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The canonical Hamiltonian form of the Einstein—Cartan theory with
gauge group SO(3,1) is developed. The connection of the field variables
with those of Arnowitt, Deser, and Misner and with Ashtekar’s canonical
variables is worked out.
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1. Introduction and motivation

The advent of Ashtekar’s variables in 1987 ([2], [3]) has been a sig-
nificant step in the development of the theory of gravitation. The most
important work based on these variables is perhaps the development of a
loop representation by Rovelli and Smolin who found a quantum theory of
gravity using these variables ([14]); unfortunately, the theory’s contact to
reality is unclear since the observables of the theory are unknown yet.

Another recent step in understanding gravity was Witten’s proof that
quantum gravity in 241 dimensions is a solvable theory ([17]). He showed
the equivalence of the Einstein—Cartan Lagrangian with a Chern—-Simon
term and solved the theory with the aid of knot theory. Since gravity in
2+1 dimensions does not propagate, the only solutions of the theory are flat
spaces (therefore the diffeomorphism constraint has a simple form) and the
only events are quantum tunneling between these spaces. In four dimensions
things are more involved.

For both of these works it was essential that the authors did not work
with the metric as a fundamental variable but with the soldering form (the
“square root” of the metric) and a gauge connection, treating gravity as
a gauge theory with an additional soldering structure. This idea was first
proposed by Cartan ([5]), and because of its significance it is of interest to
develop a canonical theory of gravity based on these variables.

(433)
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Different views have been taken in literature concerning the gauge group
of gravity. By the equivalence principle it should contain at least the Lorentz
group SO(3,1), but larger group like SO(3,2),1S0(3,1) (the Poincaré group),
or GL(4) will also do the job, allowing additional variables like torsion and
nonmetricity ([4], [9], [10]). The SO(3,1) gauge connection and the soldering
form can be considered to be different parts of a Cartan connection of the
(Anti-) de Sitter group ([8]). In this note an SO(3,1) gauge theory with an
independent soldering form will be used.

I have been motivated by the above mentioned developments to work
out the canonical Hamiltonian framework for the Einstein—Cartan theory.
As an additional advantage this work should be comparable to the Ashtekar
formulation of gravity, since he used similar variables. Therefore, a further
reason for this work was to try to understand Ashtekar’s work from the
point of view of canonical Einstein—Cartan theory. Indeed, I found that
Ashtekar’s variables can be viewed as components of the three-connection
of the Einstein—Cartan theory and their canonical momenta.

In Section 2, a summary of the ADM formalism of gravity is presented to
give the reader the possibility of comparing it with the Hamiltonian theory
developed in the later sections. In 1962 Arnowitt, Deser, and Misner ([1})
worked out a Hamiltonian theory of gravity, using the metric as canonical
variable. Splitting space-time into space and time, they found the canon-
ically conjugated variable to be essentially the second fundamental form
which describes the imbedding of space into space-time. This is well known
and can also be found in textbooks, e.g. [12], so the summary is short. In
Section 3, a Hamiltonian formalism is developed for the Einstein-Cartan
theory starting from the Lagrange density.

£ = Ry, Po405, (1)

gy, is the soldering form, soldering the tangent space of the space-time mani-
fold to a four dimensional space M4; and the curvature is expressed in terms
of an independent SO(3,1) connection. The analogues of the ADM equa-
tions of motion are regained. In Section 4, the relation between the canoni-
cal Einstein-Cartan theory and Ashtekar’s formulation is investigated. The
latter will be recovered in the special case where the four dimensional space
soldered to the tangential space is taken to be the space of complex 2x2
matrices(or End(C?, (_32)) with basis 1, 7; 7 being the Pauli matrices. The
spatial part of the soldering form @ turns out to be essentially Ashtekar’s
soldering form 6343 , while Ashtekar’s connection A;-“B is a combination of
some parts of the SO(3,1) connection.

Some remarks on nomenclature: Greek indices run from 0 to 3.
Letters from the middle of the Greek alphabet (A, g, v, p) are space-time
indices (of tensors in TM), letters from the beginning of the alphabet
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(a, B, 7, §) are indices in the four-dimensional space M4, soldered to TM.
To tell a space-time index 0 from an internal space index 0 the latter is
dressed with a hat. Lower case Latin letters run from 1 to 3, they describe
the space part of their Greek pendants, so i, j, k, | are indices on a spatial
hyperplane of the space-time manifold, and a, b, ¢, d are indices in a three
dimensional Euclidean space E* soldered to a spatial hyperplane of M4 by
the spatial part of the soldering form, 4.

Primed and unprimed capital Latin letters take the values 0 and 1, they
are spinor indices of two dimensional complex spinors.

Left upper parenthesized indices (3) or (4) indicate whether the quan-
tity they index is associated to a three- or four-dimensional manifold, e. g-
G )Rl]kl

Differentiation is indicated by a comma (4, = BQ,IA) , covariant deriva-
tion with the Levi-Civita connection in four dimensions is indicated by a
semicolon, A,,, in three-dimensions with a dash, A

The Minkowski metric is taken to be (— + ++), the determinant of a
matrix is indicated by parenthesis: e.g. (h) = det(hmn).

2. Review of the ADM formalism in empty space

In a canonical theory it is necessary to distinguish between space and
time, that is, to choose a coordinate system in space-time to split it into
space and time. In mathematical language this means to provide a foliation
of the space-time manifold M into space-like hypersurfaces X; which are all
diffeomorphic to a reference three-manifold Y. Since all possible foliations
of space-time are equally admitted (Wheeler called this many-fingered time)
the theory remains covariant. The metric g,, in M induces a metric hnmnyp
(the first fundamental form) on ¥ (and on each ¥;). The imbedding of ¥
in M is described by the second fundamental form K;7, defined by

~Vie0 = Kile;j,
where g is a time-like unit vector normal to ¥. Lowering one index with
hymn, it can be seen easily that K;; is symmetric. The situation of imbedding
is described by the Gauss—-Weingarten equation
ejii = —Kijeo +3) I'¥ e,
and the Gauss—Codazzi equations
@R e =) BYjy - (KiK' - KK

MRk = Kijie — Kigyj -
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Further, the component () R}.; can be expressed in terms of three dimen-
sional quantities ([12]):

W Rigi = (Tr K)? — Tr(K?) - (n*(Tr K) + nkn”),,.
Here the unit vector orthogonal to ¥ is denoted by n. With these equa-

tions the Riemann curvature scalar (YR of M and the Einstein-Hilbert
Lagrangian can be expressed by three dimensional quantities:

ORY) = V=@ ( B-Tr(K?) + (T K)? ~2(n*(Tx K) 4 ). ).

Integration over space-time leads to the action
(3)
§ = /d*:,/-(g) Wp = /d"z\/—(g)( - Te(K?)+ (T KY). (2)
M M

The total derivative has been omitted from the integral. In general, this is
not unproblematic since it may contain boundary terms necessary for the
dynamics of a quantum theory based on this approach. This is seen for ex-
ample in Hawking’s path-integral approach to gravity, where the Gibbons—
Hawking boundary term is needed to render the path-integral meaningful.
(The Gibbons-Hawking term is a part of the omitted total derivative.)

Now let a time function 7 : M — R and a foliation of M into hyperplanes
Y = 771(t) be given. Further let t* be a time-like vector-field satisfying
thr,, = —1, then the lapse and shift functions N and N i respectively, are
defined by ]

(ty) =Neo + Nte;.

With this vector-field as a new time-like basis-vector, i.e., using ((t,), e;)
as a basis of the tangential space of space-time, the metric becomes:

N;N'-N? N, )

(g“y) = ( Nn hmn (3)

with inverse

IETR i
(gl‘l’) = ( NIX R _IVN”‘N'“ ) * (4)
N? NI

The spatial indices (i, j, n,...) are raised and lowered with h,,, and its
inverse h™™. The square root of the determinant of the metric is given by

=N

e’
—

~(g k).
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In this 3+1 decomposition the second fundamental form is expressed
by

1
K;; = EV-(N;]J' + Njji — hijo) . (5)

Knowin§ that the equations of motion for the Lagrange density
L = /—(9) YR are the Einstein equations

Gp.u = R/,w - %gy.uR =0, (6)

one can see that the time-time part and the space-time part of this equation,
Goo = 0 and Go; = 0 respectively are equivalent to

G)R + (TrK)? - Te(K?) =0, (7)
(Kik - nik(TfK))Ig =0, (8)

which will be the constraints of the theory; the equations of motion in the
three space-time dimensions correspond to G;; = 0.

To formulate the canonical theory of gravity the Lagrange density L is
integrated over the spatial manifold X to give the Lagrangian of the theory:

L= / d3zN/(R) ((3)12 + Tr(K?) - (Tr K)’) . (9)
b

The term (3) R still contains second order spatial derivations of the metric,
hijjki- Like the time derivations before, these are removed by a partial
integration, leading again to a surface term which is omitted. To be able
to omit it, the fields in the theory have to fall off fast enough at infinity
to render this term finite. This yields some essential conditions for the
configuration space of the theory. Since, as we will see, the Hamiltonian
of the theory will be a combination of constraints and therefore will vanish
on the physical hypersurface of the theory, the boundary term is the only
nonvanishing energy of the theory, so the question whether one is allowed
to omit it is again a crucial one. See Ashtekar ([2]) for more details.

The canonical momenta conjugated to the variables N, N; and h;; are
defined by:

§L
== 1
T N 0, (10)
i oL
o N:o =0, (11)
§L

xt) =

= —/(h) (K" - Y Tr K).
8hijo0
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To perform a Legendre transformation, the last equation is solved for h;; o,
leading to

N
hijo = Ny + Njj; — ——,(T)(hij Trx — 27;5),
and
\/Zh_(zh‘-"’l‘rw—r 7). (12)

Using Dirac’s formulation of constrained Hamiltonian systems ([6],
[16]), the constrained Hamiltonian is given by:

H= / d3z(xNg + 7Nig + 7 hij0) - L
= / d*z(xNg + 7' N;o + NH + NiC'). (13)
The following abbreviations have been used in the previous line:

\/(T(Tr(vr?) - 3(Tn)?) + VR)OR, (14)

C = -2m¥ ;. (15)

Since the primary constraints have to be time independent their Poisson
brackets with the Hamiltonian yields secondary constraints:

6H
; ¢H
{r', H} = ;- = C* ~0. 17)

As usual the symbol =~ means equal modulo constraints.

The primary constraints (10), (11) have no dynamical content in them-
selves. They merely express the fact that the Lagrangian is independent
of Ng and Njg, so they can be removed from the theory without loss.
On the contrary, the secondary constraints are of utmost importance, they
are called the Hamiltonian and diffeomorphism constraints; they constitute
the dynamical evolution of the theory and show its invariance under the
diffeomorphism group, respectively.

Without going into further details of these matters, I give the canonical
equations of the theory as worked out by Arnowitt, Deser, and Misner,
neglecting the source term they considered:

Oh;; §H 2N

8t &xi \/(—hj(""f

= 3hij Tex) 4+ Ny; + Nyji, (18)
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N

2v/(7)

oxti _ 6H
at 5h,‘j

=~ NR)(VRY - h9R) +
2N
V(h)
+ V(R)(NI — RNk ) + (V)
—Nilk‘l'kj—lekﬁ’ki. (19)

hij(ﬁxz — %(Trw)z)

(wi"xkj ~ %wii Trr)

These equations will be called the ADM equations in the rest of this paper.

Although these equations formally seem to be more involved than the
Einstein equations, G, = 0, they must be used to work out an initial value
problem of gravity: given a hypersurface ¥ with metric k;; and the lapse
and shift functions, solving these equations will yield the space-time M
with a metric g,, fulfilling (3) and the Einstein equations. (At least when
developed for, in some sense, small times, otherwise singularities may and
will develop.)

3. Canonical theory of the Einstein—Cartan action

Einstein—Cartan gravity is a theory described by the Lagrange density

(1): ”
14
L = R,,*P9:6%.

Here R#¥ .z is the curvature form of a SO(3,1) connection w,*?, represented
in a four-dimensional space. The simplest choice is the Minkowski-space
M*, which carries a canonical representation of SO(3,1). 64 is the soldering
form, an invertible mapping from TM to M4%; 62 is its inverse. It is well
known that the variation of this Lagrangian witﬁ respect to the soldering
form and the connection yield the Einstein equations and the condition of
vanishing torsion. The flat metric imposed on M4, Nap pulled back to TM
by 63, gives the space-time metric of M:

Guv = 0510585, (20)

therefore (g) = —(8)2. Since 7 is fixed the composite field, g, is completely
determined by the soldering form.

Now I shall carry out the 3 + 1 decomposition of this Lagrangian, that
is separating the field components with time-like indices from the others.
Therefore, I introduce some notation: I define:

woab = Lab ,

Py

woﬁa = LOa. .
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Since w‘u‘"ﬁ is antisymmetric, it suffices to consider the components with
the smaller index first, so let always w,,,"‘é = —w,,ﬁ“. Then there are four
different kinds of components of w““ﬁ, namely Lﬁ“, Lab, w,-ﬁ“, w;%, the
latter being a SO(3) connection on a space-like hypersurface ¥ of M.

The decomposition of the soldering form is guided by the form of the
metric (3), which should be regained under (20). This condition yields:

N Nkm)
%) = k 21
( #) ( 0 92, (21)
with inverse
m=(N N
(Oa) = 0 19m M (22)
a

Here 92, is a three-dimensional soldering form, soldering the three-dimen-
sional hypersurface ¥ C M to a three-dimensional Euclidean subspace E3
of M4. 9™ again denotes its inverse. N and N* are the previously defined
lapse and shift functions.

It has to be mentioned that there is a one-parameter freedom of choice
in the decomposition of §. The most general solution of the decomposition
problem which gives the metric (3) is not (21) but

¢ (-ex /) v

£,/6 - frea (£ 4/62 - N 05ea +EN)OT

es being an orthonormal basis in E3 C M* and ¢ the parameter. This
reduces to (22) for { = §. Fixing the parameter is a partial gauge fixing
of the boost part of the Lorentz group in the inner space M 4. This has
the consequence that the L% parts of the connection do not disturb the
dynamics because they can be eliminated from the equations of motion by
an additional primary first class constraint, which would be second class
without gauge fixing, as we shall see. This constraint will be called the
gauge constraint. In the general case, the four quantities with time-like
space-time index, N, N;, L°® and L® would be treated on equal footing,
leading to ten secondary constraints !. But the lapse and shift functions
are essential parts of the metric (21), while L% and L®® describe boosts
and rotations in the inner space. Fixing the boost part by choice of £ is

(98) =

1

! This was pointed out to me by M. Tielke who conjectured a priori that one
should obtain ten secondary constraints reflecting the structure of gravity as
a gauge theory of the Poincaré group.
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at least convenient, it might even be necessary, since the choice of a three-
dimensional subspace restricts the boost freedom (but the many fingered
time idea should be taken into account) (cf. 7], where the gauge constraint
is also used). In any case the gauge constraint does not generate gauge
transformations, as should be expected for primary first class constraints.

Before proceeding, the three-dimensional Christoffel symbols expressed
in terms of the soldering form are given. By construction the three-dimen-
sional metric on ¥ is

it = 5mapd} -

Here 7,3 = diag(1, 1, 1). So
Iy = %[ha ((Bk95)nca®? — (B95)mca9}) + ‘93(3@?)] +( e k). (23)
After these preparations the Lagrange density is decomposed:
L= 2(30wn6“ - BnLﬁ" + L“'r]cdwnad + Lacncdwnd“) (030;‘ — 03‘02)
+ (Bown®® — 02 L% + 2L%n qwn®® + 208°w, %) (6267 — 6067)
+ (20mwn°b - wmdbncdwnoc + wndbncdwmoc) (05”0,',‘ - 039{,")
+ (Omwn®® + W Negwn®® + W %W, ") (670 - 0707) (24)
or, using the decomposition (21) of the soldering form,

2 - - n -
L= ﬁ(aownoa‘ - anLOa + LacncdwnOd + Locflcdwnda)ﬂz

2N™ P P 8 b
+ "j‘v—' (3mwn0b + wmbcncdwnOd - anmeb - wnbc"]cdwnOd) ﬂzn

+ (3mwn"'b + wm“ncdwndb + wmaawnﬁb) (19","‘19},t - 192191”) . (25)

With the abbreviations

Cmnb o= menOb = m‘-‘-’nOb + wmbcncdwnOd ,
Hmnab = amwnab + wmac"lcdwndb + meawnOb
the Lagrange density becomes
2 . o . .
L= N(aownOa + Lacncdwnod _ anLOa _ wnadnch()c),o:
N
+ 2F(Cmnb - Cnmb)'ﬂzn

+ Hyun®™ (3797 — 0797). (26)
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Now the Lagrangian L of the theory is

L= [ dzNW)C. (27)
/

To proceed in the canonical framework the conjugated momenta are
defined. These all lead to primary constraints:

oL

Po = m ~0,
6L
: §L
T
pa - 6‘0?’0 01
p()a - 6Lﬁ"'o ~ Uy
6L
Pab = grap o ¥ 0,
1, — ~ 1
Y4 O0a — &-U'iﬁa'o 2(19)190. ’
: oL
tap = ——— = 0. 28
D ab 6&2;‘“6,0 ( )

These constraints are distinguished as first and second class constraints,
with Poisson brackets:

{ph, PP5p} = 2(9)(959] — 939%) -
All other Poisson brackets vanish, therefore all other constraints are first

class. If the gauge fixing would not have been imposed on 6, there would
have been an additional constraint, namely p§ = Zg{f—-, and there would
a,0

be two more non vanishing Poisson brackets, namely {pi,pi,} # 0 and
{p3, p'ap} # 0. Imposing the gauge fixing makes the first of these vanish,
pi®® becomes first class, and the second disappears altogether, because pg
does not exist. Since the primary first class constraints lead to secondary
constraints, the gauge condition imposes a new secondary constraint on the
theory, it will be called the gauge constraint in the following.

The canonical Hamiltonian is now given by

H= /d"’z{(ﬂ) [219;l (a,,Lf’“ - L“ncdwnéd + wn“nchﬁd)
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+ 2N"97 (Crm® = Crnn®) + N Hynn®* (9397 — 9797) |
+ %o + ¢'pi + clph + cPpg,
+ gy + % (p*5, — 2(9)9%) + Ciabpiab} . (29)
The first part of the Hamiltonian will be called H°. The physical subman-
ifold of configuration space should be preserved, so the Poissen brackets of

the primary constraints should vanish, at least weakly. In the case of second
class constraints this condition will be used to find the Lagrange multipli-

ers c; and cié"‘, while the first class primary constraints lead to secondary
constraints:

(H, po} = () Houn (907 — 9207) =: 1,
{H, p:} = “2("9)19'3;(01'1'“ - Cj%) =:C,

{H, pg,} = 20n[(9)95] — 2(9)F}wn’

~

{Ha pab} = ("9) (0:wn0d"7bd - 19?wn0d7]da) )
{H7 pib} = (19) (192.7]661-’06 - 19;;77a.cL0c)

+ 2(9)N m"?—gj.ab(onﬁ — Cmnf)

§
N(S™9™ — 9%9™)— H,nn 2.
+ ( cYd dYe )6w,-“b

The two first constraints are by construction the Hamiltonian and the dif-
feomorphism constraint, and the last one is the gauge constraint. Since
this constraint vanishes weakly, it can be solved for L% on the constrained
hypersurface of configuration space:

L% x (0nN)O5n"® — 3N (9md5) (970} — S507 b — N*w®.  (30)

This makes it possible to discard L%¢ from the equations of motion, as
mentioned before.

The Poisson brackets of the second class primary constraints can be
solved (weakly) for the Lagrange multipliers:
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3 1 §H®
Oc . b b
1 6H
¢ x 9295 — 19397).
¢; 2(0) 5 ( 19k19t)

Now the principal equations of motion are given, that is, the equations
of motion that do not reduce to constraints or Lagrange multipliers but
contain the physical part of the theory. These equations are

= 8, L% — L%°n. 4w, 9% + 0 * gL 4+ N™(Cra® - Cia®)
+ N(%(—Hmkacﬂzn + -lfknac'a;1 + Hmkca"’::n h Hkncaﬂg)
— $Hpn S (979 — 9797 )0%) (31)

d

dt"k = ¢ 0®

= ~92 L%n, — Nwid® + Nw,%n, 08 + (8, Np)h ™02
— Ny(892)97 9 nde (32)

As mentioned before, L can be discarded from these equations by means
of equation (30).

To compare this result with the ADM equations presented in the previ-
ous section, the time derivative of the metric h;; and its ADM canonically

conjugated variable 7%/ are worked out. These should become the ADM
equations (18) and (19). It is clear that

d d d
@i = (dtﬂg) Mas?] + 190‘7"“’(dt’9?)
As one might presume, it turns out that
Kij = 3(wi®*nap9% + ;"% nap9?)
or equivalently

7 = (9) (K 020k — L(h*w020] + hitw,0o0)))
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lead to the correct ADM equations. Inserting (31) and (32) into the equa-
tions for 'g'{hij and %wij leads, after a straightforward but tedious calcula-
tions, to the ADM equations (18) and (19). L°* has been eliminated by the
gauge constraint. The terms containing L®® cancel by the symmetry of hi;
and 7%/, which follows from the symmetry of the second fundamental form.
The covariant derivatives in the ADM equations are, of course, Levi-Civita
derivatives with the connection given in (23).
In this way the ADM theory is completely regained.

4. Comparison with Ashtekar’s variables

In this Section, the special case where the four dimensional space M* is

the spinor space End(C?, (-32) is investigated. It turns out that this choice
leads in a natural way to a description of gravity which is, in some sense,

analogous to Ashketar’s. The internal space End( c?, Cz) will be realized by
multiplying all internal space tensor indices (a, 8,...) with Pauli matrices
To at, 75 = Id, e.g. the soldering form ¥}, is replaced by

a“AA: = 0ZTQAA: .
So there is the following commutative diagram of soldering forms:
™ £ Mm*
O'#AA' N\ S Tt
End(C?, €%)
End(Cz, (—)2) carries a representation of the Lorentz group: a Lorentz

transformation L®# in M* is translated into

LABAIBI == LaﬂTaAAITpBBr = LABeAIBI + LA:B:eAB .

For the last decomposition see [13]. By antisymmetry of LB the last quan-
tity is seen to lie in SU(2)®SU(2)=S0(3)®S0(3)=S0(3,1).

Here e(4B) = ((4'B') = _01 (1) . These matrices are used to raise
and lower indices in spinor space, according to

AC

e4Cepo = 68, €4

c A
ecB = —0g,

X apt =XBB:€BA = —XBB:SAB.
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Analogous relations hold for primed indices. One should realize that

A’ B' A'B' A'B'
10742 P88 =148 =€4BE" T .

It is noteworthy that for a spatial index a, 1';43' =T,4 A:eB'A' is a sym-
metric matrix. This will be tacitly used, e.g. in Eq. (36).

It is well known that every world tensor can be written as a spinorial
quantity (cf. e.g. [13], vol. 1, or [11}), for example

A B AB
R“yaﬁTa AT B = R“y A'B! -

The antisymmetry of R,,*? allows the following decomposition of this
tensor:

R”yABAlBI = RPVABCAIBI + R“VAIBIEAB . (33)

Since 1?,,“,"“'3 is real, R,, and I-i,w on the r.h.s. of Eq. (33) are complex
conjugated quantities.
In the same spirit the connection form is written as

w“aﬁTaAA:TﬂBB: = W“AB€AIBI + (DI_LAIBIEAB . (34)

Since
vaaﬁ = 3“%«:;3 + “’#a’yﬂ'ﬁwv&ﬂ —(pev)

equations (33) and (34) can be compared to give

AB AB AC DB
Ruv = OuWwy +w," " Ecpwy - (l“ « V) ’

_ 1y
.prAIBI = ap,u-lyAlBl + w“ArClSC b W,p'pr — (;1. “ V)

because the mixed terms of the form w,4B&, 41p cancel. In this way

R,“,AB and w,,AB can be interpreted as curvature and connection in a
GL(2)-bundle. The analogue holds for the barred quantities.

In order to make contact to Ashtekar’s formulation of canonical gravity,
it is necessary to realize that the decomposition (33) of R, splits the
curvature into its self-dual and anti-self-dual part. In his description of
canonical gravity Ashtekar works with a self-dual Lagrangian, which leads,
due to the Bianchi identity, to the same equations of motion. Therefore
nothing is lost when the theory is restricted to its self-dual part. In this

2 The only point in this paper, where the use of this symmetry cannot be

avoided, is the transcription of the Hamiltonian constraint into its terminal
form (40).
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way Ashtekar’s formulation may be considered to be more economic because
he works in a smaller bundle as we shall see,

Performing the 3 + 1-decomposition, the equations (33) and (34) still
hold for the three-dimensional quantities Rynn®?, wm®P. In four-dimensions,
for every n € {1,2,3}, w,®P has six components (the number of genera-
tors of the Lorentz group). They build the SO(3)-connection w,*® and the

second fundamental form w,?®. (For simplicity and to provide a name for

these quantities I shall call w,,,%® the second fundamental form because of
its close relation to Kpy,.)

The connection w,, is written as

wnabTaAA'TbBB' = wnABEAIBI + (DnAlBleAB . (35)

Counting the degrees of freedom for every n gives four from the four combi-
nations (AB) € {(00), (01), (10), (11)} minus one, since the Pauli matrices
are traceless. This makes three for w, 4B and in the same way three for
@, a'B', Which are the three degrees of freedom of w;,%® plus the three con-
ditions that these quantities are real.

Now Rp;nAP and w,4B are curvature and connection in an SU(2)-
bundle. )

The decomposition of w,%® may be performed in two ways: as before
it can be written as

wnoan,DDlTaAAr = ﬂ'nDAEDIA: + inDrAleDA

(xnAB will be used to distinguish this quantity from w, 4B which is related
to w,*?). This equation can be simplified since

1
TﬁDDI = —\/—5531 .

Therefore 1
0 A = A A
w1 4 = ﬁ(ﬂ'n A Tpa?) =tk 4.

(Note that kT = Rn.) In this way the quantity w,’® with one internal
space index is related to k,,4 4/ with one pair of indices (4A'). Since the
trace of k vanishes it has three degrees of freedom, as necessary.

Before translating the constraint equations into this spinorial form, I
shall detour to inspect the bundle structure of this theory after the intro-
duction of time. The time-like vectorfield t* is related to

1
t“U“AAI = TﬁAAI = E&ﬁl =: GAAI .
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This time-like vectorfield (fixed from now on) therefore leads to the distin-

guished fixed scalar product G4 4 : €% — €%, see [15]. This scalar product
can be used to convert primed indices into unprimed ones and vice versa:

X.A¢4,=x.4,
Y..aG4u=Y ...0,

where the ellipses stand for any set of indices. (One has to realize that ex-

pressions like 0,48 or 7, A p only become meaningful after the introduction
of time.) The Pauli matrices solder the internal space E3 to SU(2), while
the SO(3,1)-connection is reduced to an SO(3)-connection which is embed-
ded by Eq. (35) in an SU(2)®SU(2)'-bundle, associated to the End(C?, ¢’ )-
bundle, where the prime refers to the primed indices. This imbedding will
be more closely investigated. Let X2 be a generator of SO(3), e.g.

0 A -B
(X2 = (—A 0 ¢ ) :
B -C 0

then writing

00 1
Aa'y _ |1 -2 0
™) =11 & o)

0 0 -1

where the columns are labeled by a = (1,2,3) and the rows by (44')
= ((00"), (01'), (10'), (11')), the quantity corresponding to X** in SU(2)
®SU(2)’ is

0 B+iC B-iC 0
AA' vab_ BB\ _ | —B—iC 0 2iA B +1iC
(R XTnE5) = pilic 24 0 B-ic |’
0 —-B—iC —-B+iC 0

where the rows are labeled by (44') = ((00'), (01'), (10'), (11')) and the
columns by (BB') = ((00'), (01'), (10), (11')). To decompose this quantity
in the form 7, ® 7y, it is rewritten as

0 B+iC -B-iC 0
B -1iC 0 2iA B +iC
—-B—-iC -2iA 0 -B —-iC
0 B-iC -B+iC 0
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Now the rows are labeled by (AB) = ((00), (01), (10), (11)) and the
columns by (A'B') = ((0'0'), (0'1"), (1'0'), (1'1')). This last form is seen
to decompose according to

A(Mm®Ty—12®7)+B(1387 —11 ®T3 )+C(Tz ®T3—T3®73) € SU(2)®SU(2)'.

In the spirit of this decomposition R, 48 415 and wp,AB 4 can be re-
garded as curvature and connection in the SU(2)®SU(2)’ -bundle, while
RynAB and w,4B are curvature and connection in the SU(2) part of this
bundle, and correspondingly the barred quantities are curvature and con-
nection in the SU(2)' part. In this language Ashtekar’s theory is the one
restricted to the first factor of the product bundle. Since the scalar product
provided by the introduction of time, G4 4/, is an isomorphism between
both factors it seems reasonable to consider only the first factor. Ashtekar’s
work showed that this is indeed sufficient. Nevertheless, I shall continue
to work in the larger bundle and we shall see how the equations or the
connection decompose.

Because of the reality of M* = R* this space is soldered to the set
of real multiples of the Pauli-matrices, 75,...,7;. Instead of insisting on
the reality of M4 = T M, the theory may be expanded to describe complex
gravity, or, following Ashtekar, to work in the complex theory and add some
reality conditions. The internal three dimensional spatial space E® is now
soldered to the set of complex 2% 2 matrices which are multiples of the three
Pauli matrices 71, 72, 73, that is, the fundamental representation of SU(2),
or, working in complex gravity, the traceless complex 2x2 matrices.

I shall now proceed to transcribe the constraints of the Hamiltonian
formulation worked out in the previous section into this SU(2)®@SU(2)’ for-
mulation of the theory. The gauge constraint is excluded here: as it was
discussed before in Section 3, it is not on the same footing and does not
represent a gauge freedom of the theory.

The Hamiltonian constraint was written as

- (19) (Rmnab +wmﬁawn6b _ wmﬂ wn )19mt9n
=t (9)(Rmn?® + Mmn®?) 9707 .

Since, besides Rppn®®, II'mn®? is also antisymmetric in a, b this can also be
written as:

= (U)((RmnAB + HmnAB)EAIBI
+ (RmnA'B’ + ﬂmnA'B’)eAB) UmAA,UnBBl
= (0‘) (RmnAB + HmnAB)O'mAC’U C'B

+ () (Rmnarpt + pnarpt)o™4 "Con B, (36)
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The above mentioned decomposition into SU(2) and SU(2)' parts is mani-
festly seen. Here

ab Oa b a
o = Wi "Wy 0 = wn “wm ’
SO

M8 ypr = Hxpar + T2 41)(7p® + 7B 1) — (m o n)

= nmAAlIanBl - lCnAAIK,mBBI

" AB_ ¢! c

= EAIBI‘zl" mn Vo ll +€AB%IImn CA'B!
1 A Bc'! BC'

= E4ip f(nm c!'hn - nnAclICm )

AB1 c c
+e€ i(ﬂm A'KnCB — Kn” A'EmCB!)»

see [13]. Therefore

!

AB _ 1 A BC A BC'
j 1 . = i(nm C'Kn —Kn  c'Em ),

HmnAIBI = %(KmCAIK,nCBI - K«ﬂCAlﬂchl) .
This should be substituted in Eq. (36).
The vanishing of the covariant derivative of the soldering form,

Dné: = O0n((9)93) + ('9)"*’11bc’7¢:a‘9;;l =0,

(Ashtekar’s convention of writing (9)X = (0)X = X for the densitized
— that is, multiplied with the determinant — quantities is used) is by
multiplication with the (constant) Pauli matrices translated into

1 1 1}
0~ 8,56™ 44 + (a)(wnBDeB:D: + E)nB,D:eBD)eADeA DigngB
1 1 1 ' L
= 0,644 +waB a1 + Gpptd 6748 = D" 44, (37

where the covariant derivative in the product bundle is defined in the pre-
vious equation. The connection is seen to split into an SU(2) and an SU(2)’
part.
The symmetry of the second fundamental form is expressed in the
Hamiltonian formulation by the constraint

wn " (nayd7 — naa¥p) ~ 0.
This is equivalent to

id 0d ~
Wn "Ny — Wm NagVp 9% = 0,



A Note on Canonical Gravity 451

and it translates to

(- ’ ! al !
nnDDIEDBeD B _ K,mDDIEDAED A a’mBB a’"’AA/
B' A B' A
=KnB~ —Kpa“ 0Tp" onf g =0,
or, multiplied by ¢™ g/
! !
knB® 0"5C — kg Comp? ~0. (38)

The diffeomorphism constraint,
Ci = —2(9)97 (Dmwi® — Diwn )
it is easily seen to become
C; = —2(0‘)0'""33' (Dmn,-BB; - DintB/) ) (39)

where the covariant derivative is the one encountered before in Eq. (37).
In the final part of this paper these constraints are written in a form
analogous to Ashtekar’s formulation ([2]). He writes the constraints as

A_-mB -~
H——'fmn BUm C’a'nCAv

Ci = Fin*B5™P 4,
D,-JT"’A B~0.

Here D and F are a connection form and its curvature, respectively. The

first equation describes the Hamiltonian constraint, the second the diffeo-

morphism constraint. The third one is related to the syminetry of the second

fundamental form. The covariant constancy of the (densitized) soldering

form is ‘achieved by Ashtekar’s choice of a connection D. The connection D
and its curvature F are defined by

Dp=Dp+[4n,.], Apn=wn+

i
75 Tn .

In an analogous way I define a covariant derivative on the SU(2)®@SU(2)’
-bundle by

!
DnXABI = 6,,XAB, + wnAcchr,+ Cino BIXAcl

1 4 !
+ —(IinAcl6g .XCBI - K.nCBlﬁg XACI) .

V2
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(Recall GA' 4 = 76 4 ".) The connection form is

PnABAIBI = wnABsAlBl + C)nA:BoeAB \/_ (K.ABeAlB: - K,nBlAreAB) .

One should realize here that the splitting of the connection form into an
SU(2) and an SU(2)' part is always possible.
The associated curvature is

'yt
CDFnDB

fmnABA'B' = amPnABA’B‘ + FmACA'C'ECDe p'p — (m & n)

i
= Rmn?® 41 + [ﬁ(am("nABeA'B’ - knprare?P)

!
c'Db (K,nDBeDIBI - K,nBlDIEDB))
C'D'(KnDB DB)

+Hwm A% a1t + Omarcre?€)ecpe

~H(xm*Ce a1t — Kmor e C)ecpeE ED'B! — KnBIDIE

~(m o n)]

_ AB 1 AD' B B 1 D AB
= (Bmn" + 36m " Knjp1” JearBt + (Rmnarpt + 36(m" a'6n)B'D)E

i
+%D[m(l€n]AB€AIBI — nn]B:A:eAB) .

To relate this to the constraints, realize that

- - i
'Dno’nAAl = DnoanAt + -ﬁ(iancanCAr - K,nCAm’nAc) .

So Dn&"AA' =~ 0 and Dnc'r"AA' ~ 0 together are equivalent to (37) and
(38).
To obtain the other constraints in a formulation analogous to Ashtekar’s,
realize that
4 I ! ']
%fmn A'B! (0’ BC:JC A'B —’r &mA C&g eAB)

- B-
= RmnP6™pa + 2602PkpP6™pa — 16mAPrnpBP6™ A + c.c.

i - - 1yt
+ 7 {D[m (kn)AB)3™BA — Dim(Knyprar)d™ B ] .

The first line of this vanishes because of the vanishing of trace ™
and constraints (37) and (38). Taking this into account this expression is

equivalent to the diffeomorphism constraint:

= —i\/i(&mADD[mK.n]AD) .
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Finally, the Hamiltonian constraint is given by

1 of 1
A'B L+ &mB nCA eAB)

%}-mnABAlBI (&mBC'&nclA€
i
= (0)H + 7(D[mlﬂn]ABeArB: - D[mnn]B:AleAB)

A'B’ + &mB' -nCA’

X (o,mBC' dnclAE co 5AB) .

The last term vanishes because of the diffeomorplusm constraint and the

symmetry of the second fundamental form, since A’ A is covariantly con-
stant. So
[
1 FmnB gipr (ach a"CaAe B' | gmB' 5nC4 £aB) = (0)H. (40)

In this way all four constraints are cast in a form analogous to Ashtekar’s.
Here I list them once again:

Dna Al ~ 0

Dn&nAAl ~~ 0 Py

l ! ! !
AB +0mAcﬁg€AB) ~0,

% ]_-mnABA’BI (5ch &ncl’AeA'B' + &mB'C gncA’ EAB) ~0.

In all these constraints the “self-dual” and “antiself-dual” parts may be
separated, that is, in the SU(2)®SU(2)'-bundle all forms used in this theory
can be projected onto the first or second factor without loss of generality.
Since the Bianchi identity was used by Ashtekar to enable him to work in
the self-dual part only, it seems to be a reason for this behaviour, but further
work is needed to understand completely the réle played by Bianchi identity
in this theory.

1 AB
2/ mn AIBI((T BC'6A

5. Summary and conclusions

Viewing gravity as a gauge theory, it is natural to consider the dy-
namical variables to be the soldering form and the connection form. This
viewpoint recently gave progress in the field, especially on the road toward
quantization. It was therefore of interest to work out a canonical formula-
tion a la Arnowitt, Deser, and Misner, using these variables, instead of the
metric, as they did. It was clear that the theory obtained should bear some
‘relation to Ashtekar’s work, since he did an analogous analysis in a spinor
bundle.
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The Hamiltonian theory of gravitation was worked out in a gauge in

which the dynamical part of the connection L°* does not appear in the
equations of motion. On the constraint surface this theory is equivalent
to the one obtained by Arnowitt, Deser, and Misner. This was shown by
regaining the vacaum ADM-equations.

The equivalence with Ashtekar’s formulation was shown by using the
special case of spinor space as inner space, soldered to TM. The represen-

tation of the Lorentz group in this space End(C?, (_32) decomposed into a
representation of SU(2)®SU(2)', therefore the associated principal bundle is
an SU(2)®SU(2)-bundle, a product bundle where the first factor contains
variables with unprimed indices (the “self-dual” part) and the second factor
primed ones (the “antiself-dual” part). This theory, projected onto the first
part, reduces to Ashtekar’s formulation of gravity. In the last part of the
paper the constraints of the theory were written down in that special case,
obtaining a form analogous to Ashtekar’s.

Primarily I want to thank Allen Hirshfeld for giving me the possibility to
work in the interesting field of gravity. Furthermore, I want to thank Markus
Tielke for discussions on constrained dynamics and its relation to gauge
theory; Renate Loll for discussions and remarks on Ashtekar’s variables;
Allen Hirshfeld again, for carefully reading the manuscript and suggesting
some meaningful changes, furthermore for his support in correct English
phrasing and terminology; Susanne Laurent also for helpful suggestions in
English terminology and grammar; Stefan Groote and Alexander Bareif for
their help concerning the computer and the LATEX document preparation
system; many others, especially my colleagues in Dortmund, for providing
every necessary help. Although all of them had acknowledged influence
on content, proposition, and appearance of this paper they are in no way
responsible for any error, failure, or mistake which might remain.
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