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Topological arguments suggest that the Weinberg-Salam model pos-
sesses unstable solutions, sphalerons, representing the top of energy barri-
ers between inequivalent vacua of the gauge theory. In the limit of vanish-
ing Weinberg angle, such unstable solutions are known: the sphaleron of
Klinkhamer and Manton and at large values of the Higgs mass in addition
the deformed sphalerons. Here a systematic study of the discrete normal
modes about these sphalerons for the full range of the Higgs mass is pre-
sented. The emergence of deformed sphalerons at critical values of the
Higgs mass is seen to be related to the crossing of sero of the eigenvalue
of the particular normal modes about the sphaleron.

PACS numbers: 11.15.Kc, 11.90.+t

1. Introduction

The standard model of electroweak interactions does not strictly con-
serve baryon and lepton number [1]. The suggestion that the rate of baryon
number violation is unsuppressed at high temperature [2] has motivated a
lot of effort to estimate the rate of baryon number changing processes, which
occur only through transitions between topologically distinct vacua of the
theory [1,3]. In the high temperature regime (just below the electroweak
phase transition T ~ 100 — 350 GeV) they are mediated by sphalerons (4],
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static unstable solutions of the equations of motion, which represent the top
of energy barriers between inequivalent vacua.

Classical configurations corresponding to the minimal energy barrier
between topologically inequivalent vacua constitute physically relevant ob-
jects of the theory. Since the equations of motion are non-linear, finding
solutions represents a non-trivial exercise. The construction of solutions
can be simplified by imposing particular symmetries. In the present case
one usually considers the limit of vanishing Weinberg angle 6w, which then
allows for a generalized spherically symmetric ansatz for the fields. (One
assumes, that this is a good approximation for the relevant solution of the
full theory.) The sphaleron of Klinkhamer and Manton [4] ( in fact discov-
ered earlier [5]) was identified as such configuration. Recently new classical
solutions [6-8] of the equations of motion were shown to exist for sufficiently
high values of the Higgs mass (for Mg > 12Mw). The energy of these new
“deformed sphalerons” is lower than the one of sphaleron of Klinkhamer
and Manton. When existing, the lowest of the new solutions constitutes the
minimal energy barrier between distinct vacua [9].

Once the sphaleron is identified, the rate of baryon number changing
transitions can be computed by using the techniques of non-equilibrium
statistical mechanics [10,11]. The key ingredient is the computation of the
determinant of small fluctuations around the minimal energy barrier config-
uration [12]. The computation of this determinant represents a formidable
task. The problem was first addressed by using various approximation tech-
niques [12-14], recently Carson et al. [15] presented an exact numerical cal
culation for the interval 0.1 < Myg/Mw < 4.5 of the Higgs mass. These
authors exploit the symmetries of the sphaleron, identify its SU(2) stability
group and the corresponding generators, say J ; then they decompose the
fluctuations in the basis of the spherical harmonics associated with J and
finally compute the determinant.

The negative normal modes and the zero modes needs special consider-
ation in the evaluation of the transition rate. The objective of this paper is
to report a systematic study of the discrete normal modes about sphalerons
and deformed sphalerons for a spherically symmetric ansatz for the fluctua-
tions, where we consider the full range of the Higgs mass, t.e. 0 < My < oo.
The subspace of spherically symmetric configurations corresponds to the
lowest quantum number of the operator J. All directions of instability of
the sphalerons and of the deformed sphalerons have so far been identified
in this particular channel [8,13,16,17).

In Section 2 we describe the model, the ansatz and we revisit the main
features of the sphalerons and deformed sphalerons. In Section 3 we es-
tablish the eigenvalue equations to be solved in the analysis of the normal
modes. The numerical results for these modes, such as the number of dis-
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crete modes and the signs of their eigenvalues, are discussed in Section 4.
The conclusions are drawn in Section 5.

2. Classical equations
The lagrangian density of the SU(2)-Higgs model reads

1

v2y\2
L= 53 T(F* Fu) + (Dus) (D*9) ~ A (416 - ) (2.1)

with the standard definitions for the covariant derivative and gauge field
strengths
pr = a“Vy - ayV“ - i[Vu, Vy], (2-2)

Du¢ = (0, - iVyu)é. (2.3)

The gauge symmetry is spontaneously broken via the Higgs potential, lead-
ing to a non-vanishing expectation value for the Higgs field

(¢) = % (2) (2.4)

and giving masses to the gauge and Higgs bosons:

Mw ==, Mg=v/2X (2.5)
In the following, we choose the vector boson mass Mw = 83 GeV and the
coupling constant g = 0.67.

The classical configurations considered here are static and spherically
symmetric, ¢.e. we restrict the fields to the following forms

#z) = = +ix(e ) (7). (2.60)
1
Vo=0, Vi=o (- T+ T + foT(7)  (2.60)
with the tensors T

Ti(l) = EijkTjThs Tt-(z) = (8;; — 2:&5)Tj, T{(B) = 2;Z;T;, (2.7)
where fa, fB, fc, H and K are functions of the radial variable r. Under
the parity operator, the functions f4 and H remain invariant while fg, fc
and K change sign.
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In order to identify the stability group of the configurations assuming
the form (2.6), one considers SO(4) transformations, which in the funda-
mental representation act on the 4-vector (— Red;, Im¢;, Re @2, Im ¢2).
It follows (see Ref. [15], whose notations we use) that fields of the form (2.6)
are invariant under the SU(2) symmetry group generated by J with

J=L+S+I+K, (2.8)

where L and S denote the orbital and spin parts of the angular momentum
operator, while I and K refer to the isospin and custodial SU(2) subgroups
of SO(4).

The energy of the configurations is obtained by integrating the spheri-
cally symmetric energy density:

4er

B~ / (r(fa+ 1B -0"+ (Far L2097 4 (g - LSy

K+ B+ 5+ 7 + 12) 4 2£u(K? - BY) - afpHK
+22*(H" + K) - 22 fo(K'H - KH') + ec*(H + K* —1)?), (2.9)
where we have introduced the dimensionless coordinate z
z = Mwr, (2.10a)

the prime denotes the derivative with respect to z, and the parameter ¢
related to the ratio, say R, of the boson masses (2.5)

€= —=-R*® R=_——. (2.10b)

The gauge invariance is not completely broken by the ansatz (2.6).
Indeed, the U(1) gauge transformation

fa+ifp — exp(i0)(fa +ifB),
H+iK — exp (ig)(H +iK),
fc — fo + ¢, (2.11)

leaves the energy density invariant for any radial function . To fix the
gauge we choose

(a) fo(z)=0, (b) fa(0)>0, (c) K(c0)<0.  (2.12)
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The condition (a) corresponds to the radial gauge (z;V; = 0), it leaves a
global U(1) ambiguity, which is fixed by (b) and (c) (from the first term in
Eq. (2.9), it is obvious that f4 and fp cannot vanish simultaneously at the
origin). Still, the symmetries of the problem leave us with a degeneracy:

(fA»fB’HaK)’ (fA9’fBa"‘H9K)‘ (2'13)

i.e. a parity transformation (in fact supplemented by (2.11) with = 2x,in
order to restore (2.12(c))).

So far, two kinds of solutions of the classical field equations derived from
the lagrangian (2.1) are known: the sphaleron and the deformed sphalerons.
For reasons of completeness, we briefly recall their relevant features.

2.1. Sphaleron

Choosing the gauge (2.12), the sphaleron solution [4,5] has fg(z) =
H(z) = 0. The functions f4(z) and K(z) are non-trivial and can be evalu-
ated by numerical methods. The boundary conditions

fA(O) =1, fA(OO) =-1,
K(0)=0, K(oo)=-1, (2.14)

ensure that the solution is regular and that it has finite energy. The
sphaleron can be constructed for all values of the mass ratio R. From
(2.14) we see, that the length of the Higgs field vanishes at the origin; as a
consequence, the solution becomes singular as R — oo, since in this limit,
the Higgs field is frozen to its (non-vanishing) expectation value everywhere
else.

—0.5-: \

-1.0 Frrrrrrr —rrrrrrrrr T

Fig. 1. The profiles of functions f4 and K of the sphaleron for R = 13.5.
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The energy of the sphaleron increases monotonically with the mass ratio
R from E(R = 0) = 7.06 TeV to E(R = o0) =~ 12.57 TeV for Mw = 80
GeV and g = 0.65. Further, the sphaleron is invariant under parity reflection
(this is better seen after a rotation (2.11) with = x). The radial functions
of the sphaleron are presented in Fig. 1 for R = 13.5.

2.2. Deformed sphalerons

For sufficiently high values of the Higgs mass new extrema appear with
an energy lower than the one of the sphaleron [6-8]. The new solutions,
called deformed sphalerons, are not invariant under parity and appear as
doublets of this operator. The boundary conditions for the radial functions
read

fa(0)=1,  fa(co)= cos(x + ¢),

fB(0)=0,  fp(oo)='sin(x + ¢),

H'(0)=0, H(o0) = cos ((37 + ¢)/2),

K(0)=0, K(oo) =sin ((37 + ¢)/2), (2.15)

where the angle ¢ depends on R.

The first deformed sphaleron appears for R = R; =~ 12.04. At the
critical point, the deformed sphaleron coincides with the sphaleron. When R
increases beyond R; the energy of the deformed sphaleron is lower than the
energy of the sphaleron. The energy and the angle ¢ increase monotonically
from R = R; to R = oo. The numerical results for the first deformed
sphaleron are

E(Ry)~11.29 TeV,  E(c0)= 11.78 TeV, (2.16)
#(Ry) =0, $(o0) ~ 0.403. (2.17)

The radial functions of the first deformed sphaleron are presented in Fig. 2
for R = 13.5, i.e. slightly above the first critical value.

In Refs [6-8] it was shown that new branches of deformed sphalerons
develop regularly when R increases. The second critical point is R = Ry ~
138. For this branch one finds

E(R;) ~ 1243 TeV,  E(co)=~ 12.50 TeV, (2.18)
¢(R2) = 0, ¢(00) ~ —0.121. (2.19)

Finally, we want to stress that the deformed sphalerons converge to
a smooth and regular limit as R — oo, providing a sequence of classical
solutions with finite energy in the corresponding non-linear sigma model [7].
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Fig. 2. The profiles of the functions f4, fp (solid lines) and H, K (dashed lines)
for the deformed sphaleron for R = 13.5. the values of these functions at z = 0
(resp. = 00) are (1, 0, 0.46, 0) (resp.~ (-0.98, 0.17, -0.08, -0.99)).

The radial functions of the first two elements of this sequence are presented
in Figs 3 (H2+ K? = 1 in this limit). The function K reaches its asymptotic
value more rapidly, for each consecutive element of the sequence. Also we
note, that the function H develops one more node for each consecutive
element of the sequence.

3. Stability equations

To study the stability of a classical solution, the general way to proceed
is to consider a general function, say y(z,t) around it and to compute the
Hamiltonian for this fluctuation; i.e. symbolically

H = Hyjn + Hye, (3.1)
Hyin = /daz (¢)2, (3.2)
Huy = Ea + / &z (bMP) + O(4°), (3.3)

where E ) denotes the classical energy and M the quadratic fluctuation
matrix. This operator is hermitian, involves only spatial derivatives and
depends on the classical fields. At first glance the diagonalisation of M
appears to be very difficult, but the observation that it is invariant under
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Fig. 3a. The profiles of the functions f4, fp (solid lines) and H, K (dashed lines)
for the first deformed sphaleron for R = co. The values of the functions at ¢ = 0
(resp. z = o) are (1, 0, 1, 0) (resp.~~ (—0.920,0.392, —0.200, —0.979)).

Fig. 3b. The profiles of the functions f4 fp (solid lines) and H, K (dashed lines)
for the second deformed sphaleron for R = co. The values at z = 0 (resp. 2 = 00)
are (1, 0, 1, 0) (resp. =~ (—0.992, —0.120, 0.060, —0.998)).

the SU(2) group generated by J allows for an expansion of the fluctuation
¥ in spherical harmonics of this operator. In this basis, the operator M
decouples for the subspaces corresponding to the different harmonics.
Spherically symmetric fluctuations correspond to the lowest eigenvalue
of J2, i.e. j = 0. Here, we study the diagonalisation of the matrix M
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restricted to this eigenspace; i.e. to the subspace of general spherically sym-
metric fluctuations, that we parameterize as follows:

§fa=~-va, 6fs=vB, fo=V2¥c, 6H= \%{z’ oK = jﬁ%ﬁ 4)

The gauge symmetry is partly fixed by imposing Ag = 0 also at the level of
the fluctuations, the remaining gauge freedom is discussed below.

With this parametrization of the fluctuations, we expand the energy
functional (2.9) up to second order in the fluctuations (3.4) ¥q, (a = 4, B,
C,H,K)

EzEcl+

4x M
- / (y1ny)de +--- (3.5)
and focus on the quadratic term in ‘!/) After some algebraic manipulations,

the relevant equations for the diagonalisation of the operator f2 can be
written in the form

Ye ~(1/2)  V2(fB/z) V2falz) -K H
Y4 2v2(fp/z)! Va2 — w? 0 X Y
v | = 2v2(fa/z) 0 Vaz — w? Y -X
Y —2K' X Y Vag — w? w
¥ 21! Y -X W Vs —w?
Yc
Ya
x| ¥B |, (3.6)
YH
YK

where w? denotes an eigenvalue of 2, and where we defined

1
Vaz = Vas = H? + K2 + (314 +3f5 - 1),

Vee = K2 + U4 21):+f3+ —(3H? + K% -1),
Ves = H? 4 (fA+21):+fB+ S (H? 43K~ 1),
X = -L2(H(1- f4) + K1),
=?(HfB—K(fA+1))’
fB

W = (R® -1)HK - =.. (3.7)
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Equation (3.6) resembles a system of coupled Schrédinger equations,
but due to the equation for 9¢ it actually is not such a system. This first
order equation is a consequence of the classical equations together with the
eigenvalue equations of the operator f2 considered for a non-vanishing w?.
It expresses the condition that the eigenvector v is orthogonal to all zero
modes, existing due to the gauge symmetry.

We already noted that the sphaleron is invariant under parity. As a
consequence of this discrete invariance, the equations for the (parity) even
degrees of freedom decouple from the others, when Eq. (3.6) is considered
in the background of a sphaleron. This is easy to see, since the off-diagonal
potentials X and W vanish identically, when H = fg = 0, so that the
system (3.6) decouples into a system of three equations for ¥c, ¥p and ¥y
plus a system of two equations for 4 and ¥ y.

To form a normalizable eigenvector, the 5 functions ¥, must satisfy the
boundary conditions

Ya(0) = Ya(o0) = 0, a=A,B,C,H,K. (3.8)

Using the asymptotic behaviour of the classical fields appearing in the po-
tentials (3.7), one finds that the decay of 1c(z) for large z follows a power
law (first equation in (3.6)), while the other fluctuations decrease exponen-
tially, provided

wi<R* if R<1,
wi<1 if R>1, (3.9)

i.e. the lowest of the two masses My and Mw determines the boundary
between the continuous and discrete parts of the spectrum.

4. Numerical results

We have studied Eq. (3.6) for the normal modes numerically in the
background field of the sphaleron and the first few deformed sphalerons.
The numerical results for the eigenvalues w? are summarized in Table I,
for various values of Higgs mass parameterized by the ratio R, covering the
range (0, 00]. The dependence of the eigenvalues on the ratio R is further
shown in Fig. 4, where we represent the eigenvalues via the quantity

g = sign(w?) - [w?|1/4 (4.1a)

and the mass ratio R via
(4.1b)

o 1
= T
1+4/%
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TABLE I
Numerical estimations of the eigenvalues — w? for different values of the Higgs
mass. The notations a, b, -, k refer to Fig. 4.
R a b c d f g i J k

0.00 0.00 1.36

0.50 | —0.25 1.84

1.00 | —-0.80 2.27

1.50 | -1.00 2.62

2.00 2.93

5.00 4.4

9.00 6.75 —0.94

10.00 7.42 —0.65

12.00 9.30 ~0.01

12.04 9.38 0.00 9.38 0.00

12.50 9.80 0.15 8.57 | —0.27

13.00 10.40 0.30 7.29 | ~0.50

13.50 11.10 0.52 -7.29 | —-0.74

14.00 11.70 0.59 6.85 | —1.00

15.00 13.10 0.85 6.21

20.00 22.50 1.87 4.96

30.00 46.00 2,717 4.47

50.00 147.00 4.04 4.10
100.00 597.00 6.63 4.05
112.00 752.00 T.44 | ~0.84 | 4.00
120.00 865.00 8.07 | —~0.56 | 3.95
138.20 1139.00 9.74 0.00 | 3.95 1139.0 | 9.74 0.0
140.00 1180.00 10.00 0.12 | 3.95 1093.0 | 9.48 | —0.1
150.00 1357.00 11.20 0.35 | 3.95 859.0 | 7.92 | —0.6
158.00 1507.00 12.20 0.67 | 3.95 725.0 | 6,98 | —1.0
200.00 2360.00 19.00 1.66 | 3.95 401.0 | 5.56
500.00 15000.00 | 127.00 3.95 | 3.95 205.0 | 4.41

oo 00 oo o0 3.95 185.0 | 4.25

so that the first critical point By = 12.04 corresponds to p = 0.5. The
solid lines labelled a,b,c,d represent the eigenvalues associated with the
sphaleron, while the long (resp. short) dashed lines f, g (resp. %, j, k) corre-
spornd to the modes of the first (resp. second) deformed sphaleron.

In the background field of the sphaleron, the five equations (3.6) decou-
ple into two systems of two (II channel) and of three (III channel) equations,
respectively. The II channel admits a single normalisable eigenvector; for
R = 0 this is a zero mode and it becomes a positive mode for 0 < R < 1.5.
For R =~ 1.5 the eigenvector disappears into the continuous part of the
spectrum, as indicated in Fig. 4 by curve a.

For the ITT channel the situation is more complex and directly related
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Fig. 4. The eigenvalues are plotted as functions of the Higgs mass via the quantities
P;q defined in the text. The solid lines a,b,c,d refer to the eigenmodes about
sphalerons. The long (resp. short) dashed lines f,g (resp. i,j,k) represent the
eigenmodes about the first (resp. second) deformed sphaleron.

to the emergence of the deformed sphalerons. A negative eigenmode, rep-
resented by curve b in Fig. 4, exists for all values of R. This mode is the
fundamental reason for the instability of the sphaleron, and it is the unique
unstable mode up to R = R;. For R > R; the sphaleron develops a second
negative mode. The occurrence of this second mode is not spontaneous at
R = R;. Indeed, a second normalisable eigenvector emerges from the con-
tinuum for R ~ 8.8. Its eigenvalue (curve ¢ in Fig. 4) decreases continuously
from w? = 1 as R increases, it vanishes exactly at R = R; and then turns
negative for R > R;. The profiles of the two negative modes about the
sphaleron are presented in Fig. 5 for R = 13.5.” Note the power law decay
of ¥¢ in Fig: 5b. _

The above scenario repeats in the neighbourhood of the second critical
value (R; ~ 138). A third normalizable eigenvector of the ITI channel
appears at R = 110 (curve d in Fig. 4) and crosses zero at R;.

As R increases further the directions of instability increase in num-
ber and the lowest eigenvalues decrease strongly; this indicates that the
sphaleron of Klinkhamer and Manton sits at the top of a very sharp energy
barrier for very high values of the Higgs mass.

For R > R, the first deformed sphaleron appears as a new classical
solution, approaching the profile of the sphaleron when R — R;. General
considerations lead one to expect, that each discrete mode of the sphaleron,
present at the bifurcation point, will also be present as a discrete mode
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Fig. 5a. The profiles of the functions ¥;(i = B, C, H) of the first negative mode of
the sphaleron for R = 13.5 (w? = —~11.1).

Fig. 5b. The profiles of the functions ¥;(i = B, C, H) of the second negative mode
of the sphaleron for R = 13.5 (w? = —0.52). The function ¥ develops a node at
z~2.1.

of the deformed sphaleron at the bifurcation point, since the two classical
solutions merge at the critical point. Thus we expect two discrete modes of
the first deformed sphaleron, one negative mode, starting from the negative
mode of the sphaleron at the bifurcation point, and a second mode, starting
from the zero mode of the sphaleron at the bifurcation point. Solving the full
system (3.6) in the background field of the deformed sphaleron, we indeed
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Fig. 6a. The profiles of the functions v¥;(i = A, B, C, H, K) for the negative mode
of the deformed sphaleron for R = 13.5 (w? = —7.29). The function ¥x develops
a node at ¢ ~ 0.70. '

T

Fig. 6b. The profiles of the functions v;(i = A4, B, C, H, K) for the positive mode
of the deformed sphaleron for R = 13.5 (w? = 0.74). The function ¥ develops a
node at z ~ 0.72.

find the expected negative mode, represented by curve f in Fig. 4. We
also find a positive mode (curve g in Fig. 4), whose eigenvalue starts from
zero at the bifurcation point, as expected, and merges into the continuum
for B ~ 15. The profiles for the positive and the negative mode of the
deformed sphaleron present at R = 13.5 are shown in Fig. 6. An important
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point to stress is that the negative mode of the first deformed sphaleron
persists and remains unique in the large R limit, w?> — —3.95 as R — oo.

The analysis of the system (3.6) in the background field of the second
deformed sphaleron leads to an analogous scenario. Here, two negative
modes appear (curves j, k in Fig. 4 along with a positive mode (curve i in
Fig. 4). In the large R limit the two negative modes converge to w? ~ —185.
and w? ~ —4.25.

We note, that an analysis of the negative modes was reported previously
(8], where, however, not the most general spherically symmetric fluctuations
were considered (the excitation y¢ was ignored). The results of [8] agree
qualitatively with ours, though the numerical evaluations for the eigenvalues
are considerably different. We further note, that our calculations for nega-
tive modes about the sphaleron agree with those of Refs [13-15], where only
sphalerons were considered and the range of the Higgs mass was limited.

5. Conclusions

Non-abelian gauge theories are naturally associated with systems of
non-linear equations, providing an impossible challenge to be solved com-
pletely. In the absence of techniques to obtain general solutions, one restricts
the number of degrees of freedom by imposing symmetries on the solutions
one is looking for. The larger is the symmetry, the simpler are the equations
in principle.

In the case of the Weinberg—Salam model, no completely stable solution
is expected to exist, apart from the vacua. However, unstable solutions can
play a role in nonperturbative phenomena related to the multiple vacuum
structure of the theory. For instance, sphalerons are the key ingredients in
the computation of the rate of baryon number changing processes at finite
temperature. Obviously, the non-trivial solution with the lowest energy
should be relevant for such processes.

The “spherically symmetric” ansatz for the fields (2.6) corresponds to
an SU(2)-like stability group, whose algebra is maximal among the set of
transformations of the fields. For the sphaleron the stability group is even
extended by the discrete group of parity transformations. For small values
of the Higgs mass, where the sphaleron is the only known solution, it has
a single unstable mode. When the first deformed sphaleron appears, it
replaces the sphaleron as the lowest energy configuration. Then this first
deformed sphaleron has an unique unstable direction, and in the large Myx
limit its negative eigenvalue converges to a finite number. Yet, its stability
group is SU(2), i.e. smaller than the one of the sphaleron. This raises
the question about the possible existence of other solutions having lower
energies and less symmetries.
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The results of the analysis reported here agree with what Morse theory
suggests about the geometry of the configuration space in the neighbourhood
of the sphaleron [9]. Namely, if we denote C, the number of critical points
having ¢ negative eigenvalues, the index x defined as [18]

X = Z(—l)ch
q

is conserved for all values of the Higgs mass, provided the sum is taken
over all known critical points: sphalerons and pairs of deformed sphalerons.
Interestingly, the situation encountered in the Weinberg-Salam model (for
6w = 0) is very similar to the case of a 1 + 1 dimensional field theory,
investigated by Manton and Samols [19].
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