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A rigorous theory of semiclassical limit of the one-dimensional Schré-
dinger equation based on the Balian-Bloch representation is developed. It
is shown that for a large class of potentials a global fundamental solution
to the Schrodinger equation can be constructed which can be Lapalace
transformed with respect to A~! (or to some other relevant vanable) This
global solution has a definite asymptotic series expansion for A~! — +o0.
The series is shown to be Borel summable to the global solution itself.
Primitive coeflicients — some other quantities basic for the quantam one-
dimensional theory — are shown to be Borel summable, too. An efficient
technique is developed to show both the analytic properties and the Borel
summability of energy levels for a large class of potentials. The technique
combines the analytic properties of the Stokes graphs and the primitive
coefficient identities and is used together with the Bender—~Wu method to
determine the large order behaviour of the semiclassical series coefficients.
The method is extended to a class of perturbing potentials which admit
semiclassical treatment. The cubic- quartic single- and double-well poten-
tials are studied in details. Our approach is generalized to A~'-dependent
potentials.

PACS numbers: 02.30.4g, 03.65.Ge, 03.65.Sq
1. Introduction

The Balian-Bloch representation [1] has been introduced by its inven-
tors into the quantum mechanics as an expected powerful tool for advanced
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and refined applications of the semiclassical (JWKB) approximation. The
heart of the method is to consider the Laplace transforms of physical quan-
tities rather than the quantities themselves. As a transformation variable
the inverse of the Planck constant ™! is then used whilst the conjugate
variable is the action S. The main advantages of such an approach are the
following:

(i) a direct relation to the Feynman path integral method. Namely, the
inverse Laplace transformation can be considered as the last integration
in the Feynman path integral with the action chosen as the one of the
integration variables. This allow to interpret the method in terms of
classical paths both real and complex;

(ii) a possibility to exploit the firmly established theory of the Laplace trans-
formation; and

(iii) a possibility to represent calculated quantities not only by the domi-
nant, conventional JWKB contributions but also by the additional con-
tributions having subdominant character in comparison with the former
ones.

The last property of the Balian-Bloch representation is very important
both from the technical and from the practical points of view and means
that this representation can be used as a tool for obtaining a “complete”
semiclassical description of relevant physical quantities. The way of using
the representation to this end has been demonstrated by its inventors in
their original paper [1] as well as by Balian et al. [2].

Closely related to the Balian—Bloch approach to the semiclassical limit
of quantum mechanics is the problem of resummation of typical semiclas-
sical series. It is well known, due to the pioneering paper of Bender and
Wu [5], that these series are in general divergent but can, in many cases,
be resumed and the Borel resummation method appears frequently to be
powerful in obtaining desired sums. One of the ways of establishing the
applicability of the Borel resummation technique is the rate-of-growth in-
vestigation of the late asymptotic expansion coefficients. In particular, this
method was applied effectively to investigate the resummation problem of
divergent perturbation series. It was found that many such series showed
factorial low of growth of their coefficients i.e. the property which is nec-
essary for the Borel resummming of the series [4-15, 20-21, 31]. It was also
found, however, that there were perturbation series expansions, coefficients
of which deviated from the factorial rule growing much faster [35-39]. These
other cases call for more sophisticated summation tools [37-39].

All these results, despite the very spectacular character of some of them,
cannot, however, pretend to be considered as a complete theory of the
semiclassical/perturbative expansions even in the simplest case of the one-
dimensional quantum mechanics. Specifically, the problems of analytical



Balian—Bloch Representation ... 459

and asymptotic properties of relevant physical quantities (wave functions,
Green functions, energy levels etc. in the complex planes of the asymptotic
series expansion parameters (so important for the asymptotic series resum-
mation problem) still call for some systematic and successful methods of
their investigations.

In this paper we are going to formulate the corresponding theory just
in the case of the one-dimensional quantum mechanics.

Our limitation to the one-dimensional quantum mechanics is not essen-
tial but is justified rather by the relative simplicity of the case. In fact, the
rigorous and powerful methods used to investigate the one-dimensional case
can be also applied effectively to the relevant quantum-mechanical problems
having any finite degrees of freedom [43]. Although such an application ap-
pears to be a highly nontrivial procedure containing the one-dimensional
case, as its exceptional simplification, the main ideas and notions devel-
oped in the corresponding one-dimensional theory contribute widely to the
general case. Therefore, the one-dimensional theory developed in this paper
can be considered as an introduction to this much more complicated general
theory [43).

In our investigations we have used the wave function formalism. The
main results we have obtained are the following:

1. for a large class of potentials there are sets of the wave functions corre-
sponding to the problem and admitting:
a. the Balian-Bloch representations
b. semiclassical expansions
c. Borel summability of the corresponding semiclassical series expan-
sions to the wave functions themselves;
2. the quantized energy level semiclassical expansions appearing in the
considered problems are Borel summable to the energies themselves;
3. there is a large class of perturbing potentials admitting semiclassical
treatment and producing that way Borel summable perturbation series;

In our considerations we follow closely the theory of the Laplace-Borel
transformations and related Borel summability procedure (see [40] for an
outline of the theory). This theory to be applicable demands quantities
having definite properties in the complex A-plane. We were nice surprised to
find out that all the desired properties are carried by sets of the fundamental
solutions to the one-dimensional Schrodinger equation we have introduced
and considered in our earlier papers [27-28).

Let us stress at this moment that the full advantage of the Balian-Bloch
representation can be exploited only if the relevant quantum theory is for-
mulated as a complex theory i.e. as a quantum theory in complex space of
the space variables and other parameters (A, E (energy), etc.). Such a point
of view has been adopted in this paper where the stationary one-dimensional
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Schrodinger equation is treated as genuinely defined in a complex space of
the variable z, the parameter A and the energy E. Such an approach allows
to built a complete semiclassical theory in the case of the one-dimensional
quantum mechanics. An unique objection is related to the inherently singu-
lar nature of the global fundamental solutions themselves and is expressed
as the existence of turning points i.e. singular points of the global funda-
mental solutions (see, however, [29] where the Bargman representation is
used to remove this apparent disadvantage of the fundamental solutions).
On the other hand, it is just this singular structure of the theory which
allows to construct relevant extended JWKB approximations for considered
quantities [41].

Another crucial point of the paper is the full use of the analytic prop-
erties of the Stokes graphs. The usefulness of the graphs is demonstrated
in all sections of the paper. We have borrowed the idea of using the Stokes
graphs in this way from Voros [25].

The primitive canonical coefficients introduced and used successfully in
our earlier papers are the third “working” element of our method. Each
one-dimensional quantum mechanical problem can be solved in terms of
them. Their well established analytical properties as a function of the com-
plex variables z, A and E allow to develop a relatively simple technique
of determining both the analytic and the asymptotic properties of energy
levels considering as functions of A.

The last basic element of the techniques used in the paper are the
abundance of identities satisfied by the primitive canonical coeflicients (see
Appendix A). They are these identities which allow to avoid a detailed
analysis of the semiclassical wave functions so characteristic for the approach
in Bender and Wu’s [5, 30] and other papers [21-23, 32].

The properties of our approach enumerated above used altogether make
our formulation of the semiclassical theory as compact and efficient as ele-
gant.

The organization of the paper is the following. In the next section the
global solution to the Schrédinger equation is constructed and its Laplace—
Borel transformation is defined. The modified Borel summation method
(similar in its idea to that of Cruchfield [24]) is applied to the global so-
lution as well. It is shown also there that the global solution semiclassical
expansion is Borel summable in definite sectors of the Stokes graph. In the
same section the primitive canonical coeflicients are introduced and their
Laplace transformations are discussed.

In Section 3 a general discussion of the quantization of energy levels
within the framework of our formalism is performed and the strategy of
establishing the energy level asymptotic properties in the A-plane is formu-
lated.
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In Section 4 the method worked out in Section 3 is applied to discuss the
existence of Laplace transformations and Borel functions for the anharmonic
oscillator energy levels regarded as functions of the complex variable A\ =
B~ with B being the anharmonicity parameter. The considered cubic-
quartic potential is of the form: U(z,A) = AV(2A~1/2) where V(z) = (2% +
1/4)® — bz3. It allows to study simultaneously its both physical channels
i.e. its single- and double-well versions. In the single-well case the results
of Bender and Wu [5, 30] (see also [26]) are reproduced. In the double-
well one it is shown that when the wells have unequal depths (b # 0) then
the energy levels are Borel summable but for b approaching zero (i.e. for
the symmetric double-well configuration) the Borel transformation becomes
singular. The modified Borel sum can be successfully used in such singular
case. Nevertheless, the Borel summation technique is shown to provide also
the solution to this Borel unsummable case.

In Section 5 a generalization of the Balian-Bloch representation to a
class of A-dependent potentials is developed. It is shown that the main re-
sults obtained for the cubic-quartic oscillator remain essentially unchanged.
In particular it is shown that for the single-well potentials their energy le-
vels E(A) are holomorphic in the cut A-plane for |argA| > x and A large
enough and therefore, Borel summable. It is also argued that these results
can be extended to a family of perturbing potentials admitting semiclassical
treatment. Finally, we conclude with Section 6.

2. Laplace transforms of global fundamental solution
and of primitive canonical coefficients

2.1. A global solution to the Schrédinger equation
and its Laplace transform

Consider the Schrodinger equation:
¥"(z,\, E) — M2g(z, E)(z,\,E) =0, (2.1)

where g(z, E) = 2m(V(z) — E)/h®. For convenience, we have introduced

into (2.1) a formal variable A. It can play a role of varying 7! or of
any other suitable variable which can enter Schrédinger equation (see, for
example, [27]). Both X and E take on complex values. Both for definiteness
and simplicity we shall assume V' (z) to be a polynomial of any degree n > 1
with all its zeros being simple. A global Stokes line pattern corresponding
to a given ¢(z, E') depends, of course, on E and n. However, we select out
from the pattern only a part consisting at least of three neighbouring sectors
1, 2 and p (see [27-28] for necessary definitions). This is shown in Fig. 1.
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T

Fig. 1. The Stokes graph for a general polynomial potential

Then, we can associate with the sector 1 the following fundamental solution

P7(z, A) to (2.1):

¥5(@: 0 B) =g (e, B)exp (o2 [ oh(v, B)y) ] (2,3, B)

Re (a/q%(y,E)dy) <0, z€sectorl, o==1

Zo

g(z0, E) =0 (2.2)

and with the “amplitude factor” x{(z, A, E') given by the following func-
tional series:

Xi’(z’k’ E) =1+ Z (%)" / dyy ... / dynw(‘yl)"'w(yn)

n21 HO) ¥ (¥n-1)

x (1 _ e—zAt(z,yl)) (1 — e—2Me(n ,yz)) - (1 - e—2}\£(y,._1,y")),
(2.3)

where:

1/d"(y)  54*W)
wv) = Z(qg/z!(ly) - qu” z(yy))
and
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£(z0,2) = —0 / o} (v, B)dy (2.4)

o

and where the dependence of w, ¢, etc. on FE is also understood. (From
now on and up to the end of this section we shall assume the energy E to be
fixed at some complex value and the obvious dependence on it of different
quantities discussed below will not be marked explicitly.) We shall also
choose ¢ = —1 in (2.2) and (2.3), by assumption.

Similar fundamental solutions can be associated with the sectors 2 and p
(as well as with the remaining p—2 sectors of the Stokes graph corresponding
to the case) but with corresponding signatures o, and o, alternated i.e.
g2 = 0p = 1. When A is real and positive, all p fundamental solutions
are defined by (2.2) — (2.4) independently of each other constituting in this
way a set of local solutions to the Schrédinger equation. However, a similar
set of fundamental solutions can be constructed for any complex A # 0
accompanied, of course, with suitably changed patterns of the corresponding
Stokes graphs (deformed properly in comparison with its initial form given
by Fig. 1).

¥ (x,2)
c
e 1 _ ~As
w -
\fn (x,2)

Fig. 2. The cut A-plane corresponding to the global solution ¥(z, A)

On the other hand, any such set of fundamental solutions can be ob-
tained directly from the one constructed for real A > 0 and corresponding to
the Stokes graph of Fig. 1 by analytic continuation in A of both the solutions
¥3*(z,A), k=1,...,p, and the graph of Fig. 1 itself along suitably chosen
path in the complex A-plane. Moreover, beginning with any of the solutions
¥p*(2,A) k= 1,...,p, with A > 0 and continuing it with A along suitably
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chosen path one can obtain all the remaining solutions. In particular, if, by
convention, the solution ¥, (z, A) corresponds to the positive real axis of the
A-plane then the solutions ¥ (z,\) and 1/)1'; (z, ) are defined correspond-
ingly below and above the negative real axis of the A-plane cut along this
axis (see Fig. 2) and can be obtained by analytic continuations of ¥; (z, A)
along the paths 72 and =, correspondingly. It is now obvious that continu-
ing ¥, (2, A) with X along 72 (i.e. clockwise) and encircling the point A = 0
by the angle —p - * we have to come back again to the sector 1 i.e. again
to the solution v, (z,A). However, this coincidence is not exact and the fi-

nal solution differs from 1 (z, A) by a factor (—i)" exp(—\ § ¢'/3(z, E)dz)
K
(i.e. P5°°t(z, A) = (—i)"exp(—A § ¢*/2dz)y] (z,A)) where the closed con-
K

tour K encircles (anticlockwise) all n zeros of ¢ in the cut z-plane (i.e. all
these zeros stay inside the contour K). The correctness of the last state-
ment follows from the fact that in the case of ¥§°™(z, ) the integration
path 4j(z) in the corresponding formula (2.3) runs in the z-plane as it is
shown in Fig. 1 being the final form of the deformation of y;(2) in the an-
alytic continuation procedure in A. However, since z is fixed the JWKB
factor ¢~1/4 exp(—Aé(20, 2)) in (2.2) does not change when it is continued
with A. Contrary to that it changes by i exp() §; ¢'/2dz) when ¥ (2, )
is continued to z along v3(z). But ¥; (z,A) continued with z is always the
same at z independently of the path which it is continued along. Therefore,
these two analytic continuations (i.e. with z and with A) do not commute
but are related as it was stated above.

A conclusion which follows from the above discussion is, therefore, that
for fixed z the point A = 0 is a branch point for ¥, (z, A, E) considered as
a function of the two complex variables z an A. This branch point is of the
logarithmic type.

However, a much more general conclusion is that (2.2) constitutes, in
fact, a global solution to the Schrodinger equation defined on the complex
Riemann surface parameterized by z and A\. We shall denote this solution
by ¥(z,A). It has the following properties:

(i) it is a holomorphic function of z for any fixed A # 0;

(#) it is, for any fixed z being not a zero for ¢(z), a holomorphic function of
A on the infinitely many sheeted Riemann surface with the point A = 0
removed;

(#4) it vanishes (approaching its JWKB approximation

¢~ 1/4 exp(—A¢(z0,2)) when 2 — oo in any direction of the z-plane for

which Re(—A¢(zo,2)) = —o0;

(iv) it approaches its JWKB approximation ¢~1/4 exp(—Aé(z¢,z)) when
A — oo and A € A(z), where A(z) is such a set of A’s that for every
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A € A(z) there exists a canonical set Kp(y) which contains z i.e.

z € [Inep(r) KD(») (see [27, 28] for a necessary information).

In particular, if z stays in sector 1 of Fig. 1 then it belongs to each
of the canonical domains Kp,, Kp, and Kp, corresponding to the solu-

tions ¥, 1,b2 and ¢+, respectively. Therefore, z belongs then also to each
canonical domain K D,(A) which arises from the domain Kp,, i =1,2,p as
its continuous deformation when moves to any point of the Riemann sheet
depicted in Fig. 2. The canonical domain Kp (), ¢ = 1,2,p, corresponds,
of course, to the solution (z,)) defined at the point A. It follows further
from the property (iv) above, that ¥(z,)) approaches its JWKB approx-
imation when A — oo on the Riemann sheet shown in Fig. 2, since the
amplitude factor x(z,A) approaches then unity. Therefore, we can define
for Re s < 0 (with z still kept in sector 1) the following Laplace transform
of the amplitude factor x(z, A):

~ 1 .
x(z,s) = 5 /e2A x(z, A)dA, (2.5)
C

where the integration contour C is shown in Fig. 2. (The factor 2 in the
exponential in (2.5) is introduced for convenience.) Let us note, however,
that the discontinuity of x(z,A) on the cut in Fig. 2 (i.e. the difference
x(z, Xe'™) — x(z,Ae™*") = xp(z,A) — x2(2,A), A > 0) can be easily de-
termined by noticing that the fundamental solution % (z,A)(= ¥(z, A) for
A > 0) can be represented by the following linear combination of gb;*' (z,A)
and ¥ (2, A):

%*(2 A) =¥ (=, )

X2—p(A)

where x2—5(A) = x§ (00p, A) is the value of x§ (z, A) taken at z = cop when

x5 (2, ) is contlnued to cop (the infinity point in the sector D,) along the
canonical path y2_,, (see Fig. 3). From (2.6) and (2.2) it follows then that:

¥y (2,2) = ) (2.6)

X3 (2:3) = X3 (2, 3) = ixa—p(A)xy (2, N)e ™22 (Z02), (27

so that (2.5) can be rewritten as:

~, 1 T s—€(zg,2 -
%(2,9) = - o [ PCE0 s (7 (2, )ah
)\o
+— [ e x(z,)\)d), (2.8)

27rz
CAO
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ya(x)

Fig. 3. The integration paths corresponding to the formula (2.6)

where C,, is an open contour encircling (anticlockwise) the point A = 0
and having both its ends attached to the point A = —A¢ on different sides
of the cut (see Fig. 2). By the form (2.8) X(z,s) is defined in the half-
plane Re s < Re{(zg, z) is positive X(z, s) appears to be, in fact, the Borel
transform of x(z, A). It is, however, a good opportunity to show this fact by
direct calculation of the large order behaviour of coefficients x,(z), n > 0,
of the asymptotic series expansion for x(z,A). Namely, putting:

x(2,A) ~ 14 ) xn(z)A"! (2.9)
n>0

and using the Bender-Wu formula [5] we get:

1 [ -
xXn(2) = 5— / e 2202y (2, A)x2p(A)(—A)"dN
Xo

1 n
+5— /(x(z,f\)-l)/\ dA
CAO

L uee(10(). e

Thus, indeed, according to the general properties of the Laplace-Borel trans-
form (see [40], Appendix 1) the Borel series:

> (-29)"xn(2); (2.11)

n>0
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is convergent in the circle |s| < |£(zq, z)| with X(z, s) as its sum. The latter
function has at the point so(z) = £(2¢, z) a singularity closest to the origin.
The relevant Borel transformation can be also defined for ¥(z, ) itself to
give:

F(2,5) = ¢} (@)R(2> s + 16(20,2))
= %; e~ 2Ao (2, A)dA. (2.12)
C

Both the functions X(z, s) and 9/(z, s) are holomorphic for Re s < Re £(z0, )
and Re s < %Re &(zo,z) respectively (when z is still kept in sector 1).
The transformations (2.5) and (2.12) can be inverted to give:

x(z,A) = 2/en’f(z, s)ds (2.13)
c
and
Yz, \) =2 / X%y (z, s)ds, (2.14)
Vol

where the contour C starts at the infinity Re(As) = —oo and ends at s = 0
and ' = C — s€(z0,z). Since the contours C and C' can be freely
deformed in the half plane Re s < 0 the formulae (2.13) and (2.14) define
x(z, A) and (2, ) in the whole sheet shown in Fig. 2 excluding the points
of the negative half of the real axis.

We can also express x(z,A) and ¥(z,A) by the inverse Laplace trans-
formations integrating in s-plane along contours with their both ends an-
chored at the infinity. (We shall call this kind of transformations — modified
Laplacée-Borel transformations.) Namely defining:

I.(z,8) = E%e—” /e”'x(:c,s)(s' —s)7lds' (2.15)

(o}
with (any) fixed ¢ > 0 and with X(z,s) as the discontinuity of II.(z,s)

across the cut along C we get:

P(z,A) =2 / e T, (z, s)ds, (2.16)
KE'
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where ﬁ,(z, s) = ¢~ Y410, (z, s+£(20,2)) and the contour K 5, encircles the

cut along C' clockwise. The function T(z,s) can be also defined directly
by:

II(z,s) = # / e_z}“Ei((e — A)(s — &(=o, a:)))dA, (2.17)
Ce

where C, is any of the contours C in Fig. 2 which crosses the real axis
between A = 0 and A = ¢ and where Ei(z) is the integral exponential
function [42].

Summarizing the above discussion we have shown that for the solution
¥(z,A) with z kept in the sector 1 it is possible to define its Laplace trans-
formation (2.16) with IT,(z, s) being holomorphic in the s-plane cut along
C and having 17;(2, s) as its discontinuity across the cut.

The following two comments are in order here.

1. The formulae (2.13) and (2.14) are certainly valid for Re A > 0 when the
contours C and C' stay in the half planes Re s < 0 and Re s < —&(z0,2)
respectively. They can be continued, however, to other domains of
the Riemann A-surface corresponding to ¥(z, ) if accompanied with
suitable changes of the variable z. Thus, for example, when continuing
z to the sector 2 and deforming the contour C in Fig. 2 into C; the
formulae (2.5) and (2.12) will then define X(z, s) and (2, s) in the half
planes Res > 0 and Res > —§(zo, z), respectively. On the other hand
the inverse formulae (2.13) and (2.14) define then x(z,)) and ¥(z,A)
in the half plane Re A < 0 with the contour C in the formulae deformed
(anticlockwise) from its position in the left half plane to its new position
in the right half of the s-plane. The function (2, ) fulfils then for
A > 0 the condition: ¥(z,~A) = ¥](z,)). Possible singularities of
x(z,s) and 12;(2, 8) existing in the corresponding half planes Res > 0
and Res > —§(zo,z) when z stays in the sector 1 move to the half
planes Re s < 0 and Re's < —§(z¢, ) respectively when z moves to the
sector 2.

2. Our proof that the series (2.9) is Borel summable needs only local ar-
guments i.e. that the neighbouring solutions 1, and ¥, are analytic
continuations of 3 in A. No particular properties of the potential are
necessary apart of those which provide some “regular” picture of the
Stokes graphs i.e. those which, roughly speaking, can ensure that the
critical forms of the Stokes graphs (see below) are exceptional. There-
fore, our limitation to the polynomial potentials seems to be too modest
in this respect and, in fact, as we shall argue in Section 6, the results
of this section can be extended to a family of A-dependent potentials
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which includes both non-polynomial entire potentials and the singular
ones.

2.2. Primitive canonical coefficients and their
Laplace transforms

For a given Stokes graph corresponding to fixed A and E let Kp, and
Kp; be any two of its communicating canonical domains (see [27,28] for a

definition of the latter notion) corresponding to fundamental solutions 1;*
and ¢; 77 defined by (2.2)~(2.4). Then, the coefficient function x,_‘J(A E)=

‘(oo W MNE) (= xJ_"(A E)) will be called a primitive canonical coefficient.
The canonical coefficient defined in our earlier paper [27, 28] are simple func-
tions (quotients) of the pnmxtive canonical coefficients. As it follows from
the formulae (2.3)-(2.4) x;*, ;( E) is, for fixed E, a ramified holomorphic
function of A on the same Riemann surface on which the global solution
¥(z,A) is i.e. the point A = 0 is its unique singularity (branch point).

To follow the behaviour of X', ;(A, E) with A it is necessary to follow
the relevant deformations in the z-plane of the integration path ;. ; corre-
sponding to the coefficient considered. The latter deformations are enforced,
of course, by the deformations of the corresponding Stokes graph caused by
the change of A and are ruled by the following two conditions: (a) the ends
of 7i—.; have to follow the (moving) infinities 0o;(A) and oo;(A) (lying in
the respective sectors D;(A) and D;(A)); and (b) no one turning points can
cross the path v;_.; when A is changed.

If energy F is fixed the deformations of the Stokes graph are simply
the rotations of each triad of the Stokes lines attached to each turning
point around these points by some angles. These rotations depend only on
the argument of A. If arg\ changes by 7 the Stokes graph comes back
after the rotation again to its initial position (i.e. the Stokes lines rotate
by F2x/3 around the corresponding turning points). However, each sector
of the graph moving continuously (clockwise for +x, anticlockwise for —=)
occupies after the rotations the position of its nearest neighbours (see, for
example, a set of relevant figures drawn by Voros in his paper [25]). If the
initial pattern of the Stokes graph is “typical” i.e. if any of its Stokes lines
starting from some turning point goes to infinity (that is, does not end at
some other turning point) then any two sectors of the graph can be joined by
a canonical path. In such a case the behaviour of x;*, ;(A, E) when A — oo
(with argA fixed) is also typical i.e. x,_,J(/\, E)=1+0(A"1). We shall call
such a typical behavxour a normal asymptotic behaviour. However, during
the continuation of x,_, J(/\, E) with A this normal asymptotic behaviour
can be lost since the integration path v;_,; can cease to be the canonical
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one. In fact, this has always to happen for any path ;_,; if the change of
arg) is large enough and it takes place when the deformed path has to cross
two Stokes lines emerging from the same turning point. (Remember, that
both ends of ;. ; have to follow the movement of the sectors D;, D; in the
infinities of which they are anchored.) Such a case can happen only when
some initially different Stokes lines crossed by v;_.; (they have to emerge
from different turning points) coincide for some arg) in the course of the
analytical continuation in the A-plane. If this is the case the corresponding
values of arg\ as well as the graph itself are called critical.

At the critical values of argl the asymptotic behaviour of xi.;
(= x:’i,j(,\, E)) changes and becomes oscillating. If the critical value of
arg) is overcrossed x;—; exponentially diverges for A — co. Besides, xi_.;
stays to.be perfectly holomorphic for A # 0, co. Therefore, the conclusion is
that for each x;—,; there exists in the A-plane (or, rather, on the correspond-
ing Riemann surface) a sector A > 0 bounded by two critical values of arg)
(obtained by rotating the Stokes graph in the two possible directions) at
the infinity of which x;—; has the normal asymptotic behaviour. We shall
call such a sector a normal sector of x;_,;. It then follows from Appendix
A that x;—,; can be Laplace (or Borel) transformed from its normal sector
if the size of the latter is greater than x. If this critical angles are # and

¥ with & — ¥ > « then for the Laplace transform Xi—.;(= X;', ;(8, E)) of
Xi—j We 1
Riai(5, E) = 50 / e~ (A E)dA, (2.18)
Cij

where C;; is shown in Fig. 4. The function X;_.;(s, E) is holomorphic in
the sector D;; = {s: |[s| > 0,3x/2 — & < args < /2 — ¥}. The inverse
transformation is:

xi—i(ME)=2 [ e**%Xi_;i(s, E)ds, 2.19
2 J

Cii

with 5,-1- shown in Fig. 5. It can be shown [41] that then X;_,; is also the
Borel transform of x;. ;.

Conversely, it the size of normal sector of x;_.; is smaller than = (i.e.
# ~ ¥ < x) then the Laplace or Borel transformations are impossible and
this is a clear sign that x;—; in the considered normal sector cannot be
obtained from its asymptotic series expansion by the Borel resummation
method.

The case when the size of the normal sector is equal to 7 needs a careful
treatment (see [40) (Appendix 1) for the relevant discussion).
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Fig. 4. The integration contour corresponding to the formula (2.18)
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' —\ Res

Fig. 5. The integration contour corresponding to the inverse Laplace transforma-
tion (2.19)

3. Quantization of energy levels and their
analytic properties

A quantized energy E(A) is, certainly, this quantity which Laplace
transformation properties in the A-plane are most important. The existence
of the latter transformation is, as usual (see Appendix A), determined by
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the existence of a sector in the A-plane (with its angular size no less than «)
inside which E(]) is holomorphic and shows suitable asymptotic behaviour
when A — oo in the sector. In this section we are going to describe a method
allowing: (a) to establish in a relatively simple way the existence of such
sectors; (b) to determine their sizes; and (c) to determine the analytical and
asymptotic properties of E()) inside the sectors. The method is next used
in the subsequent sections.

3.1. Analytic properties of the primitive canonical
coefficients as a function of energy

As a function of energy E the primitive canonical coefficients x;—j(A, E)
are holomorphic almost in the entire E-plane. Possible exceptional values
of energy are:

(a) those for which some zeros of ¢(z, E) coincide pinching simultaneously
an integration path 7;_,;; and

(b) the infinity of the E-plane approached from some directions if such
approaching causes an infinite deformation of the path v;_,; pinched
by some zero (or zeros) running to the infinity.

Therefore, for a polynomial potential the total number of such points is
finite. Under our assumption both the position and the character of these
singularities are independent of A\. For example, a unique singular point of
X1—3(A, E) for the harmonic potential is E = 0 being a branch point of the
type E—F [25).

It is also worth to note that varying E we do not affect the asymptotic
form of the Stokes lines. Only their patterns in the vicinity of turning points
are disturbed.

3.2. Quantization of energy and its analytic properties
as a function of A

The quantization of energy is, in our formalism, a constraint put on
a global solution #(z,A,E). Such a constraint is simply a matching of
Y(z,Aa;,E) (A > 0, oj = 1) given in some sector D; with ¢(z, Aoy, E)
defined in some other one Dy with o; = opexp(inr;;), rj, = +2,43,
-+, %(p — 2). It has therefore, the following form:

Y(z,A05, E) = Cjr(A)Y(z, Aoy, E). (3.1)

For each of the solutions ¥(z, Ao;, E) and 9(z, Aoy, E) the condition
(3.1) means the following:

YP(ook, A, E)=0 and 9(j,Aop, E)=0. (3.2)
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Since for the solution ¥(z, Ag;, E) its JWKB factor
z
— 1
e Byexn(o;); [ b Byaw)
Zo

vanishes only in the sector D; (growing exponentially in the remaining
ones) then (3.2) can be fulfilled iff the “amplitude” factor x;(z, Aoj, E)
of Y(z, Ao j, E) given by (2.3)) vanishes for z — ooy, i.e.

xj(oog,Aoj, E) =0 or, equivalently, xi(oc0j,Aoy, E)=0. (3.3)

It follows then immediately that if the conditions (3.3) are to be ful-
filled then the corresponding integration paths v;(oco) and 4,(o0;) cannot
be chosen to be canonical since with the latter choice x;(ocog, Aoj, E) and
Xk(00j, Aok, E) have to approach unity when A — +oco. For the correspond-
ing Stokes graph itself (3.3) means that the graph is in a critical position i.e.
some of its turning points are linked by a Stokes line so that the canonical
communication of the sectors D; and Dy is broken.

However, it is always possible to continue (3.1) to two independent
sectors, say p and ¢, along a system of canonical paths [27-28] so that C;z(})
can be eliminated from the condition (3.1). Then, the above condition can
be given, as a rule, the following z-independent form:

F(Xj—»p(/\,E),---,x:e-»q(A,E),exp (z\éf;q%),---,exp (Aé{q%)) =0,
(3.4)

where F is a multilinear function of some primitive canonical coefficients
Xj—p(As E),... etc. and of the typical phase coefficients exp(A jcl ¢'/?),...
etc. with no other additional dependence on A and E. The integrals in
the phase coefficients are closed contour integrals with some pair of turning
points (real or complex) inside the contours. These integrals are nothing
but the values of the classical action corresponding to the different solutions,
both real and complex, of the relevant (one-dimensional) classical equation
of motion when the corresponding periodic movements are bounded between
different pairs of turning points (real or complex). The presence of contribu-
tions coming also from complex trajectories is permanent and characteristic
property of our approach. Their role in the semiclassical description of
quantum phenomena have been also noticed and appreciated in the Feyn-
man path integral approach {16-20]. It will be shown in the next sections
that the complex classical trajectories are those which determine the singu-
larity structure of the Borel plane corresponding to different quantities and,
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consequently, their subdominant asymptotic behaviour when A — oo (see
(1.4) in Section 1).

In general there is a number of equivalent equations of the type (3.4)
in each particular case of the quantization condition. This variety of equiv-
alent equations arises due to the existence of the corresponding number of
identities involving some suitable phase coefficients as well as all possible
primitive canonical coefficients which can be defined for each particular case
of the Stokes graph (see Appendix B). These identities have also the form
(3.4).

Since ¥(z, A, E) in (3.1) as well as the coefficients xj_.p(A, E)... etc.
in (3.3) and (3.4) can be continued analytically in the A-plane then (3.3)
and (3.4) define the energy levels E as a function of the complex variable
). Since, further, the phase coefficients are entire functions of A and are
singular at the same points in the E-plane at which the primitive canonical
coefficients are then a solution E()) as defined implicitly by (3.3) and (3.4)
has to have the following typical properties:

1. it is a holomorphic function of A everywhere except the following pos-
sible points:
a) A = 0, where the primitive canonical coefficient are singular;
b) the points A for which E()\) becomes a singular point for the prim-
itive canonical coefficients or for the phase coefficients;

c) the points A for which:

OF()\E) _
—p— =0 (3.5)

2. it has to behave in a definite way in some sectors of the A-plane when
A — o0; this behaviour can be read off from the known asymptotic
behaviour of the phase- and the primitive canonical coefficients entering
the corresponding quantization condition (3.4).
The latter circumstance is of a special importance since it decides about
the possible Laplace transformation of E()) and of the Borel summability
of its asymptotic series expansion. As it follows from [40] (Appendix 1) for
the Laplace (or Borel) transform E(s) to exist it is necessary for E()) to
be analytic in the relevant sector (or strip) only asymptotically i.e. to be
analytic there for A large enough. Therefore, we shall use the condition (3.5)
(defining the positions of possible singularities of F())) only asymptotically
i.e. we will check whether this equation is satisfied or not only for A — oo
under the condition that (3.4) is satisfied in the same limit.

As it has been shown by Bender and Wu [30] the analytical properties
of E(A) in the A-plane are determined by the following factors:

1° the existence of several physical channels associated with the potential
considered and realized by analytic continuations in the A- and z-planes;
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2° the energy level structures in each physical channel of the problem con-
sidered; and
3° the symmetries of the investigated Hamiltonian.

Tlmx

LA

Fig. 6. The Stokes graph corresponding to the single-well channel of the cubic-
quartic oscillator

However, a common property of each energy level independent of the
channel considered is its typical asymptotic behaviour when A — oo. Name-
ly, each energy level is quantized in this limit in the deepest well with the
behaviour: E()) = Vg + O(A~1), where Vj is the absolute minimum of the
potential [27). It means that the corresponding quantum object is settling
down at the bottom of the deepest well and this property is visualized in the
Stokes graph as the collapsing of these pairs of the real turning points which
correspond to the considered energies. Thus, for example, for the single-well
channel of Fig. 6 the collapsing pair is (B, B'). In the case of the double-
well channel of Fig. 7 the collapsing pair is (4, B). Such an asymptotic
behaviour of energy levels we shall call a normal asymptotic behaviour and
the sector of the A\-plane where such a behaviour takes place we shall call a
normal sector. We will show in the next section, considering the anharmonic
oscillator as a typical example, that on the Riemann surface of the energy
level E(\) the normal sectors dominate i.e. there are only isolate directions
along which the asymptotic behaviour of E(A) is different from the normal
one.

In fact, our conclusions about the normal asymptotic behaviour fol-
low directly from the quantization condition (3.4) (or its equivalents) if we
make use of the following asymptotic properties of the primitive canonical
coefficients (which on their own follow from (2.3)):



476 S. GILLER

pV

w
-4 >
¥ x

Aimx

(&)

Fig. 7. The double-well channel of the cubic-quartic oscillator and the correspond-
ing Stokes graph

if X goes to the infinity along a direction such that both the energy E())
stays finite and the integration paths defining the primitive coefficients in
(3.4) stay canonical then these coefficients have to approach the unity and
both their partial derivatives (with respect to A and E) have to vanish.

Since we are interested rather in an asymptotic analytic properties of
energy levels we shall assume the following strategy in our investigations of
the problem:

1. for a given physical channel fix the energy parameter E at Vo — the
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absolute minimum of the potential in this channel; this corresponds to
take the limit A — oo in the following asymptotic series expansion of
E(X) in the considered channel:

EA)~Vo+ Y EpA~"? (3.6)
n>0

2. determine the normal sectors for all the primitive canonical coefficients
entering equivalent quantization conditions using the Stokes graph cor-
responding to the case considered;

3. take a common part of the normal sectors corresponding to the primitive
canonical coefficients entering the same quantization condition;

4. take a union of all the common parts obtained in the previous step;
if such a union is connected it constitutes an asymptotically normal
sector for E(A) of a maximal angular size i.e. a maximal normal sector
for A — oo.

The normal sector obtained in the way described above ensures that:
(i) the energy E()) satisfies some of the quantization conditions (3.4) and
behaves asymptotically according to (3.6); and (i) the condition (3.5) fails
to be fulfilled. (In fact, if A\ — oo inside the normal sector of E()) then
OF(X,E(X))/3E ~ X as one can easily checked by the direct differentia-
tion of the left hand side of (3.5).) The latter fact means that E(A) is a
holomorphic function inside its normal sector for A large enough.

Following the procedure described in the points 1.-4. above we have
to deform suitably the Stokes graph pattern according to varying A\. One
of the indications that the corresponding deformations are performed prop-
erly is the impossibility to communicate canonically the sectors D; and Dy
(corresponding to the solutions matched) in any stage of such deformations.

Now we could apply the procedure described above to any polynomial
potential. However, instead of diving into a discussion of a general case
we shall consider the relevant asymptotic behaviour of E()) in the A-plane
using tather a particular example of such a potential, namely this of the
cubic-quartic anharmonic oscillator. The relevant results obtained for the
latter case are typical enough for the problem considered, so that their
generalization as well as a generalization of the methods applied will appear
to be obvious both for any polynomial potential and for nonpolynomial ones.
We will do it in Section 5.

4. Analytic properties and Borel summability of energy levels
of the cubic-quartic single- and double-well oscillators

The case of the cubic-quartic oscillator in its single- and double-well
variants is particularly interesting because of the following reasons:
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1. it is the simplest non-trivial case (in comparison with the harmonic one)
of the bounding potential;

2. it is the case which properties we are most interested in are best exam-
ined [4-5, 25-26, 30-34];

3. it is a good illustration of the techniques we are going to apply inves-
tigating the analytic properties of E()\) and its asymptotic behaviour
when A — co; and

4. its results can be easily generalized (see the next section).

We shall consider a general quartic potential of the form
71V (pke) = 571 (6e" + 5)7 — bpke.

Making the following change of scales: z — z8~1/2 and E — ¢!, in the
corresponding Schrédinger equation (2.1) we are left with:

$"(2,0,5,6) — M3[(2? + 1)2 — b2® — e]gp(z, A, b,e) = 0,  (4.1)

where A2 = 2m/(f3)?. The Hamiltonian in (4.1) is invariant under the
following joint reflection transformations in the complex z- and b-planes:
(z,0) — (—=,-b). A name of parity invariance shall be adopted for this
syminetry.

If z,A,¢,b are all real with ¢ > 1/16 and b < 4/3 then (4.1) rep-
resents the problem of the single-well asymmetric anharmonic oscillator
with the corresponding Stokes graph shown in Fig. 6. Let vi(z, ), b,¢)
with A > 0 be a fundamental solution corresponding to sector k in Fig. 6,
k= 1,2,2,3,3,4. Because of the parity invariance we can assume that
Ya(z, A, b,€) = Pa(—2, A, —b,€) as well as YP3(z, A, b,¢) = Y3(—2, A, —b,¢)
and ¥3(z, A, b, €) = 2(—2, A, —b,¢). Besides, Yi(z, A, b,¢) coincide, up to
some constant Ci(A,b,¢€), with 1(z, X, b,¢) rotated in the A-plane by, say,
7,2m,3x for k = 2,3,4 and by —x, —2x for k = 2, 3, respectively.

4.1. Quantization of energy levels
The quantization condition (3.3) in the case of Fig. 6 reads then:
X1—4(A,b,6) =0, (4.2)
where x1-.4(A,b,€) is given by (2.3) with the integration path 7;_.4(})
shown in Fig. 6. The parity invariance and the reality of (A, b) for A\,56> 0

enforce the following relations satisfied by the latter:

E(A,b0)=¢(X,8)  and  e(),b) =e(A, -bd) (4.3)
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Since the path v;_.4()) is not canonical it is more convenient to sub-
stitute (4.2) by the following equivalent condition:

X2—a(A b,€) - x103(A, by €) + exp[—A f oz, M\ be)bde] =0, (4.4)
Cpip

where ¢(z,,b,¢) is defined by (4.1) and Cp/p is a closed anticlockwise
oriented contour around the cut (B', B) (see Fig. 6). Eq. (4.4) follows from
matching the solutions ¥4(z, A, b,¢) and ¥1(z, A, b, €) in sector 2 and next in
sector 3. Note, that the complex conjugation of (4.4) provides a quantization
condition equivalent to (4.4) with x2.4(),b,¢) and x31_,3(A, b, €) replaced
by x3_.4(), b,¢) and x;_,5(], b, €), correspondingly.

Any continuation of (4.4) in the A- and b-planes defines (), b) at com-
plex values of A and 4. In particular, as it follows from (4.1) and Fig. 6,
rotating each solution vi(z, A, b,¢), k= 1,...,4, first in the A-plane by the
angle —37/2 (the Stokes graph in Fig. 6 rotates then anticlockwise), then
in the z-plane by +x/2, next in the b-plane by +x/2, and, finally, contin-
uing the solutions in the e-plane from the region ¢ > 1/16 to the region
Vr < € < VL, (above the point ¢ = 1/16 — this places the point B at the
new real axis to the left from the point A) we arrive at the Stokes graph
of Fig. 7b i.e. at the graph corresponding to the double-well “channel” of
the considered quartic potential with the unequal depth Vz and V, of the
corresponding wells (see Fig. 7a). Therefore, taking again into account the
parity invariance we obtain the following relations between the energy levels
of the single- (s-w) and double-well (d-w) channels:

e«}i{—-w(A’ b) =V (Ae31n'/2, bei‘k/Z)
or
ES"(A,b) = iE* " (Ae3™/2, bei™/?) (4.5)

(Note that we can also rotate in the A- and b-planes in the opposite direction
i.e. by +3x/2 and —=x/2, respectively, arriving at a result obtained from
(4.5) by applying the properties (4.3) and corresponding again to Fig. 7.
However, rotating in the b-plane by —x/2 instead of x/2 as in (4.5) we
would exchange only the wells in Fig. 7 i.e. we would have Vi < VR.)

In the case when b = 0 the parity invariance implies also that starting
with any A in (4.1) and rotating in the A-plane by +3= we arrive again at
the same Stokes graph pattern i.e. we have to have:

e(AeT37,0) = £(1,0). (4.6)

Eq. (4.6) means that A = 0 is a branch point for £(1) (= ¢(A,0)) such
that e(A) ~ A%/3 for A — 0, so that E()) ~ A}/3 and is finite in the limit



480 S. GILLER

A — 0 since the latter corresponds to the limit 8 — oo which makes the
anharmonic potential purely quartic.

In the double-well channel of Fig. 7 the primitive coeflicients in both the
conditions (4.2) and (4.4) are no longer canonical (they lost their canonicity
whilst continued from the single- to the double-well channel). The corre-
sponding condition with the canonical coefficients is the following:

x2—4(A, b,€) exp (%,\fq}dz)
K

+x34(A,b,€) exp ( - %x\fq}dz) =0, (4.7)
K

where g(z, A, b,¢) = (22 — 1/4)% — bz — ¢ with the closed contour K shown
in Fig. 7b. The condition (4.7) can be obtained by matching ; and 94 in
sector 2 and next in sector 2 (see Fig. 7b).

The analytic properties of the solution (), b) to (4.3) and its asymptotic
behaviour in the A-plane can now be read off from the conditions (4.4) and
(4.7) and their equivalences complex conjugated to them. Following the
prescription of Section 3.2 (points 1.-4.) we shall determine the normal
sectors for £(], b) corresponding to the single-well channel as well as to the
double-well one. The sectors should be different since they correspond to
different asymptotic expansions (3.6) of (A, b).

4.2. Energy level normal sector: the single-well case

Consider first the single-well case corresponding to Fig. 6. When
€ = 1/16 (i.e. € is equal to absolute depth of the well) then the points
B and B’ coincide and the graph in Fig. 6 takes on a form shown in Fig. 8.
The normal sectors for x2—.4, X;_3, X1—3 and x3_,4 follow directly from
Fig. 8. They are determined by the critical angles corresponding to the co-
efficients considered (see Section 2.2.) i.e. by these values of arg A crossing
over of which causes these coefficients to be no longer canonical.

Consider, for example, the coeflicient x2—,4. One of its critical angles is
achieved when the graph in Fig. 8 is rotated anticlockwise (around its turn-
ing points) so that it causes the slashed Stokes lines in Fig. 8 to coincide.

A
This happens when Re [A J ¢/ 2d:c] = 0. Since the integral in parentheses
B

is real and negative arg A which satisfies the last condition has to be equal to
—x /2 (A rotates clockwise in the A-plane). On the other hand one can easily
check that rotating the graph clockwise by arg A = += (this causes only the
cyclic permutation of the sectors in Fig.8i.e.1 -2 23 543 - 2 — 1)
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Fig. 8. The Stokes graph corresponding to the particle setlled down at the well’s
bottom of the single-well case.

no coincidence of the Stokes lines can break the canonicity of x2—.4. How-
ever, rotating still further again by +7/2 we cause the Stokes lines slashed
double in Fig. 8 to coincide. This breaks ultimately the canonical contact
between the sectors 2 and 4. Therefore, we can conclude that the limiting
angular size of the y3_,4-normal sector when A — oo is the following:

T 3Ir
—§<a.rg/\<+-2—. (4.8)

Exactly the same normal sector is obtained when x;_,3 is analyzed. On
the other hand the angular size of the normal sectors corresponding to x3_, 4
and xj-—.3 can be readily obtained from (4.8) by the symmetry arguments
to be:

3z T
—7 <arg)\<+§. (4.9)

Concluding from (4.8) and (4.9) we obtain, therefore, the following maximal
angular size of the normal sector for (A, b):

—3?” <arg/\<+3?7r. (4.10)

In fact, it is the last size which has been proved by Simon and Dicke [26] to
be the maximal normal sector for £(, b) for the case considered.
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4.3. Energy level normal sector: the double-well case

This case can be considered in a way completely analogous to the pre-
vious one. Analysing the corresponding graph in Fig. 9 we obtain for the
normal sector of x2_.4:

—-7 < argA < +% - o (4.11)
and for the normal sector of x5._,4:
-§+p_<arg)\<+x, (4.12)

where —7/2 < p_ < 0 is defined by tanp_ = Im¢(4, B')/ Reé(4, B').

Imx

L&)

Fig. 9. The Stokes graph corresponding to the particle setlled down at the well’s
bottom of the double-well case.

Therefore, the maximal normal sector for €(A,b) is given correspond-
ingly by:

-g+ga_ <arg,\<+§-ga_. (4.13)

In the next section we shall show that the asymptotic series (3.6) are
Borel summable to (A, b) in both considered channels.

{.4. Borel summability of energy level asymptotic series

In showing the Borel summability of the £(},b) asymptotic series we
shall follow the Bender-Wu method [5]. However, we are not going to
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repeat the calculations of Bender and Wu but rather to use the method in
a way which makes it effective and efficient. The use of the identities (A.2)
of Appendix A plays a crucial role in our application of the method.

441 The single-well case

The normal sector for (), d) is given in this case by (4.10). Since
the quantities e(/\e‘”r b) and £(Ae™*",b) have in the sector (4.10) the same
asymptotic expansion (3.6) their difference De(), b) = e(Ae®™, b)—e(Ae ™™, b)
has to vanish exponentially when A — oo. Therefore, we can apply the
Bender-Wu formula [5] to estimate the large order behaviour of the coeffi-
cient €,(b) in the series (3.6). For this, however, it is necessary to know the
precise asymptotic behaviour of De(A, b). We will determine it by construct-
ing a function having the same asymptotic series expansion (3.6) as each
of the functions ¢(Xe*™,b) and ¢(Ae™**,b) and being in a definite relations
with the latter. To this end let us note that such a function (we denote it
by €,53(A, b)) can be obtained as a solution to the following equation:

X2—3(A, b,6) =0, (4.14)

which is nothing but the result of matching the fundamental solutions
¥2(z, A, b,€) and 93(z, A, b,€) (see Fig. 6). Matching these solutions in sec-
tor 4 the following equivalence to (4.14) is obtained:

X2—+4(/\,b,€)eXP (%’\ f q§dz)+X§—+4(A’ba€)exp(“%A f q§dz) =0,

Cpp Cp'p
(4.15)
which shows that £,53(A, b) has the same asymptotic expansion when A — oo
as €(A, b) has. From (4.15) it follows also that the normal sector for £22(, b)
is given by:

L3 T
-3 < arg < tg- (4.16)

Therefore, within the boundaries of this sector x,_,5(A,b,¢) fails to fulfil
the condition (3.5) asymptotically, that is:

3X2—>§(A’ b’ 525(’\» b))
6522

#0. (4.17)

Let us now note further that the following identities corresponding to Fig. 6
take place:

A 1
X2—v4(’\a b, 6) 'X§—>3(A, b, 5) = Xz—.i('\, b, 5) + Xi—A(Aa b, 5) exp (2Af q’idz)
B
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and

A
X3—4(A0,€) - x2_3(A, b,€) = x2,3(A, b, €) + x2-4(A, by €) exp (2«\ J qﬁz)
BI

(4.18)
and the coefficients x,_,3(A, b,¢) and x3_,3(}, b, €) obey the following equa-
tions:

X2-3(A 0,6(Ae ™, 8)) =0 and x3_3(A,b,e(Ae™, ) =0.  (4.19)
The latter are nothing but the condition (4.2) rotated in the A-plane by +,
respectively. Making now the following substitutions: ¢ — ¢(Xei™,b) into
the first of Eqs (4.18) and ¢ — ¢(Ae™*",b) into the second one and next
expanding x,_,3(A,b,€) in these equations around the point ¢ = ¢,5 and
then using (4.15) and truncating the Taylor series at the first nonvanishing
terms (see the condition (4.17)) we get in the limit A — +4o0:

At (A b) = e(Aei™,b) — £25(A, b)
exp (2/\ fg, q*dz)
es X212 (A, b, €23(2, b)) ’

~ _Xi—ul(’\’ b, 5(’\ei"’ b))

and

A_(\b) = e(Xe ™™, b) — £53(N, b)
exp (2A f;;,' qﬁdz)

Be—,gh—»z (X;5,€23(A, b))

Note that the Taylor series truncations made above are justified since A4
are exponentially small quantities in the limit A — +o0o. Therefore, using
the Bender-Wu formula we obtain the following result for the large order
behaviour (n — 00) of €,(b) in (3.6):

~ ~x2-4(A, b e(Ae ™™, b)) .(4.20)

n(8) ~ —5— / (A+(AB) — A_(A, B)) (=A)"dA
0
--n—m—%
A(o0)
~ (___1)m+n -2 / q%da)

,zf(__mﬂz_z_z) m+ Br{c0)

x C14(b, m)m(%‘f%) 2m+11"(m +n4 %)(1 + O(W)) )
(4.21)
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where m is the number of the level considered and the integration limits in
(4.21) (i.e. the points B'(c0), A(o0)) correspond to Fig. 8. The subtleties of
these calculations as well as the definitions of the constants Cy4(b,m) and
C 4(m) are given in Appendix B. It can be checked that when b = 0 (4.21)
reduces to the well known result of Bender and Wu [5] with I'(m + 1) given
in a form of Stirling’s formula.

As a consequence of (4.21) we obtain that the Borel functions £p(s, )
corresponding to the series (3.6) exist and are holomorphic in the circle
Is] < [€(B'(00), A(00))| with a singularity at s = —£(B'(00), A(00)) lying
on the positive real axis.

Therefore, it is confirmed in this way that the normal sector for £(), b)
is given by (4.10) since its size predicts that the Laplace transforms e, (s.})
of (A, b) should be holomorphic in the s-plane cut along the positive real
axis. Our calculations confirm this prediction showing additionally that the
cut begin at the point sp = —§(B'(00), A(0)) and that £g(s,b) = £1,(s,d).

4.4.2. The double—-well case

Our investigations of the case will be to a large extent similar to the
previous ones. As before we shall construct auxiliary functions (two of
them this time) which together with (), b) will allow us to estimate the
large order behaviour of €,(d) in the asymptotic series (3.6) corresponding
to the case. These two functions will have the following properties:

(i) the asymptotic expansions (3.6) identical with that of ¢(}, b);
(#) the sizes of their normal sectors larger than « i.e. allowing to take the

Laplace transformations of them;

(#i) disjoint holomorphicity sectors in the Borel plane being simultaneously
the neighbors of the sector corresponding to £(A,b).

Let us denote these functions by £33(, b) and £,3(), ). Each of them
arises as a solution to a suitable “quantization” condition resulting when
matching relevant pairs of the fundamental solutions corresponding to
Fig. 7b. Namely, matching 1; with 13 and 1; with 13 we get the following
“quantization” conditions:

X33(A,b,€) + exp (,\ iﬁq%dz) =0

and
1
X2-3(A; b, €) + exp ( - 2§ q’dz) =0 (4.22)
K

defining the functions £13(A,b) and €,5(}, ), respectively and making the
property (i) above obvious. The corresponding normal sector sizes which



486 S. GILLER

Ims

Res

Fig. 10. The Borel plane corresponding to (A, ) in the double-well case

follow from (4.22) are:

3
I p- <argi < 71{ +¢— for e13(A0b)

2
and
3r 1
-5 —-< arg A < 5 te- for &;35(A,0), (4.23)

where ¢_ is the angle defined in (4.11). The sectors (4.23) are complex
conjugated due to the relation:

g13(A,0) = elg(x, Z) (4.24)

which follows from (4.22). From (4.13) and (4.23) it follows further that
the energy €(),b) and the functions e;3(A, b) and €,35(A,b) can be Laplace
transformed from their normal sectors and their corresponding transforms
(s, b), £13(s,b) and &,5(s, b) are holomorphic in the following sectors of the
s-plane:

D={s:x+¢p_<args<t—op_, s> 0}
Dys={s:—p_<args<m+¢p_, s> 0}
Diz={s:7—p_<args<2r+¢_, s> 0}, (4.25)

respectively.
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We now show that the asymptotic series (3.6) common to all the func-
tions €(A,b), €13(A,b) and €,5(A,b) is Borel summable to each of these

functions with the Borel integration contours 5, 513 and 513 taken in the
corresponding sectors (4.25) and shown in Fig. 10. To this end we make use
of the following three identities:

X2*4(A7 bve) *X3o3(A bae) - Xi—d(’\’ b’e)
— X2—3() ,¢) exp (- 20¢(B, B')) = 0
Xz—+4(As0,€) - x35(A,8,€) — x244(A, b,€)
— X2-3(A, b,¢) exp ( - 2X¢(B, A')) =0
and

X2-3(A b,€) = xi__,s()‘ei”, b,€). (4.26)

The following relations are particular applications of the last identity:

X253 (A, b, €13(Xe'™, b)) = x5 _,3(Ae'™, b,e13(Ae’™, b))
and

X3o3(X,b,e13(Ae T, 8)) = x5 (Ae T, b eg3(Ae T, B)). (4.27)
Eqs (4.27) and the conditions (4.22) show that we have:

Xz2—r3(\s b, €13(Ae"™, ) + exp (- A § a¥(z, 5,150, b)) = 0

and

X§—+3(A’ bs 513(Ae_ira b)) + exp ( + ’\fq%(za b:€1§(’\e_i"’ b))) =0
K
(4.28)

Consider now the functions:

€33P(X,b) = €33(A\, b) — VR
and

€33°(A,0) = e13(A, b) - Vi
and write for them the following Cauchy integrals:

1 32P (A, b)
sub . 13 4 [
s W) =355 | a2
Cis

and
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Im)
\M-f T 1¢-]

R

Fig. 11. The integration contours in the A-plane used in the formulae (4.29)

sub/ y/
= — / C1s 513 (s ")dx, (4.29)

where the point A and the integration contours C;5 and C;3 are shown
in Fig. 11. The radius Ag of the semicircles K;5 and K3 is chosen to be
large enough in order to make it sure that the functions ;5 and ¢;3 are
holomorphic in their corresponding domains D,5 and D;3 having C,3 and
C13 as their respective boundaries. Subtracting Egs (4.29) we get:

oo
1 . : dX\'
sub -
513 (A b) = ‘-——z-/ (Elg(A'e "r,b) - 513(/\'8"",6)) —/\, n by
Ao
o0

- o [ (08— exs (3, 8)) 2
+% / 530 (N, b) X

1 I
+ 55 / 35PN, b) —- (4.30)

From (4.30) the following asymptotic Bender~Wu representation for ¢, (b)
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emerges immediately:
o0
1
en() ~ 57 [ (415 = B1)=2)"+ (A - Aup)dr,  (a3)
0

where, by the way, we have introduced another four functions:
'13(3\, b) = 513(’\8‘.” b) — e(A,0)
Al5(N,5) = e;3(Xe ™, b) — €(A, b)
A13(A, b) = €13(A, ) — £(A,d)
A;5(A, 0) = 43(A,0) — (A, D). (4.32)
The asymptotic behaviour of A’s in (4.32) when A — +00 can be now easily

obtained in the following way. Substitute into the first two of the identities
in (4.26) € = £(A, b) and use (4.7) to get:

X§-—’3(As bye) + exp (qu}(z, b, E)dz)
K

g (= 2B, )
=X )

X2—3(A,b,€) + exp ( - Aifq%(z, b, s)dz)

— 2X¢(B, A’
= Xz—»i(’\:b,e)exp (5_.4(§(b €) )) ]

Next expand the left-hand sides of (4.33) into the Taylor series around the
points: € = e13(A, ) and € = €,3(Ae™*™, b) — for the first of Eqs (4.33) and
around the points: € = £,5(),b) and ¢ = £13(Ae™*™,b) — for the second
one. Use the conditions (4.22) and (4.28) and truncate the series at their
first nonvanishing terms. In the limit A — oo one obtains for the leading
terms successively:

(4.33)

! 1
x2—>§(A1 b,e) exp ( -2 fg d:cq?(a:,b,e))

A13 ~ P %
X240 b, )55 (xama(Mbreas) + exp (A fic g} (2, b, 610)de) )

1 Vg oo B'(00)— A(co))VR )
~ L (b,m)y) LR exp [ — 22 [B () gpqt (( ()
L2 22( ) 2 ( jA( ) c /\/e\/f(m-f-%)

Ajs ~ Ais

A15~—£,—Cexp( 2Af‘4(°°) idz )(

(A'(oo)—A(oo))\/X)zm_*-l
Cp \/ evZ(m+1)
Az ~ Ay, (4.34)
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where C = C,3(b,m)(Vg/2) and C,3(b,m) = Jim x;_,3(\,b,¢(),b)) and
- 00

where the integrals in the exponentials correspond to Fig. 9. Cy5(b,m) is
given again by (B.6) and Cgr — by (B.3) where, additionally, the follow-
ing substitutions should be made: B(o0) — A(o0), A(oc0) — B'(c0) —
A(0), Vi = Vg, and (m + 1/2) - (m + 1/2)/V"g. Substituting (4.34)
to (4.31) we get finally for n — oo:

o)~ Gy {( 1)"[( A('Z:)q%dz) "_m_’(cj%fﬁ);))mﬂ

A'(o0) —n-m-} , 2m+1
bq ( A'(00)~ A(0) ) ]
( A({,o)q i Cpivev2(m+i)

P o )
A(o0) Cpry/eV2(m+3)

1(00) P —n—m-—% B'(c0)— A(c0) 2m-+TI r )
H 5)-
( A({o)q - (CB:\/e—\7_5(m+%)) } (ntm+2)

(4.35)

The result (4.35) proves that the Borel function (s, b) corresponding to
Eq (3.6) exists and is holomorphic in the circle [s| < |sg| where sp =

f ql/ (2,5, VRr)dz with four singularities at its boundary, namely, at
8 = 3R, SR, —3R, —3R (see Fig. 10). The Borel function ¢(s, b) is, therefore,
holomorphic in the s-plane cut as it is shown in Fig. 10.

4.5. A dependence of €(A,b) and é(s,b) on their arguments.
A limiting case — the symmetric double-well

The results obtained in the previous section assumed that for a given b >
0 the variable A has changed within the sector (4.13) with |A] > Ao(b) and
with the latter number chosen large enough to ensure that e(ao, b) < VL(b).
Therefore, the Borel transformation:

£()\b) = 2 / e2X5¢(s, B)ds (4.36)

C

(with € shown in Fig. 10) is expected to reconstruct e(),b) in the sector
(4.13) and for |A| > Ag(d). Since the radius Ag(b) has to increase without
bound when b — 04 then the formula (4.36) is not expected to work in this
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limit. In fact, in the limit ¥ — 04 the singularities —sg and —3g in Fig. 10
tend to coincide pinching in this way the integration contour C in (4.36),
so that the latter formula becomes singular.

On the other hand in the limit & — 04 the potential becomes the
symmetric double-well with the energy levels given by:

e(A) = e(A,0). (4.37)

The above equality allows us to regard the energy levels of the symmet-
ric double-well as the Borel summable quantities, despite the fact that the
corresponding Borel transformation (4.37) cannot be performed. (Note,
however, that £(s,0) is the well defined Borel function which can be used
to obtain, for example, €13(A,0) (defined by (4.22)) by the regular Borel
transformation (4.36) taken along C;3 shown in Fig. 10. A relevant discus-
sion how to obtain explicitly £(A) in terms of the Borel summable quantities
€13(X,0) and £,3(A, 0) is postponed to Section 4.7).

Eq. (4.37) can be easily justified in the following way. If X in g(A,b),
being kept fixed and positive, and b are chosen initially so that e(A,b) < Vg,
(i.e. |A] > Ag(b)) then decreasing b (i.e. shallowing the right well) we can
always cause the level to be pushed out above V[, (b) i.e. above the bottom
of the higher (left) well. In such a case the level satisfies the following
quantization condition:

X2-3 exp( (Ig Ii)q%dz) + X33 €XP ( - %‘-(ii - fl)q%d:c)
+exp( ($+I£)q%dz)+exp( (if+ f)qrdz)z_— .

(4.38)

which’ corresponds to Fig. 12. However, the above condition is also ex-
actly equivalent to (4.7) if the energy €(A,b) is smaller than Vi and the
corresponding Stokes graph has rather the form shown in Fig. 7b. A con-
tinuation of (4.38) with respect to b from the form corresponding to the
latter graph to the form corresponding to the one in Fig. 12 is, therefore,
an analytic operation so that the level (A, b) behaves analytically with b
crossing over the value VL. This is certainly true if A is fixed initially at
sufficiently large value so that the left-hand side of (4.38) fails to fulfil (3.5)
during the continuation. We conclude, therefore, that under the above con-
dition the point b = 0 is regular for £(\,b). When b becomes negative the
roles of the wells are revised: the left well becomes deeper (Vg < Vg) and
when A — 400 the level (), b) is settling down just at the bottom of the
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Amx

Fig. 12. The Stokes graph corresponding to the symmetric double-well

left well i.e. its asymptotic series expansion is determined according to the
Bohr-Sommerfeld quantization corresponding to this well [27].

Summarizing, the behaviour of ¢(A,b) is the following. Choosing ini-
tially A > 1 such that Vg < ¢(),0) < 0 < V, fixing A and decreasing b
to zero we cause €(),b) to increase up to the value (A, 0) i.e. to the cor-
responding energy level of the symmetric double-well. Decreasing b further
(A, b) is also decreased taking the same values for the same absolute values
of b i.e. €(A,0) = g(A, —b). The point b = 0 is distinguished not only as the
extremal point of £(A, b) but also as the point where the Riemann surface of
(A, b) splits into two disjoint parts each carrying different values of parity
and corresponding to different functions e*()) i.e. to two independent so-
lutions to (4.38). On the other hand, as long as b # 0 all energy levels are
only different branches of the same ramified function (A, b).

We have already mentioned that (), ) cannot be obtained for b = 0 by
the Borel transformation (4.36) of (s, b) since the transformation becomes
then singular. This problem cannot be avoided by any deformation of the
contour C in Fig. 10 since for b = 0 the singularities of £(s,b) at —sp
and at —3g have to coincide. One can suppose, however, that decreasing
b and passing by the point 5 = 0 from the left or from the right (note,
that b moves along the imaginary axis in the b-plane) one can obtain from
(4.36) an energy level in the left, now deeper, well. However, it is not the
case. To see this, let us note that the pattern of the Riemann surface sheet
shown in Fig. 10 changes with b from this in the figure when b is small and
positive to that in Fig. 13 when b becoming negative passes by the origin
b = 0, say, from the left. But, as it follows from (4.3), we should also
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have £(s,—b) = £(s,b). Therefore, the pattern in Fig. 13 proves that the
Borel transformation (4.36) cannot be defined on the sheet shown in the
figure if we want to obtain &(), b) for negative b since the proper form of
the corresponding sheet should be the same as in Fig. 10. We can conclude,
therefore, that the relevant transformation is defined on some other sheet
of the Riemann surface which for positive b looks like in Fig. 13 and for the
negative one — like in Fig. 10. This means that it is the Riemann surface
as a whole rather than its particular sheets which remains invariant under
the reflection b — —b.

Ims

b<O

Fig. 13. The Borel plane corresponding to £(A,b) in the double-well case after
changing b from b > 0tob < 0

4.6. Application of the modified Borel transformation

The, problem of the singular behaviour of the Borel transformation in
the symmetric double-well case can be avoided by applying the modified
Borel transformation (2.15). To see this, let us note that, by definition, the
singularities at —sp and at —3g in Fig. 10 are transformed when b # 0 to lie
on the second sheet of the Riemann surface corresponding to the modified
Borel function &m,04(3,5) (see Fig. 14) with the integration contour lying
entirely in the first sheet and encircling the negative half of the real axis.
An integration along this contour is not disturbed by the coincidence of
the singularities at —sp and —3z when b — 0 since in the latter limit
these singularities do not coincide at all on the considered Riemann surface.
Therefore, the relevant integration is regular and can be performed also for
b=0.
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Fig. 14. The integration contour K’ and the cut K in the Borel plane corresponding
to the modified Borel transformation

Nevertheless, we shall show below, using the conventional Borel resump-
tion methods, that energy levels in the symmetric double-well, lying below
the top of the barrier dividing the wells (the levels are, therefore, essentially
non-Borel summable quantities) can be constructed as a sum of some defi-
nitely Borel summable terms and of exponentially small explicitly non-Borel
summable ones.

4.7. Energy levels in the symmetric double-well potential

For simplicity, we assume rather that the relevant potential is given by
(4.1) where we have to put b = 0 and z2 — —z2. (Note, however, that
a general case of the symmetric double-well can be also considered in a
similar way developed below not disturbing basic conclusions.) Because of
the parity invariance we can also put ¥4(z, A, €) = Y1(—2, A, €) (see Fig. 12
for the corresponding Stokes graph). Therefore, in the energy quantization
condition:

Ya(z, A €) = C(A, e)1(—2, A, €) (4.39)

C(),€) = X1 depending on the level parity (41 for the even parity and —1
for the odd ong). Matching the solutions 1; and %4 in sector 3 we obtain:

X3—3(A €6 (X)) + exp (/\fq%dz)
K

Bl
=iCx3,3(AeC(N)) exp (( - 13[ +I£)q%dz) . (4.40)
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Now, we want to relate the solution £¢°()) to (4.40) to the Borel sum-
mable quantities £13(2,0)) and £,3()) (= £,35(),0)) defined by the condi-
tions (4.22). We want to do it for ) sufficiently large since only then all
the functions ¢©()) ans £,3(A) can differ by exponentially small amounts.
Note, that €33()A) and €,3(A) are mutually complex conjugated being two
different branches of the same quantity.

To achieve our goal let us expand the Lh.s. of (4.40) into the Taylor se-
ries around the point €;3() and truncate the series on the first nonvanishing
term. Taking into account the identities (4.22) we get:

8(x3-.3 (A 13(X)) + exp (A ¥dz) )
(ec(’\) - 513(’\)) 6613(A)

BI
=iCxz_3(MeC(V) exp (- [ + §)atde). (4.41)
B K
From (4.41) we obtain finally
€C(A\) = Rees(A)
Im 5,20 X33 (s e13(0) + exp (A V(s exs(W)ee )|

—Ime;ys(N) Re 52y (X§—»3(A’€13(’\)) + exp (’\I{\/Ed"'))

BI
Xz2—2(A£C(N)) sim (3 Vit £9(A)dz) exp (- J vt £°(N))dz)

-C i
Re 5205 [xz_.s(«\, £13()) + exp (A I_f\/&(z,en(/\))dz)'

(4.42)

Note, that Re g7-2rsy [x3 s (M 13(X)) + exp (A Va2, e1s(V)dz) | # 0 for

A large enough because of (4.22). Further, the second term in the r.h.s.
of Eq. (4.42) has to be exponentially small due to the factor Ime;3(A)
since the latter does not contribute to the asymptotic series expansion of
€13()). (This expansion coincides with the one corresponding to (1)) and,
therefore, has real coefficients.) In fact, it is shown in Appendix D that

Ime;3(X) behaves as exp ( — 2)\fgl ¢*/?(z,Ree13()))dz) when A — +oo,
so that the discussed term should be neglected since it is outside the scope
of the assumed accuracy with which €“(A) can be defined by (4.41). (To
take this term into account we should also have to keep up the second and
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the third non-vanishing terms in the Taylor series expansion of the L.h.s. of
(4.40).)

We would like to compare the result (4.42) with the corresponding well
known textbook formula for the symmetric double-well energy splitting [3].
To this end let us estimate (4.42) in the limit A — + 0o under the assumption
that Reej3(A) is kept fixed. (It is the assumption under which the energy
splitting formula is discussed.) In this limit we have:

X2-3(A,eC(A)) ~ 1
sm( f ab(z,e(\))dz) ~ :,\ w(z, Reers(A))dz
K K

and
Adk 9‘*(3, €13(A))dz
Red(x3_3(X,€13(2)) + exp 96130
~ —i— fw(z,Resm(/\))dz 'fq_l/z(:c,Rena(A))d” , (4.43)
K K

where w is given by (2.4). The first limit in (4.43) is obvious since un-
der our assumptions the cut between the points B and A in Fig. 14 does
not shrink to the point and x,_,5 behaves like a typical canonical coeffi-
cient. The second limit in (4.43) follows as a result of the Bohr-Sommerfeld
quantization condition for £€()) (see formulae (4.48) below). To obtain
the last limit in (4.43) we have to estimate the behaviour of the quantity

,—u(;\'y[(xz.‘s()\ €13(A)) +exp (/\f\/'(a: els(A))dz)]more carefully. First,

we can use its asymptotic form [27]
co3
X3%.3(A Ree1s) = exp / x~ (2,3 Reers)de) , (4.44)
ooy
where x~(z, A, Reey3) is given by the following asymptotic series [27]:
x (2,\Reeys) = Z A" Iy pa(z, A Reens). (4.45)
220

However, due to the simple form of the symmetric double-well potential
being considered we have:

]

/ x~ (2, )\, Reey3)de = — fx_(z,/\,Reen)dz (4.46)
K

o3
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and this quantity is purely imaginary, as §, ¢'/?(z,Ree13(A))dz is. There-
fore, we have:

3[)(2—-»3()\, €13(A)) + exp ("fx a¥(z,Re e:s)dz)]
dRe 613(A) 7

L o~ 1 A i ( f } )
; aReEdesm( fx da:) + 2zf dz sin qidz
K K K K

(4.47)

e

The first term in the r.h.s. of (4.47) behaves, according to (4.45), as

:\}gfx;dzfagii dz in the limit A — 4o0.
13
K K

To estimate the corresponding behaviour of the second term let us note
that we have in the limit A — 4oc0:

:\ qu(z Reeyz)dz — l fx (z,A\Reer3) = (2n + 1)x. (4.48)
K K

This is nothing but the Bohr-Sommerfeld condition which follows from
(4.22) (see, for example, [27]). Therefore, in the limit A — +oco we get:

% "]/2(::: Reey3)dz sm( fq%(a: Re513)da:)
K K
= _f ‘1/2(::: Reey3)de sm(1 fx (z,A Ree:13)dz)
K
1 -
~ —Efq_l/z(z,Reela)dzfxz (z,Reey3)dz
K K
= —i— fq—l/z(z,Reela)dz fw(z,Reem)dz (4.49)
K K

so proving the correctness of the last asymptotic in (4.43). The final form
of (4.42) is, therefore:

BI

£O(h) = Reers(A) = C R exp( = [ v(z,Reers)dz ) , (4.50)
STy S
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where T' and v are the classical quantities: the period of the classical move-
ment between the turning points A and B, and the velocity (defined by
2¢ = e~"v?), respectively. We have also substituted A by 4/2/h in (4.50).

The splitting of opposite parity energy levels in the symmetric double-
well which follows from (4.50) is, therefore:

!

Ac(h) = e~ (B) — et (B) ~ —"exp(l / oz, Reeu)dz) (4.51)
B

The above formula coincides with the conventional one [3] proving that
the asymptotic limit of Ae(k) is independent of the summation method
used to sum the asymptotic series expansion corresponding to ei(h) being,
therefore, in a full accordance with the general philosophy related to the case
[48]. This formula can be completed in two ways. First, the asymptotic value
of the pre-exponential coefficient in (4.51) can be substituted by the actual
value of this coefficient given by (4.42). Secondly, other subdominant terms
can be added to the r.h.s. of (4.51) (with the help of the so called topological
expansion [41]). Since one of such terms should be proportional to C?
then it should be also proportional to the third power of the exponential
factor itself present in (4.51). These new subdominant terms can be again
calculated from (4.40) with its Lh.s. Taylor expanded around e13 up to the
third non-vanishing term.

5. Generalizations: A-dependent nonpolynomial potentials
and perturbations admitting semiclassical treatment

The results and methods developed in the previous Sections can be
generalized at least in two directions:

1. to admit nonpolynomial potentials; and
2. to admit A-dependent potentials.

The latter extension is closely related to the possibility of treating some
perturbation expansions in the semiclassical manner. This possibility was
used in the previous Section due to the scaling operation allowed by the an-
harmonic perturbation considered there. Perturbing potentials of this type
form, however, only a limited class among all of them. Nevertheless, this
class is distinctive in that that its confining potentials produce energy levels
perturbation series, coefficients of which grow factorially. Perturbing poten-
tials contained in this class are characterized in Section 5.2, below. Energy
levels corresponding to perturbing potentials living outside the discussed
class can show different behaviours [35-39].

Obviously, the above two directions of generalizations are interrelated
and, in fact, the first one can be considered as a part of the second. Let us
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characterize, therefore, a class of A-dependent potentials whose properties
cannot change seriously the methods and results obtained in the previous
sections.

5.1. A-dependent potentials still admitting semiclassical treatment

If V(z, ) is such a potential then it should have the following “regular”

properties:

1° V(=,]) is real for z real and X real and positive;

2° V(z, ) is meromorphic in the z-plane for |A] > Ag with Ag sufficiently
large and independent of z and with at most square root branch point
at the infinity in the A-plane so that the domain |A] > Ag lies on the
A-Riemann surface consisting of two sheets;

3° V(z,A) has the following asymptotic expansion for A — oo, uniform in
the A-plane:

V(z,A) ~Vo(z)+ Y. Y ATV, (2) (5.1)

r=0,1n2>1

with 70 = 0 and 7; = 1/2 and with V4(z) and V,, »(2), n > 1, r = 0,1,
meromorphic in the z-plane and fulfilling there the reality condition
(condition 1° above) each;

4° for any fixed X (|A] > Ag) the Stokes graph S(A,E) corresponding
to ¢(z, A, E) (= V(2,A) — E) is normal i.e. for any anti-Stokes line
Im f:P ¢'/?dz = 0 emerging from (any) root z, (= z,(, E)) of ¢(z, A, E)

the domains Re j; ¢'/2dz > 0 or Re f; ¢'/2dz < 0 which contain this

anti-Stokes line do not contain any other zero of ¢(z, A, E) for |z| large
enough;
5° each zero (or pole) of ¢(z, A, F) fulfils:

Jlim_2,(3, ) = 2,(E), (5.2)

where z,(E) is a zero (or pole) of go(z, E) (= Vo(z) — E); and
6° all zeros (poles) of V(z,A) are simple and do not coincide when the
limit (5.2) is taken i.e. zeros and poles of Vp(z) are also simple.

The latter limitation is not very serious and is of rather technical im-
portance since each multifold zero (pole) can be always splitted into several
simple ones by introducing suitable splitting parameters. This technical as-
sumption allows to utilize in the most effective way the canonical properties
of the Stokes graphs.

The properties 1° — 6° together allow to repeat almost literally the
reasonings of the previous sections applying the same method and technique
as used there.
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The reality condition 1° is not related directly to the subject considered
and can be released if necessary. It is included for definiteness.

The properties 2° — 3° ensure that the asymptotic calculus we have
developed in our earlier paper [27] can be applied here as well.

The property 4° allows to maintain the use of the notions of sectors,
canonical paths, canonical domains, fundamental solutions, canonical coef-
ficients etc. as well as to write quantization conditions in the usual manner
demonstrated in the previous sections.

The property 5° guarantees the asymptotic properties of the relevant
quantities (wave functions, canonical coefficients, energy levels, matrix el-
ements etc.) to be determined by the potential Vy(z) with rest of the
potential coefficients in (5.1) playing a role of asymptotic corrections.

In particular if Vp(z) is a single-well potential ther it is easy to show
with the methods of Section 4 that the large order coeflicients of the asymp-
totic expansion corresponding to an energy level E()) in the potential
V(z,)) have the factorial growth (see Appendix D for details) i.e. such
a rate of growth appears to be a rule.

5.2. Perturbations allowing semiclassical treatment

The last statement of the previous section seems to be in a contradiction
with the well known fact that the rate of growth of the levels E()) corre-
sponding to the potential U(z,8) = z2 + fz?™ is faster (being ruled by the
(mn)! law) if the asymptotic perturbative calculation are developed with re-
spect to # around 8 = 0. However, such cases of perturbative calculations
can be easily included in the semiclassical scheme of the asymptotic calcu-
lations described above by suitable rescaling procedure. In general, such a
procedure can be performed with potentials from a limited class only. This
class can be characterized as follows.

Let U(z, B) be a holomorphic function of 8 at 8 = 0, so that the series:

U(z,B) = Y B™Un(z) (5.3)

n>0

is convergent in some circle || < fo. We shall say that the perturbation:

Upert(”; ,B) = Z ﬂnUn(z) (5'4)

n>1

admits semiclassical treatment if there is a function f(A) holomorphic for
|A] > A in the two-sheeted Riemann surface and vanishing at its infinity and
such that in the relation:

U(zV, f())) = AV(z, A) (5.5)
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the new potential V(z, A) have all the properties 1°-6° enumerated above.

It should be noted that the transformation: z — 2/ if performed in
the Schrédinger equation is unitary. Therefore, the energy spectrum Ey())
of the Hamiltonian Hy = p?/2 + U(z,B) is determined by the spectrum
Evy()) of the Hamiltonian Hy = p?/2 + V(z, A) according to the relation:

Eu(f(A) = AEv(}). (5.6)

As a consequence of (5.5) and (5.6) and in agreement with our previous
discussion, large order coefficients of the asymptotic series expansion in A
of the level Ey(f())) have the factorial rate of growth.

A simple illustration to these considerations is a potential U(z,8) =
2?2 + BPym(z), where Py,,(2) is a polynomial of degree 2m (with azm > 0).
We can take for this case f(A) = 1/(a2mA™!) to obtain V(z,]) in the
form:

V(z,A) = 2% + Vam(z,A), (5.7)

where Vo (2, A) is a polynomial with respect to z and A~1/2 guch that:
lim Vom(z,A) = 22™. (5.8)
A—+00

An example of a potential with an exponential growth in the z-plane
and still admitting semiclassical treatment is the following one:

U(z,B) = 22 + BPam(z) exp(B° Pu(z)) with a> o1

As a counterexample can serve the potential U(z3) = z% + fe® which does
not admit semiclassical treatment so that the large order coefficients of its
energy level perturbation series (constructed with respect to §) can deviate
from the factorial rule of growth. In fact, these coefficients grow faster
with n than (yn)! with any v > 0 [35-39]. A particular application of
the theory developed above to the supersymmetric potential (with broken
supersymmetry) can be found in [41].

6. Summary and conclusions

We have constructed in this paper the consistent and rigorous semi-
classical theory of the one-dimensional Schrédinger equation based on the
Balian-Bloch representation. In this theory the properties of the funda-
mental solutions and the primitive canonical coefficients play essential roles
ensuring:

1. the existence of their Laplace transforms i.e. their Balian-Bloch repre-
sentations;
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2. the existence of their semiclassical series expansions; and
3. the existence of their corresponding Borel functions and Borel sums.

Since the sets of the fundamental solutions are sufficient to solve any
quantum mechanical one-dimensional problem one can conclude that the
physical quantities which are determined by the primitive canonical coeffi-
cients can be analyzed in a definite semiclassical way. In particular, it has
been shown that some properties seem to be universal for any semiclassical
series expansion. To this class belongs the large order behaviour of the se-
ries coefficients which is factorial independently of the quantity considered.
As a consequence of this is the common Borel summability of the semi-
classical series expansions substituted if necessary by the modified Borel
summability.

An important application of the semiclassical theory developed in this
paper is the perturbation theory where a large class of perturbing potentials
exists admitting semiclassical treatment. The existence of such a class of
potentials allows to treat uniformly many perturbing potentials a separate
investigation of which can show apparently different behaviours of corre-
sponding perturbation series they generate.

The theory developed in the present paper can be completed by con-
struction of explicit representations for both the Borel functions and the
corresponding Borel transformations of the wave functions and of the prim-
itive canonical coefficients as well. It is done elsewhere [41]. Their existence
provides a constructive proof that the relevant semiclassical expansions in
the one-dimensional quantum mechanics are Borel summable.

Let us note, finally, that the approach to the semiclassical theory of
the one-dimensional Schrodinger equation developed in this paper can be
extended effectively to n-dimensions promising a hope for the semiclassical
quantization of the chaotic classical mechanical systems [43]. As such it
can be an alternative to the approach developed recently and based on the
semiclassical limit of the Feynman path integral and on the Riemann-Siegel
formula (see [44—47], for example).

It is my great pleasure thank to dr P. Kosinski for many fruitful discus-
sions as well as for the final, careful reading of the manuscript.

Appendix A

Let K, be for a given arg) and E the pairwise communicated canonice.
domains corresponding to fundamental solutions ¥,(z, A, E), p = t,j,k, 7.
Then, the canonical coefficients a;/; (A, E), a;/jr(X E), ... etc. fulfil
the following identities:

ai/j—»k(’\: E) = ai/j—»r()‘a E) + ai/r-—»j(A’ E)ar/j—-rk(k’ E) (A'l)
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with any perturbation of the indices i, j, k,». The identities (A.1) follow
as a result of the existence of several equivalent linear relations between
each triad of the solutions 1,. These identities if expressed in terms of the
primitive canonical coefficients xi—.j(= Xj—i),... etc. provide a unique
relation between them of the form:

Xi—bK(A9 E)Xr—*j(Ay E) = Xi—br(A’ E)Xj—bk(A, E)
Himg O E)Ximr O B) exp (02 fbdz), (42)

where exp (UA § q1/? dz) (o = £1) is some phase coefficient which vanishes
K
when |A\| — oo i.e. Re (a'z\fql/zdz) — —oo in this limit. The contour
K

K is closed with some pair of turning points inside it. The identity (A.2)
can be continued analytically with A and E still preserving the form (A.2)
i.e. the primitive coefficients x;—;j(), F)... etc. in (A.2) which lost their
canonicity during the continuation can be substituted by the canonical ones
multiplied by some new phase coefficients so that after simple algebraical
manipulations the resulting identity takes on again the form (A.2) with
asymptotically (JA| — oo0) vanishing phase coefficient.

Appendix B

Since Lim xz—4()b,e(Ae™, b)) = lim xz_4(X b,6(Aei™, b)) =1
A—+o0 A—+o0

in the formulae (4.20) then only the presence of the remaining factors
in (4.21) needs some explanation. A part of them come from the inte-
grals fl‘;, ¢'/?dz and f;} q'/?dz in (4.20). Namely, since B'(le®™) =
+i(2e0/A)1/2, A(NeT™) ~ A(0) — €0/[¢'(A(c0))A] and A'(Aeti™) ~
A'(00) — €0/[q'(A'(c0))A] then for A large enough we have (up to the order
o(Ax™1)):

A(Ae'T) A'(o0)
2) / \/q(z, b,e(Aei™))dz = 2) / Va(z,b, 1/16)d=
B'(Ae'T) B'(o0)
A(o0) 1 1
+(2m + 1) log VA + (2m + 1) log (CA(m)) + E(m + 2) log 2

—log (m + %)m+% - (m + %)(1 + iw), (B.1)
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where B'(c0) = 0 and A'(00) = [b+i(2—5%)1/2]/2 (so that |A'(0)| = 1/v/2)
and ¢ is given by the following asymptotic expansion for the m-th energy
level £(Aeti™,3) [27]:

1 2(m+3)

16 - —-————,\ + ...
so that eo = v2(m + 1) (¢f. (4.6)). The constant C 4(m) in (B.1) is given
by:

log Ca(m) = VZ([2(4(0)V"(4(0))) ™)

e(Aet™,b) ~ (B.2)

A(eo)
+Re (AW (AN ] [ dHab, e
B'(o0)
A(o0) 4 3
+ 2i Im (A(00) V" (4(c0))) ™ / zz(EE—A—,((E;—))) dz
B!(c0)
e () -
+2 / dz " . (B.3)
B'(o0)
Another factor coming out from taking the limit of the derivative
Ox2.3(A,b,653(A, 0
2 2£2§(A,2b§( ) when A — 400

can be estimated using the following identity:
X1—4(A8,€)x2,3(A, b, €) = x2—4(A, D, ¢)
+x3ab e exp (=2 § gz, be)dz) (B.4)
K

from which it follows that:

Ox23(As b, £23(A, b)) — 1
3622(1\, b) x1.-.4(A, b, 522(A, b))

Xba;(xQ....;(A, b,e) + x3_4(M, by€) exp ( Y j{ oz, b,e)dz))

K e=¢e43(A,b)
A 1 -} xiv/2A
~ ST I! 0o b a0 e ~ G, (B.5)
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where Cy4(b,m) = J\lim X1—4(A, b,€23(A, b))dz has been determined in our
00
earlier paper [27] being given by the following asymptotic series:

log C14(b,m) = 2#\/-2‘2 ( — 4\/5(!71 + %’))_-P_1 Z 2_§e_i§r_

p20 r+2v=myp

foru(B'()) _ (7 _g)aLCP+2+1—4q)
F(p+1+§+%)z(9)( 2)q1’(p+%+§_q) (B.6)

g=0

with the coefficients fpr, defined in [27] (see Appendix 2 there).

A similar estimation of the integral jb‘?' ¢'/2dz results in changing A(cc)
into A'(c0) (= A(o0)) in (B.1) so that together with (B.1) and (B.5) and

with the equality [ g)((:)) ¢/2dz = | ;,,((::)) q'/2dz the final formula (4.21) is

obtained.

Appendix C

We shall show below that the results obtained in Section 4 for the cubic-
quartic oscillator can be generalized to the potentials V(z, A) discussed in
Section 5.1. For simplicity we limit our considerations to the case of the
single-well potentials.

The relevant considerations need to take into account three types of the
corresponding Stokes graph patterns. Two of them resemble the Stokes line
configurations shown in Figs 6 and 7. The third one can be obtained as a
variation of the Fig. 7 when additional turning points are placed pairwise
inside sector 1 developing in this way a pattern similar to the left part
of the Fig. 7. Since the relevant considerations repeat to large extent the
discussions performed in Section 4 we shall examine only the case shown in
Fig. 15.

According to our assumptions about the properties of V(z,) made in
Section5 there exist sector 2 and p—1 (therefore, also 2 and p — 1) being the
nearest neighbours to the sector 1 and p, correspondingly, as well as there
are roots Aj, A, A}, A| with the Stokes lines emerging from them being
the nearest to the corresponding Stokes lines bounding the sectors 1 and p,
respectively. The fundamental solutions corresponding to the latter sectors
are to be matched. All sectors 2,2, p—1 and p — 1 cornmunicate canonically
with the sectors 1 and p so that the quantization condition reads:

X2-p(X E)X15=7(A, E) + exp ( - f q%dz) =0. (C.1)

Cpip
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Note that the positions of roots A;,... etc. (and possible poles) depend
now on A. However, if we take A sufficiently large, then the Stokes graph
in Fig. 15 will almost coincide with that corresponding to the term V(z)
in the expansion (5.1) in Section 5. Putting as usual E = Vp,, with
Vimin being the absolute minimum of V(z,)) we arrive at the graph in
Fig. 16. The next step is to establish the normal sectors of x2—p(A, Vmin)
and x, _,;:1-()\, Vinin ) following from the graph in Fig. 16. It should be clear
that these sectors differ only slightly from those given by the inequalities
(4.8) and (4.9) in Section 4 due to exactly the same reasoning as done in
the case of cubic-quartic oscillator. Namely, rotating the graph in Fig. 16
anticlockwise (arg\ revolves clockwise) the canonical contact of the sec-
tors 2 and p is interrupted as soon as the single slashed Stokes lines in
Fig. 16 coincide i.e. after the rotation by »/2+ ¢ (argh = —x/2 — ), where
¢ = arg(+ [, 1‘:,1 ¢/%dz) (a choice of the sign is determined by the condition
|¢| < ®/2). Conversely, this canonical contact does not interrupt if we ro-
tate the graph in Fig. 16 clockwise up to the following sector substitutions:
2-51—>2andp-1— p— p—1ie up to the rotation of the graph by
—x + ¢ (argA = * — ¢). Only the further rotation by —x/2 which leads to
coincidence of the Stokes lines (being now in the new configuration) slashed
double breaks ultimately the canonical communication of the considered
sectors. Therefore, the normal sector for x2—.p(A, Vinin) is given by:

3
—-;-—<p<arg,\<7"-<p. (C.2)

In a completely similar way we obtain for the normal sector of
X1-5=1(% Vimin);

—-;S - ¢' <argh < 3% - ¢, (C.3)

il
where ¢' = arg(+ f;,‘ ¢'/%dz), |¢'| < 7/2.. Taking also into account the
sectors complex -conjugated to (C.2) and (C.3) we obtain for the normal
sector of energy E()):

3
|arg)\| < ? — Pmax; (C.4)

where pmax = max(|p|, |¢']) < /2.

There is no problem in extending all the further constructions of Section
4 corresponding to the considered case. Again, we can match the funda-
mental solutions 12 and 3 to construct an auxiliary function E,5() with
the same asymptotic series expansion as E()A) has, and we can repeat all
the further reasonings of Section 4.4.1 leading to the result (4.21) i.e. to the
conclusion that E()) is the Borel summable quantity.
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Fig. 15. The Stokes graph corresponding to the general case of the single-well
potential

p _ 4 Rex

.

Fig. 16. The Stokes graph.corresponding to the particle setlled down at the well’s
bottom of the general single-well case
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There should also be no doubt that the remaining two cases can be
treated in a similar manner copying the corresponding results of the anhar-
monic oscillator.

Appendix D

We shall show below that Ime;3(\) is exponentially small for A —
+00. To this end let us note that the asymptotic forms x3* ;(),£**(}))
and x3°_ (A, £(N)) of x25(A,€()) and x3_.3(A,£(}), correspondingly,

“(given by (4.44) for x3_,3(X,¢())) and by an analogous formula for
X2—3(A, €(A)) fulfil the following relation:

x35,3(A (A5, 5(X,62%(N)) = 1. (D.1)

Since, further, the holomorphic domains of the Borel functions correspond-
ing to x3_,3(A,e(A)) and x5_,5(X,e(A)) are given by the last two equa-
tions in (4.25) (with ¢_ = 0) then summing a la Borel both sides of (D.1)
along the contour Cis lying in Dis (see Section 4.4.2. for definitions) with
Re 5‘13 < 0 we get:

X2s(h e (N e1s(V) = 1, (D.2)

where, according to the rules of the Borel resummations (see [40], for ex-
ample):

chifg(A,elii(A)): /x;_,g(s,e'(s))e”‘ds

Cis
= /i2-—->§(39Re€13+/E(S')QZA"dS')BZA'dS. (D.3)
513 513

However, the Borel sums x; _ ;(s,¢(s)) and £(s) are holomorphic in the
cut s-plane with two cuts along the real axis at

B B
( — 00, — / q§(z,Reel3)dz) and at ( + /q%(z,Reel:;)dz,-{—oo).
B B

The last statement follows directly from (4.25). Therefore, deforming the
contour Cy3 from the half-plane D3 into the D5 one, we obtain:

X33 e1s(0) = xa s (ress) + [ x5ozlo, () ds
c
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= x25,3(A 613(Q)) + /52_,5 (s,Reem +/é’(3')e”"ds')e”'ds,
é c
(D.4)

where ¢ = 513 - 513 is the contour rounding the cut (— 0,
'

B

— [ ¢*/?*(z,Ree13)dz) clockwise. Substituting (D.4) into (D.2) and using
B

(4.22) we get:

exp (A  (H(esen0) - aH(are09) de | =1

K
—X2-3(A 613(X)) + /5('2_,3(3,Re€13 +/E(s')e”"ds')e”"ds.
C C
(D.5)
Since £,3()) = &13()) and
B
/é(s)e”’ds ~ exp ( - 2)«/q%(2, Re5l3)dz)
& B

then from (D.5) we obtain finally:

X3—3(A, Reegs)

Im A) ~
e13(A) A § ¢g71/2%(z,Recy3)dz
K

/552—»3(3,38 Els)e“‘ds. (D.6)
c

Eq. (D.6) shows that, indeed, Im&;3(A) ~ exp (—2A fgl ¢'/?(z,Reey3dz))
because the integral along € in (D.6) has this property.
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