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1. Introduction

If one wants to write something about fractals, first of all one has to
quote the work of Mandelbrot [1], who actualized the work of Julia [2] and
Fatou [3], introduced the name “fractal”, and showed the general meaning
of fractals for nature. Another aspect of fascination has been irradiated by
the work of Peitgen and Richter [4], exhibiting the beauty of fractals. Well,
we want to start our paper with some comments on the beauty. We believe
that a good part of the actual motivation to investigate fractals is coming
from their beauty. Fractals are characterized by special, perfect interplay
between the whole structure and details of the structure. The interplay
seems to be also present in nature. Looking closer and closer at many
natural structures, we find a harmonic interplay between details and the
whole. The very subjective impression of beauty of fractals may be based
on the fact that they unveil this natural harmony in a pure and abstract
way. We, as human beings and thus as a part of nature, do not need to
know a mathematical quantification of this natural harmony, but can feel
it directly by looking at a structure. This is the point of fascination and
beauty.

In this paper, we focus on fractals generated by discrete maps. We start
out with complex analytic maps and their basin boundaries, well known as
Julia sets. One essential aim of our work was to explain these structures of
Julia sets by a simple model which can be set in connection with the way
in which Newton described nature.

2. Complex analytic fractals

This part is devoted to fractals which are generated by complex analytic
functions. For simplicity, only the complex logistic map

f(z) =22 +c (1)

with z,¢ € €, is considered. The analyticity of this map is characterized by
the fulfillment of the Chauchy-Riemann condition; taking f. = u + iv this
condition is written like

du @

dz ~ dy’

du dv

oy~ dz (2)

In the following, some basic results on this function (1) will be reported.
For an extended discussion, we refer to literature like {5,6]. It is amazing to
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Fig. 1. Basin of attraction or filled-in Julia set for function (1) with ¢ = 0.32 4+
1 0.043. The z-axis was chosen to be Re zg and the y-axis to be Im z9. Both times
the corresponding component of zo was changed from —1.2 to 1.2; after [10].

see that such a simple equation may lead to very complex structures, like
this one shown in Fig. 1.

The work on fractals of complex analytic functions is based on the works
of Julia [2] and Fatou [3]. They investigated convergence properties of the
families of functions {f™} generated by rational complex functions f. Here
f™ denotes f* = f- f(»~1), The convergence of { "} was investigated with
respect to the chosen argument z of the complex plane. They found that the
complex plane of z is divided up in subsets where either no convergence or
some convergence exists. For the case of convergence (including convergence
to infinity), the family was called to be normal on this subset. The set of
convergent points z for a function f is called Fatou set. Thus, the following
definition can be used: z € € = CU{oo} is an element of the Fatou set F(f)
if there exists a neighborhood U of z in € such that the family {f*|U} is a
normal family. The Julia set J(f) is the complement of the Fatou set [6].

Nowadays, the families { f"} are interpreted in a more dynamical way.
One takes the function f"(z) as the iteration of f*~1(z). This iteration is
regarded as a process in time. Thus, the points f™(z) for n > 0 correspond
to values of a variable z(t) evolving in time but taken at some discrete time
steps t = nr. This leads to the following notation: zy is the initial point
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and may be written as

z0 = f°(20)
and
Zn = f"(zo).
The iteration is now
znt1 = f(zn)- (3)

In this context, the convergence of the family {f™} corresponds to the tem-
poral evolution of an initial point zy under the iteration with f to a fixed
point or to a periodic point. Thus, the Fatou set is the unification of all
basins of attraction. Note, the basin of attraction of infinity is included.
The complement of the Fatou set is, as already mentioned, the Julia set.
Consequently, the Julia set J can be taken as the boundary of the basins of
attraction. J is a repellor. Under iteration, points very close to J run away
from J. It can be shown that the boundary of any single basin boundary
is already the whole Julia set. This leads to very strange properties, if, for
example, three different attractors exist. Here, J is always the boundary of
all three basins of attraction. There is no boundary point where only two
basins of attraction meet each other.

The numerical evaluation of the Julia and the Fatou set is easily achieved
by using the properties just mentioned. The initial conditions of the com-
plex plane are scanned over a region of €. Each initial condition zg is iterated
several times. (Usually 50 to 100 iterations are already sufficient to obtain
very precise results.) The best way to evaluate these sets is to look for all
initial points which converge to infinity. If for a value n the absolute value of
Zn is larger than 3, z,, will go to infinity under further iteration, see Devany
in [7]. In this way, we obtained Fig. 1 using function (1). The white points
correspond to zg values which are attracted by infinity, and thus belong to
the basin of attraction of infinity. Using the fact that the boundary of this
basin is the Julia set, we say that the black points represent the filled-in
Julia set. Actually, the Julia set corresponds to the boundary between the
white and the black region.

To explain the Mandelbrot set, one special property of the iteration
of zg = 0 (the critical point of the map) has to be regarded. For a chosen
parameter value ¢ € € of the complex map f.(z) = 22 +c, the corresponding
Julia set J(f.) may be connected or not. J(f.) is connected, if zp = 0 does
not go to infinity under iteration, otherwise J(f.) is not connected. In
the unconnected case, J(f.) corresponds to a Cantor dust. To obtain the
Mandelbrot set, the parameter ¢ € C is scanned over a region in C. For each
chosen ¢ value zg = 0 is iterated, and it is asked whether this initial value
goes to infinity or not. In Fig. 2, the resulting Mandelbrot set is shown.
The white points correspond to parameter values ¢ for which zg = 0 goes



On the Fractality of Basin Boundaries 413

to infinity under iteration. The numerical evaluation of these structures is
not at all difficult. Algorithms to generate these structures can be found in
Refs. [4,8].

Fig. 2. Mandelbrot set. Shown is the complex plane of parameter values ¢ of
function (1). Along the z-axis the real part of ¢ has been changed from —2.0 to
0.5; along the y-axis the imaginary part of ¢ has been changed from —1.25 to 1.25;
after [10].

Up to now, we have discussed some properties of complex analytic maps
together with some nice illustrations. We have used the word fractals quite
often without defining this word. Well, what is a fractal? Definitely, every
reader has an idea of what a fractal is, and it is much easier and more pleas-
ant .to give some feeling of what a fractal is than to define it. Nevertheless,
we want to precise in the following what fractal means. The images shown
in Figs. 1 and 2 have the characteristic property that the magnification of
small details reveals always new images with the same beauty. In the Julia
sets, always similar structures are found under magnification. That is why
they are called to be self-similar. On the other hand, always new struc-
tures are found in the Mandelbrot set under magnification, if the location is
changed along the borderline. An interesting feature of these different local
structures of the Mandelbrot set is that they correspond to the form of the
corresponding Julia set. Keep in mind that each point of the Mandelbrot set
corresponds to one value ¢ € € from which a Julia set can be constructed.
Along the boundary of the Mandelbrot set, the Julia set encloses a very



414 J. PEINKE et al

small basin of attraction containing the point zp = 0. In the ideal case, the
Julia sets must be a line, because within any ¢ neighborhood there are ¢
values for which the Julia sets are only Cantor dusts. There does not any
more exist a finite region of a basin of attraction for initial conditions which
do not converge against infinity. This can be also expressed by saying that
the basin of attraction for initial points not going to infinity has the measure
zero.

The magnification property of fractals can be expressed by a scaling
law. For a property A of this structure (well chosen) it holds that A(Az) =
A*A(z). If, for example, z is a typical length scale like the diameter of a
disc, and A is the number of discs with this diameter necessary to cover this
structure, the scaling exponent a corresponds to the Hausdorff dimension.
If for a structure a is no integer, one says that this structure is a fractal.
Structures with a simple geometry, like a line or a plane, have integer valued
Hausdorff dimension. For a detailed discussion of fractals see also Ref. [9].

3. Nonanalytic fractals

Up to now, we have discussed only the mathematical background of
the Julia, Fatou, and Mandelbrot set. For the definition of these sets of
the complex plane the analyticity of the generating function was essential.
Next, we want to turn our attention to the meaning of these mathematical
features for the geometry of fractals.

Mandelbrot’s idea is that fractals can be taken as an approximation to
describe structures in nature. Here, the question arises whether complex
analytic functions are necessary. If so, they would play a special role in na-
ture. Or, is the mathematical property of complex analyticity only sufficient
to generate fractals? From a classical point of view, i.e. based on Newton'’s
philosophy to describe nature by unique, time invertible processes, we ex-
pect that the rational complex analytic functions are not appropriate. The
existence of a critical point in these functions destroys the time reversibility
in the mentioned dynamical interpretation. For a more extended discussion
of this point see Ref. [10].

To get a first understanding of the meaning of analyticity, one may
perturb equation (1) by a small nonanalytic term

fe(2) = 22 4 ¢ + € Re(2). (4)
Here, ¢ is a small real number multiplied by the real part of z. Using the
notations z = z + iy, ¢ = Cre + %Cjm, and f = u + iv, this equation has the
following form
u(z,y) = 2° — y* + cre + €2,
ve(z,¥) = 22y + C¢im- (5)
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For equation (5), corresponding Julia sets can be evaluated in C or in
IR2, respectively [11-14]. In Fig. 3, an example of such a Julia set is shown.
The basin of attraction of infinity is colored white. Investigating the struc-
tures of this corresponding Julia sets for the equation (5) by changing the
value of the parameters cye and ¢jm, similar structures of the original Julia
sets of the complex logistic map (equation (1)) are found. The structure of
Fig. 3 seems to be fractal, nowhere differentiable and self-similar. In con-
trast to these “wild” fractal structures, which can also be characterized as
bifractals [15], sometimes the basin boundaries become locally smooth, see
Fig. 4. Here, fractality is still present in the support of the bays.

Ay
7

Fig. 3. Basin of attraction for equation (5) with ¢;e = —0.03, cim = 0.75, and

€ = 0.3; after [13].

Besides the structures in the plane of initial conditions (basin of at-
tractions) one may also evaluate some structures in the plane of the control
parameters ¢y and c;,. Without taking care of the changed mathematics
(for equation (4) there is now a whole set of critical points on a circle and
nothing is known about the relation between the dynamics of the critical
points and the form of the basin of attractions), one may construct a gen-
eralized Mandelbrot set just by applying the same method of the original
Mandelbrot set. Fig. 5 clearly presents a distortion of the original Mandel-
brot set. An interesting point is that the local structure of this generalized
Mandelbrot set has again a similar geometry like the corresponding “gen-
eralized Julia set” of the corresponding parameter values. Here, compare
the inset of Fig. 5 with Fig. 3. This similarity can be attributed to the
following simple argument. In the Mandelbrot set a point is colored white if
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Fig. 4. Basin of attraction for equation (5) with ¢ = 0.12253920, ¢, = 0.0, and
e = 0.3; after [14].

the iteration of one special initial point diverges to infinity, i.e., this initial
point lies in the white region of the corresponding (generalized) Julia set.
Let us regard in the following the case of a point close to the boundary of
the (generalized) Mandelbrot set. Here, the iterated initial point is also very
close to the (generalized) Julia set, i.e., it is close to the boundary of the
basins of attraction. Changing the control parameters slightly, the form of
(generalized) Julia sets is also changed slightly. Thus, the initial point may
change its position from one basin of attraction to the other in the plane of
initial conditions, this means that the initial point is one time inside and
the next time outside of the (generalized) Julia set. As a result, the color
in the (generalized) Mandelbrot set changes in a corresponding way. Thus,
it seems to be natural that the fractal structure of a (generalized) Julia set
is mapped onto the Mandelbrot set in the way like a scanning microscope
works. To give a vivid description, the principle of this “scanning micro-
scope” is the following: the beam point is kept fixed and the sample (the
(generalized) Julia set) is “moved” (deformed) due to changes of the param-
eters cre and cj,. The detected structure (the (generalized) Mandelbrot set)
is obtained by the feature whether the beam point is inside or outside the
(generalized) Julia set. The same arguments can be thought over for the
“less fractal” structure of Fig. 4. The corresponding local structure of the
generalized Mandelbrot set is at the right notch and it is smooth.

As a last point we want to mention that the Mandelbrot set and all
Julia sets of the complex analytic equation (1) can also be generated by the
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A

Fig. 5. “Generalized Mandelbrot set” for equation (5) with the same parameter
for ¢;. and ¢y, plane like in Fig. 2. The inset shows a magnification of a detail
close to the region indicated by the black markers at the frame of the image. This
parameter corresponds to the values used to evaluate Fig. 3; after [12].

following nonanalytic map [16],

w(z,y) = 22y — y* + a - b/V3,
v(z,y) = 2zy — 2% +a - b/V/3. (6)

That this is just a transformation of the complex equation (1) destroying
the analyticity but uneffecting the dynamical properties and the structure
is discussed in Ref. [17,18].

4. A generic mechanism for fractal boundaries

So far, we have presented some details of Julia and Mandelbrot sets
and the role of analyticity. We showed that analyticity is not necessary to
obtain these fractal structures. In the following, we present a simple model
explaining how fractal boundaries are generated. This model is deduced
from a simple mechanism which can easily be embedded in a mechanical
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process. Well, we claim to have found an explanation of fractals in the
spirit of Newton’s understanding of nature.

The main idea is that a chaotic forcing applied to a bistable system can
generically lead to fractal basin boundaries: see [19] for a generic differen-
tiable example — a four-variable ordinary differential equation of chemical
origin, [20] for a nongeneric example — a three-variable diffeomorphism
containing a two-variable strictly Hamiltonian subsystem, and [21] for a
generic example of a three-variable diffeomorphism. Fig. 6 illustrates the
underlying principle. Due to the chaos present on the boundary (like it is
also the case for the Julia set), two arbitrarily closely adjacent points on the
boundary, with Ay arbitrarily small, are bound to become decorrelated in
a finite time. It therefore appears plausible to conjecture that whenever the
exponential divergence within the chaos (i.e., its positive Lyapunov char-
acteristic exponent) numerically exceeds the exponential escape from the
boundary (i.e., its locally unstable eigenvalue), the phenomenon of nowhere
differentiability sets in.

Xo

7o

able

Fig. 6. Schematic view of the mechanism leading to a fractal basin boundary in
the plane of initial conditions of a chaotically forced single-variable bistable system.
Compare text for explanation.

This conjecture is to be clarified in the following, using a simple exam-
ple. Consider the explicit generic diffeomorphic mapping in three variables

Znt1 =z, + byn,
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Yn+1 = 3.95yn(1 — yn) + €2,
Zn4l = Tp, (7)

(b}

{c)

Fig. 7. A nowhere differentiable basin boundary in Eq. (7). Parameters: a =
1.95, b = 0.1,& = 0.01, 2z = 0. (a) Coordinate frame of initial conditions (zo, vo).
Coordinates lower left corner: zjow = 0.9, yiow = 0.0; window size: Az = 0.1, Ay =
1.0. (b) Zoom of Fig. 7(a): zjow = 0.91409567, yiow = 0.74545; window size:
Az = 1078 Ay =105, (c) Zoom of Fig. 7(b): zjow = 0.914095690964689, yow =
0.74545021396629; window size: Az = 10712, Ay = 10~!!. Criteria for coloring:
zn < 0.1 black, z, > 1.0 white. Grid size 500 x 500 pixels; after [21].

with z,,yn, 2z, a,b being real numbers, n = 1,2,...,N, and (a > 1,
0 < b< 1, € << 1). The first variable is the bistable system forced by
the chaotic subsystem (second variable) based on the logistic equation. The
third variable serves, together with the weak coupling term ¢ in the sec-
ond line, to render the whole system differentiable and invertible (that is,
a diffeomorphism). The Jacobian determinant is a constant, equalling be.
A numerical calculation using the familiar staining technique (i.e., basins



420 J. PEINKE et al

of the finite attractors are colored black, initial conditions escaping to in-
finity are left white) is presented in Fig. 7. Two magnifications are shown,
differing in linear scale by a factor 10'2. Numerically, the impression of a
self-similar, nowhere differentiable basin boundary appears to be justified.

Under the simplifying assumption of ¢ being equal to zero, the boundary
of Fig. 7(a) is replotted in Fig. 8. Fig. 8(a) gives the numerical visualization
of the basic idea demonstrated in Fig. 6. The explosion criterion “z larger
than unity” has been chosen. A glance at equation (7) shows that with
initial conditions 0 < yo < 1 the chaotic forcing is positive definite. There-
fore, an explosion criterion for the boundary > 1 is justified because any
z, > 1 will increase under iteration. Figure 8(b) shows the same picture
as Fig. 8(a), yet with “level lines” dependent on the number of iterations
after which the explosion criterion was fulfilled. The level lines approaching
the basin boundary add up to a progressive sequence and correspond to the
elements of a Weierstrass-like function (cf. [22] and Voss in [7]).

(a) | {(b)

Fig. 8. (a) The same boundary as in Fig. 7(a) for the special case ¢ = 0 in Eq. (7).
(b) The same as Fig. 8(a) with “level line” entered. See text for an explanation;
after [21].

This impression can be formalized. For example, all points, which fulfill
the condition
T1 Z 17 (8)

after one step, lie within the white “triangle” of Fig. 8(b). When interpreted
in terms of the initial condition (zo, yo), condition (8) translates into

(" > (1 - byo)V/?, (9)

with zg,ye,a,b being real numbers. z((ll) means the first iterate of the
initial point z¢. To derive analytic expression for the successive level lines,
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we write Eq. (7) with € = 0 in the general form

Tnt1 = F(zn) + byns
Yn+1 = G(yn). (10)

In our case, the function F(z,) = 2% defines the bistable boundary with an
unstable fixed point at z = 1 and the function G(y») = 3.95yn(1 — y») the
bounded fixed chaotic forcing with 0 < y, < 1. With these conventions,
Eq. (9) translates into

2V > F1(1 - 5GO), (11)

where zgl) is the first iterate of the initial condition z¢ which fulfills con-
dition (8), F~1(1 — 5G(%) is the inverse function of F with the argument
(1- bG(o)), and G(?) is the zero iterate, resp. the initial condition ypo.

All initial conditions which fulfill the explosion criterion after two it-
erations lie within the black parabolic segment of Fig. 8(b). The explicit
analytic expression of this set reads

29 > FYF1(1 - b¢W) - sGO).
For the n-th iterate, we analogously obtain

2™ > FYFY(-- . F71(1 - 5G( D) — 5G(*2))... — b)) — bG(0)),

(12)
with the conventions G(") = G(")(y) and G(?) = y,. Again, G(™) means
the n-th iterate of the function G. The general condition (12) holds true
for every function F in Eq. (10) which is invertible in a (sufficiently large)
neighborhood of the unstable fixed point and every function G' generating
a bounded chaos confined to 0 < G < 1. The equation corresponds to the
borderline as n goes to infinity.

We are now in the position to return to Fig. 8. The curves seen there
correspond to the set of functions described by Eq. (12). Since each level
line strictly exceeds the preceding one, it is possible to speak of the limit-
ing function (for n to infinity) as a Weierstrass-like function. Accordingly,
Eq. (12) might be interpreted as an “iterative procedure” for a generation
of Weierstrass-type functions.

Weierstrass-like functions generate “self-affine” behavior [1,22]. There
are always two essential parameters involved. Their ratio determines wheth-
er genuine self-similarity as a special case of self-affinity or whether genuine
(nondegenerate) self-affinity applies. In our case, these parameters corre-
spond to the Lyapunov characteristic exponent of the chaotic forcing and
the exponent of divergence from the bistable boundary.
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There are two possibilities, the “striped” case and the “smooth” case.
The former has infinite slope of both positive and negative sign in every
point (ordinary Weierstrass-type nowhere differentiability) in the limit. The
latter is smooth in the sense that in every point the Lh.s. and the r.h.s.
limits of the slope differ only by infinitesimal deviation. The genuinely self-
similar special case (ratio of unity) falls into the Weierstrass-type category,
only that the slope in every point is finite.

These three cases that are implicit in Eq. (12) can indeed be found
empirically in Eq. (7). The self-similar case has already been presented in
Fig. 7. The two remaining cases are displayed in Figs. 9 and 10.

{c} {d}

Fig. 9. Basin boundary in Eq. (7) calculated as Fig. 8. Parameters: a = 1.8,b =
0.1, = 0.01,zp = 0. (a) Coordinate frame of initial conditions (zo,y0). Coordi-
nates lower left corner: zjow = 0.9, Yiow = 0.0; window size: Az = 0.1, Ay = 1.0.
(b) Zoom of Fig. 9(a): ziow = 0.9006, $iow = 0.72; window size: Az = 1074, Ay =
1073, (c) Zoom of Fig. 9(b): zjow = 0.9006225, yiow = 0.720135; window size:
Az = 1078 Ay = 10~%. (d) Affine rescaling of Fig. 9(c). Squeezing factor along
z-axis: 20; after [21].
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{a)
(¢}

(d)

Fig. 10. Basin boundary in Eq. (7) calculated as Fig. 8. Parameters: o = 2.1,b =
0.1, = 0.01,z0 = 0. (a) Coordinate frame of initial conditions (zo, yo). Coordi-
nates lower left corner: ziow = 0.9, Ylow = 0.0; window size: Az = 0.1, Ay = 1.0.
(b) Zoom of Fig. 10(a): zijow = 0.947055, yiow = 0.4523; window size: Az = 1075,
Ay = 107% (c) Zoom of Fig. 10(b): Zjon = 0.9470625399, yow = 0.452304147;
window size: Az = 107'°, Ay =10"°. (d) Affine rescaling of Fig. 10(c). Squeez-
ing factor along y-axis: 20; after [21].

To prove the conjecture, it was argued by Christen [23] and indepen-
dently by Okninsky [24] to take the function F linear, so that F~1(y) =
1/m, where m is the slope of F. This allows to rewrite Eq. (12) in the

following way
n b G(n)
zg>2_(;)z el (13)

n

This form is already very close to the Weierstrass function. Another
trial to prove the conjecture is given in [25], where the added structure of the
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“level lines” (see Fig. 8) are estimated in size. From this the local derivative
is deduced.

5. A model for turbulent and intermittent structures

Next, we interpret the results mentioned above in a different way. To
obtain a fractal line we will stick only to the explicit asymptotic Eq. (12). We
already know that this fractal curve is created by a process of successively
adding further and further structures to an initially simple and smooth
curve. In Fig. 11, the added structures of the first 5 levels are shown.
Here, we calculated the differences between two successive level lines, see
Fig. 8, by evaluating zgn) - zgn_l) of Eq. (12). These successively added
structures represent something like the Weierstrass components of the final
fractal curve.

0.06
0.05
0.04
0.03
0.02
0.01

in) _ yin-1)
XO X0

-0.01 L ' ' |
0 02 04 06 08 1

Fig. 11. Added structure of the n-th iterate, constructed from the differences
between the first level lines of Fig. 8b. From top to bottom, curves of (:ng') -
x(()w'l)) vs. yo using Eq. (12) are shown for n = 2,3,4, and 5. For clarity, the
curves are shifted so that they do not intersect.
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This successive process may be taken as a “structure adding machine”.
Eq. (12) tells us that the added structure of the next level is characterized
by a further term in G and F !, i.e., by one further application of a chaotic
stretching and an inverse bistable stretching, which is nothing else than a
folding. This is taken as a natural (physical) process evolving in time. The
interpretation is that a system starts with some homogeneous structure
in yo direction (a space coordinate for example). The result of the first
application of the stretching G and folding F~! is a structure with one
maximum (see Fig. 11). The next iterations will add more and more local
maxima and lead finally to the fractal curve.

To make this idea more concrete, let us take an initially laminar gaseous
jet which becomes turbulent with propagation. For this gaseous jet, we
consider a spatial part, which is now our ¥y, direction. We denote the velocity

(n)

in this spatial part with zo" . Here, n denotes the time of propagation
and, thus, the time of developing turbulence. The level lines of Fig. 8
or Fig. 11 correspond to velocity fluctuations developing in time. First, a
structure with one maximum is generated, then successively further maxima
are added, and finally a fractal velocity fluctuation curve is obtained in
space. The fractality of this velocity function corresponds to the famous
1/ f noise in turbulence. A maximum and a minimum of one iteration level,
in the sense of added structure of Fig. 11, can be interpreted as a measured
velocity fluctuation through vorticities of one shell. Thus, Fig. 11 presents
a vortex cascade. The number of vorticities increases here by a factor 2 by
each step (going from n to n + 1). At the same time, the size (distance
between neighboring maxima and minima in y¢ direction) of the vortex
decreases. This interpretation has similarities to the Richardson cascade of
turbulence.

One essential point of our model is that we take care of the different
initial conditions in yg space. The different initial conditions develop under
the iteration by the chaotic map. The sensitive dependence of the chaos, i.e.,
the positive Lyapunov exponent, creates the fractal spatial structure. The
Ansatz can be seen as a new method to explain spatio-temporal structures,
in contrast to the common approach of spatial coupling of many dynamical
subsystems. In our model, no interaction between two spatially neighboring
points (initial yo points) is considered so far. But in principle it is easily
done, and perhaps it is of importance to model such effects like those known
from the dissipative range in turbulence, where spatial viscous interaction
causes a smoothing out of the vortex cascade, i.e., a smoothing out of the
fractal structure.

A further point of our model is that multifractal structures are evidently
present. Here, one has only to note that different initial conditions of yg
have slightly different chaotic trajectories, and thus different effective Lya-
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Fig. 12. Graph of Eq. (12) for F = z!'%, G = 3.83y(1 — y), b= 0.1, and n = 50.
(a) The original curve is shown for 0.3 < yo < 0.4. There is no deeper meaning
behind this choice of the yo regime. (b) Derivative of Fig. 12(a); and (c) the square
of the derivative of Fig. 12(a).
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punov exponents are obtained as a function of the initial conditions. These
fluctuations in the Lyapunov exponents cause different local fractal struc-
tures, i.e. multifractal structures, as it becomes clear by our conjecture of
the previous part. (Multifractality is of special interest in turbulence [25].)

As a last point, some intermittency effects are discussed. Fractals in
nature are very rarely everywhere fractal, but it is much more common
to find smooth and fractal sections in a disordered way close to each other.
Here, for example, we have in mind the typical structure of some mountains,
like the Tatry. Rocky fractal parts are well mixed with smooth meadows. In
turbulence, this effect is known as high frequency intermittency. To model
such structures, we were inspired by the work of Okninsky [26] who showed
and told us that intermittency effects can be generated if one uses transient
chaos. In Fig. 12, the obtained fractal structure is shown for transient
chaos (the parameters for G were taken for the period three window of
the logistic map). To make the intermittent structure more evident, we
calculated the derivative and the square of the derivative of this curve.
Well, the square of the derivative has some special meaning in turbulence.
If we take the original structure (Fig. 12(a)) as the velocity in space, the
square of the derivative of the velocity corresponds to the local dissipated
energy. Finally, we should point out that we do not claim to have found the
solution of modelling and explaining turbulence, but we want to stress that
with this simple model some new insight into the structure formation in
nature can be deduced. There are probably many other systems where this
process of chaotic stretching and folding can explain the structure formation.
Taking the added structure of Fig. 11 for example as some deposition of
mattern, it may become possible to describe surface growth phenomena.
One fascinating point of our model is that only some new interpretation of
deterministic and low dimensional chaos is presented here.

6. Summary

We have shown the role of analyticity for fractals. By perturbations
and a transformation of the complex analytic function we showed that an-
alyticity is not necessary for fractals. With the example of a chaotic forced
bistability we have presented a simple mechanism leading to different kinds
of fractality. Depending on the strength of chaos and bistabitity, which can
be measured by two characteristic exponents, it was shown how self-affine,
self-similar, and nowhere-differentiable structures are obtained. The result
of self- similarity was due to the equality of the two characteristic expo-
nents. Taking into account that the Chauchy-Riemann condition garantees
the equality of these exponents, the beauty of complex analytic fractals be-
comes clearer. The uniqueness of the basin boundary function of the model
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of a chaotic forced bistability allowed us to deduce an explicit function for
the boundary. With this function, the connection to the Weierstrass func-
tion has been shown. Thus, our model enabled us to show the relation
between chaos, fractal boundary, and Weierstrass function (1/f noise).

As a last consequence, we have presented a new interpretation of the
model of chaotic forced bistability, leading us to a structure generating pro-
cess. Fractality is achieved by the iterative application of chaotic stretching
and folding. We discussed the possibility to explain some phenomena known
from hard turbulence. One essential new point is that deterministic chaos
causes out of the infinity of different initial conditions complicated fractal
structure formation.

For helpful discussions we want to thank G. Baier, R. Stoop, and A.
Okninsky. For financial support J. Peinke wants to thank the Deutsche
Forschungsgemeinschaft.
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