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Stochastic models for Taylor dispersion in systems which are stratified
or layered in a direction normal to the direction of flow are reviewed.
Applications to systems with random velocities in the several layers, to
system with random transition rates between the layers, and to fractal
systems are sketched. Generalizations to two dimensional strata normal
to the flow are indicated, and some specific examples given.
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1. Introduction

When a solvent flows through a tube, any solute will be carried along
with the flow. One would expect that solute originally uniformly spread
across the tube cross section would be drawn out into a parabolic profile as
time evolves (¢f. Fig. 1(a)). In fact, something different happens. The solute
moves downstream at the average velocity of the solvent, but its distribution
broadens; the amount of broadening is proportional to the elapsed time (cf.
Fig. 1(b)). This phenomenon was discussed by G.I. Taylor [1] and is named
Taylor diffusion or Taylor dispersion after him.

Taylor dispersion can be very important in practical applications. One
such is the measurement of diffusion coefficients in the liquid state [2].

The physical reason for this surprising phenomenon is that the solute
diffuses transversely across the tube cross section as it flows longitudinally
down the tube. (Longitudinal diffusion also occurs, of course, but its effect
is negligible and we shall neglect it in this paper.) Thus the solute samples
the entire velocity distribution, and hence moves, on the average, with the

* Presented at the IV Symposium on Statistical Physics, Zakopane, Poland,
September 19-29, 1991.

(389)
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Fig. 1. (a) The concentration profile of the solute for flow in a tube as it would
be in the absence of Taylor diffusion. (b) The concentration profile as it is in fact,
after sufficiently long times.

mean fluid velocity. However, diffusion is a random process, and a solute
particle will spend random amounts of time at different points of the velocity
profile. This induces a dispersion in the distribution of the solute particles.

We have studied a discrete version of this process [3]. The transverse
direction consists of N discrete layers. In each layer, j, fluid is flowing with
velocity u;. Solute particles make a random walk between the layers with
transition rates k;.k; the plus/minus sign refers to the rates for moving from
j to j + 1 respectively. The scheme is depicted in Fig. 2.
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Fig. 2. A schematic representation of the stratified flow system. Layers 1, N, and
one interior layer are shown.

Classical Taylor dispersion is recovered in the limit N — oo. In the
other extreme limit, N = 2, one obtains a stochastic model for chromatog-
raphy [4]. One layer corresponds to the stationary phase, with u = 0, and
the other to the mobile phase.
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Taylor dispersion is an example of a class of stochastic processes called
compound stochastic processes [5]. One has two processes, X and Y, whose
probability distributions obey the evolution equations

0wy = F(y)
Oz = G(z,y). (1)

That is, Y evolves independently, and X evolves in a way which depends
on Y. In the present case, Y'is the transverse coordinate of a solute particle
and X is its longitudinal position which depends on Y 'since the fluid velocity
depends on Y.

It is important to realize that the solute particles, the solvent, and the
layers may be metaphorical. The model may be applied to several rather
different physical situations with a proper reinterpretation of the variables.
We shall see below some examples of such reinterpretation.

This paper is a summary of talks given by the author at the 4th Con-
ference on Statistical Physics at Zakopane, September, 1991. It is primarily
a review of work done in collaboration with C. Van den Broeck, though a
few new results are included.

2. Formulation of the problem

The probability of finding a solute particle in layer 7,1 < 7 < N, is

denoted by P(z, j;t) and is assumed to be governed by the master equation
AN

atP(z’j;t) = JZI [‘a’uiaij + Kij] P(zaj;t)7 (2)

where u; is the velocity in the j'th layer and K is the matrix of transition
rates between the layers. K is given by

~kt kg 0 ...0
kf = (kg + &) ky L0 (3)
0 kF — (k7 +kF) ...0

The quantities of interest for us are the average values
N =) / dzzP(z, j;t),
i

(0226 = 3 [ do (e = (a)? Plo i) (#
J
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and (exp(iz(t))). To get these quantities, we must solve Eq. (2) which will
involve us in the study of the Green’s function G(z) = (K - z1)™"!. Eq. (2)
can be attacked in two ways. The first, which has been described in [3],
is to take its fourier-laplace transform in space and time. One can then
immediately read off expressions for the laplace transforms of the moments

(z(2) = Y [Z _’_'!K (Uz _1 K) n] g ol (5)

i,J

where G/(z) is the Green’s function defined above, and U is diag(uj — i, uz —
@,+++,uNy — %). @ is the mean flow velocity, & = Y u;pi*. Note that the
Green’s function G is a rational function of z since the system it describes
is finite dimensional. p!! is the steady state (¢t — co) value of [ P(z, j;t)dz.

From (5) and a tauberian theorem for laplace transforms, one may read
off the asymptotic behaviour of (§z"(t)) for large t.

(2(2)) = ut, (6)

o? = (62%(t)) — 2D.gt + 0(1), (7)
(622™(t)) — (2mY)e®™ /2™ m! + O(t™?), (8)
(622 F1(2)) — O(t™), 9)
where
D.g = E (ui — @) Gij(0)(uj — B)p™. (10)

Here G is the modified Green’s function [6]
Gij(2) = Gij(z) — p28ij/ = (11)

The expression (10) for D g can be written directly in terms of the input
data of the problem, without explicitly constructing the Green’s function

o~ [Zics (wi - 9)p3]*
i= 73]
D.g = =11 . (12)
=L
The expression for the third moment, § = lim{§z3)/6t can also be
written in terms of the original variables of the problem [3].
With the aid of these moments, one may construct the Gram-Charlier

series [7] for the distribution function P(z,t) = 3, P(z,j,t)

P(z,t) = exp (8% /20%) [1 + &, (h) + &, (%”)] . (13)

(2wo2) r
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Here, #. and &, are series of even and odd hermite polynomials, respectively.
The coeflicients of these series are determined uniquely by the moments,
Eq. (6-9) and vanish as t~! and ¢t~1/2 respectively. Consequently, the
distribution function is gaussian for long times.

There is another way to obtain these results which may have a bit more
physical appeal. This uses the Chapman—Enskog method familiar from the
kinetic theory of gases; it is a technique for the elimination of fast variables.
Suppose one has an equation of the form

atf(za Y, t) - (Ay + ”Bz) f’ (14)

where the operator A, operates on the variable y only, and the operator
B on the variable z only. However, B, may depend parametrically on y.
# is a small parameter. In our case, A, is the matrix K; it operates on a
finite dimensional space. B, is the operator ) u;3/3z, and the parameter
p# = a/l where a is the width of the tube and [ is a measure of the length
of the inhomogeneity. Ay is furthermore supposed to be a “divergence-like”
operator, in the sense that [ A, ¢(y)dy = 0 for all g. In our case, the matrix
K has this property since its column sums vanish.
We are interested in the function

n(z,t) = /f(“”yst)dy- (15)

In the case at hand, n corresponds to the function P(z,t).
Now let us assume that f(z,y,t) is a functional of n, and depends on ¢
only through the dependence of n(z,t) on t.

f(z,9,t) = F[z,y|n(z,t)] t> 1/p. (16)

This is the famous Boguliubov assumption [8]. Now let us expand

F=7FO 4 uf® 4 p25® 4 (17)

and require that
/f(°)dy =n; /f(m)dy =0 form>0. (18)

Integrating (14) with respect to y, one finds, to second order in p

Ounlz,t) = i [ dyBos® + 4 [ dyBos®. (19)
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Now, expanding (14) in powers of s and equating like powers
8. f® = A, f(O. (20)

Since 5F° On(z,1)
(0) _ nz,
8. £ (z,y,) = / i e (21)

Hence 8f°/8t is of first order in u and consequently £(® obeys the homo-
geneous equation

Ay f® =0, (22)
while f(1) obeys the equation
B,V = Ayf(l) + B, f9, (23)
The solution to (22) is
1Oz, 9,t) = p(y)n(=,?), (24)

where p is a solution of Ayp = 0, normalized to unity. The solution to (23)
is

FO =Dy / G (yly') 1(¥', 2, t)dy',

1s2,8) = p(6") [Ban(z,t) - [ duB.plun(z,0)],  (29)

where G(y|y') is the Green’s function for the operator A, and fél) is a

solution of the homogeneous equation A, él) = 0. Because of (18) we
obtain

/fél)dy= —/G(yly') 7', z, t)dydy'. (26)
Putting (25) in (19) we finally obtain

On = p/dyp(y)an(z,t) + pu / B.fMdy (27)

When the explicit forms of the operators are introduced, (27) becomes the
convective diffusion equation

32n) _ _On

6¢n = Deﬂ' (-a—z'i' ub'-; (28)
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with D g given by (12).

Note that the Green’s function used in (25) is often a Green’s function
“in the extended sense” [6] since, as is the case here, 0 may be an eigenvalue
of the operator 4,.

The advantage of this method of approach is that it yields directly the
evolution equation for the longitudinal velocity distribution. Furthermore,
it takes some of the mystery out of Taylor’s original derivation, which always
seemed a bit of a tour de force. The disadvantage is that moments higher
than the second of the distribution function are not given correctly.

The continuum limit of the stratified model is just Taylor’s original
model (for simple shear flow rather than Poiseuille flow), and the other
extreme limit, N = 2, corresponds to chromatography. Our results give
precisely the well known results in these two limiting cases; this is a valuable
check. The general case of N strata has an interest of its own, as we shall
now try to show.

First, let us consider the question of the correlation of residence times
in a random walk on a lattice. Suppose that the lattice has N sites, and
let 7; be the time that the walker spends on site j in a given realization of
the walk. We would like to know (7;) and (7;7%) for a given elapsed time
t. These correlations may be immediately read off from the results already
obtained.

Clearly we have z = w3m + u27m2 + ... + unyTy. Hence (7;) is the
coefficient of uj in (z). From (6) this is p;-tt, hardly a surprising result.
Less trivial is (r;7;) which is the coefficient of u;u; in (§z2). But this is
simply related to (7); the final result is

N x I APt - 65 (PY - dke) PPY
(0rjéT)) = 2t Z E ( )k+p5t
r=11i=1{=1 rFr

(29)

Another application is to the theory of motional narrowing in the ESR
spectra of one dimensional lattices, when the individual sites of the lattice
have random energy level splittings, or equivalently, random frequencies. As
is well known [9], the shape of a spectral line is proportional to the corre-
lation function of the Heisenberg operator which couples the spectroscopic
system to the radiation field.

I(w) / €Wt (2 dt,

#(t) = (07 ()0(0)). (30)

We may write ¢(t) = (exp(iz(t))), where 2(t) is the phase of the oper-
ator O.
z(t) = wity + watz + ...+ wntnN, (31)



396 R.M. Mazo

w; being the splitting on site j.

This is precisely the Taylor dispersion problem which we have been
considering, with the w’s taking the place of the u’s, and (exp(iz)) taking
the place of (§z2) as the quantity to be calculated.

Czech and Kehr [10] have studied this problem for the case of an infinite
lattice. There are appreciable differences between the infinite and finite
cases in the limit of long times. In the former, the random walker is always
visiting new sites. In the latter, the sites visited have in general been visited
previously, and consequently the site splittings are correlated in time.

There are two ways to attack the line shape problem. The first is to
calculate ¢(t) and fourier transform the result. The second is to transform
to frequency space immediately, and evaluate the resulting formulae. Both
methods have been used [11].

For times t 3> N27., ¢(t) has been shown to be given by

. 1/2 2t2
N sinh @ cosh @ } exp (_“’P ) , (32)

9(t) = [sinh»N@ cosh N@ 2N

where 0 is defined by sinh? @ = w:-ret /2N . wy is the frequency dispersion of
the site splittings, (fw?), and 7. is k1. When w27.t/2N > 1 this simplifies
to

N n—1/2 w2t2
#(t) = VN [wzrct} exp (—fﬁ_) . (33)

Note that an infinite system, N — oo, never reaches this long time limit.

If either IV or 7. are very large, ¢ will have decayed to negligible values
before the asymptotic regime is ever reached; (32) is then useless. On the
other hand, there exist realizable circumstances in which the asymptotic
formula, (32), is valid over most of the interesting time range.

Fig. 3 shows a computation of ¢(t) by simulation of the random walk
for a lattice of 50 sites, a = wy7. = 0.005. The asymptotic formula (32) is
shown for comparison; the agreement is excellent. Fig. 4 shows results of
the same calculation for N = 16 and larger values of a. Again the results
are satisfactory, but less so at the larger values of a.

The second approach to the calculation of the line shape is to multiply
Eq. (1) by exp(iz) and integrate with respect to z. The result is, of course,
an equation for #(t). Introducing the matrix £ by £2;; = w;6;, one finds

(exp (i2(t)) = 3 [exp (i[2 + K19)], , . (34)
ik
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Fig. 3. The correlation function , Eq. (30), for N = 50, a = wp7. = 0.005. The
circles are simulation results; the solid line, marked a, is Eq. (32).

where p; is [ exp(iz)P(z,j;0)dz. This formal solution may be formally
fourier transformed, yielding, after averaging over the random frequencies.

Iw)o 3 ([wl +if + K — wn1] ), (35)
(3,k)

wy is a phenomenological damping parameter, w,.7. < 1, introduced to take
account of slow relaxation processes not accounted for in the basic model
[12]. If it were not for the extremely slow decay of ¢(t) in the one dimensional
model this ad hoc modification of the theory would not be necessary.

Equation (35) does not solve the problem of the line shape in the sense
of an analytical solution; finding the inverse matrix and carrying out the in-
dicated average are still formidable problems. Nevertheless, it does form the
basis for a useful numerical procedure. This is: generate a set of frequencies,
{w;} using a random number generator appropriate to some assumed prob-
ability distribution, invert the matrix numerically, and perform the sum.
This must be done for a large number of sets of the w’s, and the results
averaged. We have done this.

In each case, the resulting line shape for each realization of the w’s was
lorentzian, but the line centers and line widths varied from trial to trial.
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Fig. 4. The correlation function, Eq. (30), for N = 16 and various values of
a = w,T. = 0.005. The circles are simulation results. The line marked a is Eq. (32)
and the line marked b is a gaussian with the same initial curvature as Eq. (32).

When the results of many trials were averaged, the resulting line shape was
gaussian. This is shown in Fig. 5.
For an infinite lattice in one dimension, ¢(t) decays as exp(—at) for

long times, while behaving like exp (-bt3/ 2) for shorter times. We have

seen that, for a finite lattice, the asymptotic behaviour is given by (33). In
higher dimensions this slow decay is not seen. This is clearly associated with
the fact that a random walk in one (and two) dimension has probability
one of returning to its origin, while in three and higher dimensions this
probability is less than one (about 0.35). Thus, the finite size of the system
plays an essential role in one dimension, and possibly in two. The theory
of the two dimensional case, a particle hopping on a surface, has not been
worked out from the point of view of the present theory.

Let us conclude this section by just mentioning that analogous results
to those which have been obtained in the case of reflecting boundaries can
also be derived for the case of periodic boundary conditions [13]. This is
convenient for the transition to N — oo, and also because there are some
physical situations in which periodic boundary conditions are appropriate
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Fig. 5. The intensity, normalised to unity at the center of the line, for 20 samples
at N = 18. The circles are a gaussian fit to the curve.

in their own right.

3. Random systems

So far we have been mostly discussing situations in which the param-
eters of the system were deterministic. There are degrees of randomness
which can affect problems of this type. They can be categorized as random-
ness in space, time, velocity, and transition rates.

Randomness in velocities has already been discussed in the spectro-
scopic problem of the last section, in which the site frequencies were random
variables. Another example is the case of a system with periodic boundary
conditions where the velocities in the layers are independent random vari-
ables, (u;u;) = (u?)6;;. This is the same as the spectroscopic model, except
that we are here treating it as a diffusion problem, and are interested in
(622(t)). This model can be solved exactly [13] with the result that

2(u?)

<6§(Z)) B p? (p+ 4k)/?

(36)
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This implies, in real time, that

u2
(627(t)) d '%(Er(—l;))lT (2kt)3/? . (37)

Note that this example exhibits an anomalous dispersion. The width of the
distribution grows as t3/2, not as t.

So far, we have been assuming that the jumps between strata have an
exponential distribution in time; that is the probability of a jump in time
dt is kdt. Van den Broeck has studied an interesting variant with a different
waiting time distribution [14]. Suppose that the steps take place at discrete
times instead of continuously; a waiting time of length 2™ between successive
steps occurs with probability 2", Waiting times which are not powers of
2 have zero probability. This is analogous to the Saint Petersburg game of
probability theory [15]. He shows that the mean number of steps in time ¢

behaves, for long times as
1
(N ~ 3 (38)

In a normal random walk (in discrete time), the number of steps is, of
course, just . This is an example of random time in a dispersion problem.
Very often, the transverse structure of a flow system is not known, or
is exceptionally complex, so that the only information one has about it is
statistical. This is what we meant by the phrase “random in space” used
above. Consider a system which is regular, in some sense, along the flow
direction, but is irregular transverse to the flow direction. As an example,
one might think of a tube, uniform in cross section, but for which each cross
section has a fractal structure, the same for each cross section. To visualize
this, think of a “Toblerone tube”, each cross section of which is a Sierpinski
gasket. What would Taylor dispersion look like on such a structure?

To study this one must first understand diffusion on a fractal lattice.
Diffusion on a fractal has been studied a great deal [16], but mostly from
the point of view of determining the exponent in the relation (§z2) o« t©.
For our purposes, the relevant question is not this, but, what is the dif-
fusion equation on a fractal substrate? O’Shaughnessy and Procaccia [17]
have given an answer to this question for the envelope of the concentration
profile. The actual profile will have a very complex structure; it will be a
multifractal, a distribution on a fractal. However, when this complex multi-
fractal is smoothed over regions small compared to macroscopic distances, a
smooth distribution is expected, which O’Shaugnessy and Procaccia argue
obeys the evolution equation

o 1 9 -0 D—lﬂ)
'a—t—;D—_lar (K‘I‘ r 61‘ 7. (39)
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Here D is the fractal dimension of the substrate, and K»~9 is the
diffusion coefficient. Note that the diffusion coefficient is not a diffusion
constant; it is distance dependent. Eq. (39) is supposed to be a description
of diffusion from a point source.

To adapt this result to a description of Taylor diffusion one must gen-
eralize it in two ways. First, one adds a new dimension, orthogonal to those
described by the radius vector r; call this new coordinate z. Then add
the term ug f(r/a)0%/0z to the left hand side of (39); this describes the
convection in the z direction. One now has a convective diffusion equation.

The second generalization which must be made is to replace the point
source with a more general source distribution; a sheet source would be
more appropriate for present purposes. It is not clear at the present time
how this should be done, so we restrict ourselves here to the case of a point
source on the axis of a cylindrical tube, the cross section of which has a
fractal structure of fractal dimension D.

The Chapman-Enskog method can be used to eliminate the transverse
degrees of freedom, as described in Section 2. The calculation is rather
tedious, and we just quote here the result. One obtains a conventional
convective diffusion equation

oy r\ 0¥ oy

5¢ Tuwf (;) 355 = Ket gz (40)
where the effective diffusion coefficient is given by

2,6+2 _ }
uga " D—
Kea =Ko - 2—0* [ P71 1(p)dp
]
0
1 z b} P z
x(/zD_Idz/y1+9"Ddy/a(s)ds—- /zl"'e‘Ddz/a(s)d.s), (41)
0 0 0 0 ]

1
a(s) = sP~1(f(s)- D / pP=1f(s)ds).
0

(We have used Ko and K.g for the diffusion and effective diffusion coef-
ficients here in order to save D for fractal dimension.) Note that, in the
limiting case D = 2, @ = 0, D.g becomes u3a®/192K, for a parabolic
velocity profile. This is just what Taylor’s original work predicts.

It is unsatisfactory that this result has only been derived for the special
case of a point source on the axis of a tube. The generalization to an
arbitrary initial distribution is an open problem.



402 R.M. Mazo

Another class of problems which might be called randomness in space
are cases where the transition rates between the layers, k;-t, are themselves
random variables. The effective diffusion coefficient, D.g, is then also a
random variable. What is its distribution function? What are its mean and
variance?

The formula for D.g, (12), is a rather complicated function of the k*.
In order to see what to expect, we have calculated (D.g), (§D?g), and
estimated the distribution of D.g, by simulation. This work was done by
Mr. Gerardo Soto Campos. We took a system of 10 layers and picked the
18k by a random number generator. D g was then calculated by Eq. (12)
and the results of many such trials were averaged

In the first example, we took the 18k to be independent dichotomic

random variables taking the values 0.7 and 0.5 with probability 1/,. The
absolute values of the k’s are unimportant, as is the absolute value of the
maximum velocity. These numbers merely set the scale for D.g and do not
affect either the shape of the D distribution or the relative dispersion. The
velocity profile chosen was a linear one. 900 sets of k’s were generated.

A histogram showing the empirical distribution of D.g is shown in
Fig. 6. Note that the distribution is asymmetrical about its maximum, and
cannot be fit-by a gaussian. It can be fit reasonably well by a “shifted
gamma” distribution

-1 a—1 —(z-10)
#z) = Gapay(® 107 e (Z55), (42)
where a and 8 are parameters determined by the empirical fit and normal-
ization. The fit is characterized by a x? of 15.54 with 9 degrees of freedom;
at the .05 confidence level with 9 degrees of freedom, x? = 16.92.

Another experiment used a gaussian distribution of the k’s,with the
center and width of the distribution chosen so that no negative k’s occurred.
300 trials of a 5 layer system were generated. Here, the distribution of D.g
was gaussian; x2 = 8.7 compared to the expected x? of 11 for 5 degrees of
freedom at the 0.05 confidence level.

It would be interesting to see if one could understand these simulation
results in terms of the theory of random matrices, since D g is essentially
related to the Green’s function of the matrix K, Eq. (10). On the other
hand, most studies of random matrices of which we are aware have stud-
ied matrices with certain symmetries (hermitean, orthogonal, etc.). The K
matrices which we deal with have completely independent elements off the
diagonal, while the sums of the elements in each column must vanish. Con-
sequently the diagonal elements are not independent. As far as we know,
the statistical properties of such matrices have never been studied. Such a
study would seein quite worthwhile.
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Fig. 6. The frequency distribution of the effective diffusion coefficient for di-
chotomic transition rates, k = 0.5 or 0.7 with probability 0.5: 900 samples.

For the nonrandom case when all k’s are equal, it is easy to see from (12)
that D.g o 1/k. Is it also true that in the random case D g « (1/k)? To
investigate this for the case of dichotomous variables, we repeated the calcu-
lation for various values of p, the probability that k = 0.5. 300 sets of k’s for
each p were computed, and we looked at the quantity D.g/(k~1). Indeed,
D.g/(k~!) was constant within the error of the simulation. D.g/{k™1) =
82.38, 0 < p < 1, with a standard deviation of 1.02. This fluctuation is of
the same order of magnitude as the standard deviation for a fixed value of p.
We have not performed an analysis of variance, but the proportionality of
D g to (1/k) appears to hold well. More numerical experiments are needed
to determine if this proportionality to (1/k) is the rule or an accident of the
case considered.

So far we have been considering only one dimension transverse to the
flow. Even in the fractal case the model was effectively one dimensional
since we considered only radial diffusion. There are however, situations in
which the dimension of the space in which the random walk is taking place is
greater than one. One example has already been mentioned, spectroscopy of
mobile particles on random surfaces. Another possibility is Taylor dispersion
in a two dimensional array of channels.

To study such problems, it is necessary to have some information on
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lattice Green’s functions in dimensions higher than one. For an infinite
lattice, there is a considerable amount of information available about these
functions [18]. For a finite lattice, there is very little information.

Let us consider the problem of a random walk on a.two dimensional
lattice with transition rates x in the z direction and A in the y direction.
The situation is sketched in Fig. 7. The transition matrix for this case is

denoted by K(z); the superscript denotes the dimension of the underlying
lattice. K(? is simply related to K1) for the one dimensional case. In fact

K - kO @14 ' @ KO, (43)

where the prime and double primes denote the horizontal and vertical di-
rections.

Ny

AN\
WV

A
o m Ty
\

v X X X = X X

Fig. 7. A two dimensional lattice with different transition rates in the two direc-
tions.

Schwalm and Schwalm have noted [19] that, when (43) holds, it is pos-
sible to write the Green’s function in terms of the Green’s functions for
the one dimensional case, a fact which we had already observed for the
particular case at hand.
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To see this, we write down the bilinear formula for the Green’s function
(1) A1)y (1)y(1)
G(z)(z) - Z Xa' X( Ya' Ya: )

all
al ,0"

Z — Ayt = Ao (44)

As above, the prime and double prime refer to the z and y directions respec-
tively and XS,) and Xf:,,) are the right eigenvectors, Yo((,l) and YO(‘?,) the left

i ; K and KO respect
eigenvectors, A, and A » the eigenvalues of and respectively.
Carrying out the sum over o' or a" , one obtains immediately

GI(z) =Y xVyP6eW (2 -2,
al
=S Y WrLe® (2 - aum). (45)
Q"

Thus the double sum over nyn; terms has been reduced to a single sum over
either ny or ny terms. When either n; or ny is small, i.e. when the lattice is
a narrow strip, this is a major simplification. It would be desirable to have
the entire Green’s function in simple closed form, but, at the present time,
we do not have such a convenient formula.

As another example of a narrow strip lattice, let use consider the lattice
of 2N sites shown in Fig. 8(a). Sites 1 and 2 are connected to site 2V, while
site 1 is also connected to site 2N — 1. It is clear that this is a model
for random walk on a one dimensional lattice with both nearest neighbor
and next nearest neighbor transitions, with rates x and A respectively, and
with periodic boundary conditions. This model does not fall in the class of
models described by (43) because of the “diagonal hopping”. Nevertheless,
it can be evaluated precisely. The eigenfunctions and eigenvalues of K are
known, and hence (44) can be written

2N -1 exp (i"_i(%:z'))

1 "
2N %‘0 z +4Asin®(7j/N) + 4xsin®(xj/2N)

(period) _
G'p,p, (2) = (46)
The sum over j can be carried out explicitly by a complex variable technique,
integrating a suitable function over a contour enclosing all of the poles of

(46). We omit the technical details and quote here the result

G(pcriod)(z) :__1_ cosh 8 (N — Lp - p!])
p.p 4 \ sinh N, sinh 8;(cosh 3; — cosh ;)
_ coshBa(N = Ip—p'l) )
sinh' N 83 sinh 33 (cosh 8; — cosh 33)

cosh {g; } :.;- (-%(i) (% + %(z + 2n+4/\))1/2> .1
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‘ I

X——X—X- =X

] |

X——X—Xx— " '—lx
L9

Fig. 8. (a) A narrow two dimensional lattice isomorphic to a one dimensional walk
with nearest and next-nearest neighbor transitions; periodic boundary conditions.
(b) A two dimensional lattice on a Moebius strip.

With reflecting boundary conditions, we have the same picture, but with
the external connections erased. The same technique yields

(ref) _ 1
GP,P' (2) = 2) (cosh B; — cosh 32)

(cosh,@l (N — max(p,p') + 1) cosh B; (min (p,p') - 1)
X

sinh (1 sinh N3,

sinh 8, sinh N 3,

As a final amusing application of these ideas, we give the Green’s func-

- cosh B (N — max (p,p') + 3) cosh Bz (min (p, p') ~ %)) . (48)
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tion for random walk on a (narrow) Moebius strip; the lattice is shown in
Fig. 8. The result is given in terms of one dimensional Green’s functions,
and is

Msb
Gi,p") (2) = Gg;f;zN(z +23)+ 3 (Gﬁf;';zv(‘) - Gopnn(zt 2’\)) - (49)

The Green’s functions on the left hand side are one dimensional, as indicated
by the superscript. They refer to a periodic lattice, with period 2N or N,
as indicated in the subscripts, and are known in closed form [20], [21].

4. Discussion

We have reviewed the theory of dispersion in stratified systems. The
theory has a wide range of applications, from chromatography to spec-
troscopy. It applies to physical situations described by degrees of freedom
which can be divided into two groups. In one group lie a set of variables
which evolve independently of all of the others, usually in a stochastic way.
In the other set lie the rest of the variables, evolving in a deterministic
manner, but modulated by the values of the stochastic degrees of freedom.

For the case when the subspace of stochastic variables is one dimen-
sional, and there is no other underlying randomness in the problem, the
theory has been developed rather far. When there is additional random-
ness, we have mostly numerical simulations to guide us in understanding
the phenomena. This is not universally true. In the problem of motional
narrowing it has been possible to go rather far analytically. Also, when the
subspace of stochastic degrees of freedom has dimension higher than one,
current knowledge is meager. I believe that progress in these two areas,
randomness, and higher dimensions, will yield fruitful results.

Most of this work was done in collaboration with Christian Van den
Broeck of the Limburgs University Center, Belgium. It was supported in
part by the National Science Foundation. I should like to thank the organiz-
ers of the 4-th Symposium on Statistical Physics for inviting me to speak at
the conference, and the University of Oregon for assistance with the travel
to Zakopane.
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