, if the ordinary kinetic laws apply, the concentration z
of X obeys the equation

dz -
i (ka — k")z — kz?, (31)
which can be solved easily.

However, concentration z experiences fluctuations around its macro-
scopic value due to internal factors such as the stochastic nature of the
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elementary reactive events, or due to external causes. We focus our atten-
tion on these external noises, which can be, for instance, small variations of
the flow of molecules feeding the reactor, or fluctuations of the temperature
due to imperfect monitoring.

The simplest way of implementing such external noises is to replace the
deterministic kinetics equations like (31) by Langevin equations, which in
one-dimension can be written

d

7 = F2)+ G(=)E), (32)
where z is the concentration of the variable reacting species (all other con-
centration being kept constant); F(z) is a deterministic “reaction velocity”
(for reactions (30) it is represented by the r.h.s. of (31)), and G(z)£(t) stays
for the external perturbation. £(t) in general, is not precisely known, but it
should be rapidly fluctuating, and by construction we have

(£@2)) =0, (33a)

C(t) = (£(to)é(ta + ) = (£(0)E(2)) - (33b)
(¢ is homogeneous in time if external conditions do not change). Finally a
proper choice of G permits to suppose that:

+oc0
T = / [t|C(t)dt. (33¢)
—00
Furthermore we assume that when ¢t — 0, the correlation function C(t) of
-+ oo
the noise tends so rapidly to 0 that the correlation time 7 = [ [¢|C(t)dt
-~ 00

is much smaller than the typical variation time of any quantity of interest.
In these conditions two models of £(¢) have been widely used:

(i) either £(t) is a white noise (so that 7 = 0) and the following for-
ward Fokker-Planck equation holds for the probability p(z,t) to measure
concentration z at time ¢:

% - L irem+ 2 Liciem); (34)

(%) or £(t) is a coloured noise, which means that C(t) is not a Dirac
function as supposed in (i), but the correlation time 7 is so small that p(z, t)
can be replaced by its limit when 7 — 0. Then p(z,t) approximately obeys
the following Fokker-Planck equation [2,3]

2
% _ 2 [(pe) + 16)G@Ne] + £ 2

2= [G*(2)p]. (35)
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The first model correspond to an Ito stochastic differential equation,
whereas the second one corresponds to a Stratonowich differential equation,
and the difference between (34) and (35) can be important if the amplitude
G(z) of the noise term depends significantly on z. It is not always easy to
choose the proper model for an actual phenomena; the question is discussed

in details in Refs [1-3].
3.3. Ezternal noise on a system undergoing a Hopf bifurcation

Many examples of transitions induced by noises with vanishing correla-
tion time can be found in Ref. [2]. As a non conventional case, we now study
the influence of an external noise on a Hopf bifurcation [25]. Third order
chemical systems have been extensively used in chemical kinetics to simulate
autocatalytic reactions which can lead to spatio-temporal self-organization
as well as to chemical chaos [18]. The following system, with the constant
concentrations of A, D, E are constant:

A-X, (36)
B+X=2Y+D, (37)
2X +Y 23X, (38)

X E (39)

can exhibit an oscillatory behaviour provided B = B, = 1+ A2. By changing
from the variables (z,y) (concentrations of X,Y), to a new set (z',y') =
(X — A, Y — B/A) and assuming B = B, + ¢, the deterministic kinetic
equations describing the reaction scheme (36)—(39) can be transformed into
the simplest possible form for observing this behaviour, i.e.to their normal
form. In polar coordinates (r,8), the normal form for this system reads:

dr

5 =R ar® = F(r) (a>0), (40)
do
dt = ﬂ(r) ’ (41)

where y and a are constant parameters; and £2(r) is given function of r.
General considerations of (40)-(41) leads to the following conclusions:

(i) r = 0 is a stable stationary solution of (40) if x > 0, whereas it
becomes unstable if 4 < 0; it corresponds to a fized point zy,y; of the
system (&', 4");

(i) if u < 0, the stable stationary solution of (40) is

r=p=(-p/a)'/?, (42)
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limit cycle

o/
fixed point

Fig. 5. Hopf bifurcation.

which corresponds to a limit cycle of the system (z',y') (see Fig. 5).
Let us now suppose that the parameter u is subject to an external noise
modelled as:

p=p+7E(), (43)
£(t) being a white noise. Equation (34) for the probability density is then
0
5= ——[(ur +ar)p| + D (r ’p), (44)
where the diffusion coefficient D is
2
=1
=5 (45)

The 0-current stationary solution is

po(r) x %r-’-"/u exp (— ;—1;—) , (46)
which is normalizable in the (z',y') plane if
oo
/po(r)27rrdr < .
0

This is only true if i < 0. In this case the radial density ¢(r) = 21rrp0(r)
is infinite for r = 0 if —D < fi < 0, whereas it vanishes for » = 0 and is
1/2
maximum for r = ‘—EI when i < —D.
When i = 0 the only acceptable 0-current stationary solution of (45) is
the Dirac distribution, which corresponds to the accumulation of “particles”
at the fixed point.
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Finally, when i > 0, there is no normalizable 0-current stationary so-
lution; however, one can find a normalizable stationary solution

J P,
pi(r) = — 5 Po(r) o/ Wd" (47)

corresponding to the stationary probability current J. This means that
for the system to have a steady state, an external stationary flow of par-
ticles X crossing the reactor region is required. Naturally the continuous
representation of the chemical content of the reactor is then inadaptable.

qQ

Fig. 6. Radial density for coloured noise with vanishing memory.

It is seen that there are now two-phase transitions (whereas these is
only one deterministic), and that the radius of the stochastic limit cycle is

_a_p\1/2 . _o\1/2 .

—%—2 instead of (—f— for the deterministic case. If, however, we
model the fluctuations of p as a coloured noise with vanishing correlation
time (model (%) of section 5.2) these conclusions still hold if /i is replaced by
ji — D and the radius of the stochastic limit circle now coincides with the
deterministic one (see Fig. 6).

It will be seen in the next section that noise with a finite correlation
time can have much more serious effects.

3.5. Noises with a finite correlation time: random telegraph model

The time correlation of an external noise is caused by the memory of the
environment, which does not change instantaneously. Thus the noise cor-
relation time is often finite in a dense medium, because physical quantities
do not diffuse very rapidly. A detailed analysis of the problem, which could
permit to choose a relevant model, is generally difficult and phenomenolog-
ical treatments are necessary: small noise expressions [3], small correlation
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times expressions (2], or generalized Langevin equations [21] can be used to
address the problem.

Another possibility is to represent the noise as a random telegraph pro-
cess [2,3]: it can take only two different values, the waiting time in each of
them following an exponential law. This leads to models with a finite cor-
relation time that can be exactly solved in some cases [22-24]. We now use
this procedure for perturbing the chemical system (36)—(39) in the neigh-
borhood of the Hopf bifurcation from a fixed point to a limit cycle described
by equation (41).

We suppose that the parameter x4 can take two values: g3 > 0 and
p2 < 0; the waiting time T, in po (a = 1,2) is independent of past events
and is such that:

P(Ty > 7) = e~ 2at, (48)

The coordinates of the system are then (r,8,a) and the process is de-
fined by the drift vector in space (r,6) with components (F(r, o) — £2(r))
corresponding to the deterministic equations (41), and by the transition
rates A, corresponding to the jumps from g, to ps (wWhere @ denotes the
state which differs from a).

The probability density p(r,0, a,t) obeys the forward equation (34):

0 i a.
ap(r’ 6, a) == E[F(rs ”’a)p(r’ 6, a)] - 3_0'['0("')?(7" g, a)]
+ AdP("’ 0: (‘i) - ’\ap(r’ 0, a) ’ (49)
and the stationary solution reads:

po(r,0,a) = po(r,a) m exp[ Z ta(r|ro)] (50)

with
F(r, o) = —ptar — ar®, (51)

f Aa
ta(r|ro) = / md‘l‘ . (52)
)
The stationary radial density is
g(r) = 2xrpo(r,a) (53)
[+ 3
and it is normalizable if and only if
> Aalpe > -1. (54)
[ 4
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A lot of phase transitions can occur. Taking A\; = A = A and writing

- Mt p
F=""3
it can be shown that

(i) if i < 0, ¢(r) is always normalizable; for A > —2u2, ¢ = 0 for
r=20,and ¢ — oo if r = (—pz/a)!/? = py; for A > —2u;, ¢ = 0 for
r = 0 and r = p;, and ¢ is maximum for r = (—ji/a)!/? = j (see Fig. 7);
then both deterministic attractors are destroyed, and a new limit cycle with
mean radius p is built up due to the noise.

atr

always normal 13)
(1): N ¢-2f
(2): -2 ¢\ -2,
(3): =2py¢ Q)

O P BT e T

it gy <24,

alr)

normat if X cHilbiz.
¢ Bl

1):x¢-2p,
(2):-2pp e n
(3): %, Fak2

Hatpz

CRET bl

Fig. 7. Stationary radial density ¢ for random telegraph noise.

(i) if g > 0, for A < —2u3, g is infinite at r = 0 and r = pg,
which means that both deterministic attractors exist; for —2u2 < X <
—pap2/(p1 + p2), ¢ is infinite at » = 0 and ¢ = 0 at r = 0: only the fixed
point subsists; finally, for A > —pip2/(p1 + p2), ¢ is not normalizable,
which indicates that the system coalesces at the fixed point. The phase
diagram, shown in Fig. 8 is complex.

It is seen that the behaviour of the system is quite different from its
behaviour in the case of a noise with vanishing correlation time, studied in
section 3.4. However, as expected, some similarity appears when comparing
with the limit of a coloured noise (model (i) of section 3.2): the determin-
istic fixed point is preserved when i > 0, but disappears when & < 0, &
being the average value of the parameter p. Furthermore, in the random
telegraph model, the particles coalesce at the fixed point (unnormalizable
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M1

not
normalizable

Fig. 8. Phase diagram of bifurcations for random telegraph noise.

g(r)) when
2 _ o2
2] X — ¢
A>— = 55
H1+ p2 2’ (55)
with x = p1p2/2, or
2 ~2
-2 X _H '
P> (55)

If A > oo and x — o0, with x2/2) = D, diffusion coefficient, (55') agrees
with the corresponding condition in section 3.3.

The last point is to characterize the time scale of possible transitions.
The formalism developed for defining the rate constant in section (2.4) can
be applied for this purpose. Let us suppose, for instance, that the system is
in the neighborhood of the fixed point at time 0. Then a random telegraph
noise is switched on between the values u; > 0 and pz < 0 of the parameter,
in such a way that i < 0, with —2u2 < X (see Fig. 7). The fixed point disap-
‘pears and the new attractor is the limit cycle radius with p; = (—p2/ a)l/ 2
the stationary probability density g(r) being infinite there. Let us imagine
a small circle with radius r;, and a large circle with radius r; < p2, both
centered on 0: the interior of the first one will be the “reactant” region 4,
the exterior of the second one will be the “product” region B. Applied to
this case, the general definition (28) gives for the rate constant K 4p:

_ 2xr1p(r1,2) - F(r1,2)
fo"‘ drY,, 2nrp(r,a)

KB - P(B|r1,2), (56)
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where P(Bj|r;,2) is the probability to reach region B before returning to A,
starting from r; with value u; of the parameter.

Naturally, k4p in principle depends on r; and r,. However, in the
given conditions it can be shown [26] that expression (54) tends to a finite
limit, independent of 72, when r; — 0:

1+ XM1/p1 +1/p2)

K 1 R 57
which, if A — oo, x — oo and x2/2\ = D, gives
Kap=-p(l1-p/D)>0. (58)

The limit (57) does not exist always. Sometimes a saddle point ap-
proximation may be used [26] to show that the result given by (56) does
not depend strongly on r; and r2. In any case, it is interesting and useful
to notice that the microscopic theory of rate constants can be profitably
applied for these macroscopic rate processes.
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