Vol. 23(1992) ACTA PHYSICA POLONICA B No 6

ALGEBRAICALLY DEFORMED BOSON FIELD AND
POSSIBLE SATURATION OF ITS ENERGY MODES

W. KROLIKOWSKI

Institute of Theoretical Physics, Warsaw University
Hoza 69, 00-681 Warszawa, Poland

(Received November 5, 1991)
Dedicated to Wiestaw Czyz in honour of his 65th birthday

An algebraically deformed three-dimensional harmonice oscillator is de-
scribed. It is an exactly solvable quantum-dynamical system, although its
coordinates as well as its momenta are non-Abelian. Nevertheless, its an-
gular momentum generates the usual, non-deformed rotation group. A
possibility of its infinite-dimensional generalization towards a new, alge-
braically deformed boson field is sketched. For such a field a new phe-
nomenon of energy-mode saturation may appear.

PACS numbers: 03.65. Fd, 03.70. 4k

Thinking about the simple but, perhaps, unexpected phenomenon of
energy-mode saturation, possibly caused by a hypothetical algebraic defor-
mation of field harmonic oscillators, gave me a lot of enjoyment, though
such an effect, if it existed, would be very small. It is a great honour and
real pleasure for me to dedicate the paper on this new possible phenomenon
to my friend Wieslaw Czyz on the happy occasion of his 65*® birthday.

Our starting point will be an algebraically deformed three-dimensional
harmonic oscillator, a hypothetical physical system related to the deformed
three-dimensional annihilation and creation operators defined in Egs (1) and
(2) later on. In a very similar way, an algebraically deformed rotator may
be connected with the deformed angular momentum defined through the
algebra of deformed (or “quantum”) rotation group [1]. The algebraically
deformed harmonic oscillator will get its natural, infinite-dimensional gen-
eralization in the form of an algebraically deformed boson field.

Unless the algebraically deformed harmonic oscillator and/or the alge-
braically deformed rotator is only a purely mathematical being, its existence

(531)



532 W. KROLIKOWSKI

in Nature should manifest itself in some (fine) experiments. Especially ex-
citing would be the option, where real physical harmonic oscillators and/or
physical rotators should display (very small) algebraic deformations deter-
mined by some (two/one) new fundamental constants of Nature. A natural
experimental area, where one might look for such (tiny) deviations of phys-
ical harmonic oscillators and/or physical rotators, could be provided by
lasers in highly excited states and/er nuclei of very high spins, respectively.

It may happen that a very small algebraxc deformation of physical har-
monic oscillators is a real effect, while physical rotators are not algebraically
deformed. At any rate, the algebrAicaHy deformed three-dimensional har-
monic oscillator defined in this paper turns out to have the non-deformed
orbital angular momentum.

Let us define the algebraically deformed three-dimensional harmonic
oscillator by the normal Hamiltonian (cf. Eq. (8) later on) and the following
commutation relations

{ak, a;"] =8+ ()tz - l)a?'ak (1)

and

[ax, &t] = 0= [a], o], (2)
where k,f = 1,2,3 and X? > 0 is a fixed parameter whose deviation from
1 measutes the deformation. For A? = 1 the quantum-dynamical system is
the usual, non-deformed harmonic oscillator. The relation (1) can be also
rewritten as

aral — Xatay = 6. (3)
This is a generalization to three dimensions of the commutation relation

dgat — Mata=1 (4)

characterizing an algebraically deformed one-dimensional harmonic oscilla-
tor {2] that becomes recently pretty popular (3], though it plays as yet a
rather technical role in.physics. The parameter A? in Eq. (4) is usually
denoted by g (g for “quantum” deformation)!.

Since, due to Egs (2) and (3), the operators

Ni =d}la, (5)

1 The hypothesns (1) is 1sotrop1c in space, but if valid nontrivially (i.e., with
A? £ 1, what we leave here as an open question), it is pretty drastic, leadmg
to non—Abehan coordinates and momenta (cf. Egs (10) and (11)), though the
implied orbital angular momentum is non-deformed(cf. Eq. (16)). Less drastic
is the anisotropic hypothesis

[a;., a;*] = &1 [1 + (Az — l)a?'agl (IF)
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satisfy the relations
akNg - Aleak = 51,;(1;, Nka?' - Aza?-Nk = 5&10?- (6)

and commute with each other, one can demonstrate that their simultaneous
exact eigenvalues have the form

Aan, -1

(ne) _
Nkk - 22-1"7

ne=0,1,2,... (7

(¢f. the case of one-dunensxona.l oscﬂlator in Ref. [2]). Note that N, (M), o
or N(n") — 1/(1 =A%) as ng — 00, ifA2>1o0r A2 < 1, respectively. So,
in the latter case there is a new, non-familiar saturation phenomenon for

the spectrum N, (") 1¢ 33, 1 then N( ™) s o, consistently with the
deformation of harmomc oscillator, dJsappearmg in this case. Notice that

two first terms of the spectrum N (m) are always such as those for non-
deformed harmonic oscillator: N,Eo) =0 a.nd N, ) _ 12

The Hamiltonian of our algebraically deformed harmonic oscillator (in
the isotropic case) is

H=3) 5@t +v’q) = ) 3(afar + araf)hw, (8)
k k-
where
1 ap+ al ar —a
Qk=\/~\/— \/—k, Pk=\/f_l\/5“—72k“ (9)
(no summation over ), t;qnivalent to [4]
axa} — A¥™gta, = 6y (3F)

as 651 (A2 ~1) = X% 1, This gives another possible generalization of Eq. (4)
to three dimernsions. Together-with' the assumption {(2) Eq. (1F) leads to
Abelian coordinates and momenta (cf. Eqs (10F) and (11F) in footnote 3),
though it implies a ‘deformed orbital angular momentum (cf. Eq. (16F) in
footnote 4).

2 In the case of hypothesis (1F) in footnote 1 and assumption (2), Eq. (6) should
be replaced by

ax Ny — A Nyay = 6ya, Nka ,\""'a*'N-; 5;;:0, - (6F)

(no summation over ), but Eq. (7) still holds (with all its consequences, of
course).
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are its canonical variables. Due to Eqs (1) and (2), they satisfy the following
Heisenberg deformed commutation relations:

. A2 -1 A2-11/1
(ar, 1] = 1ﬁ(1 )\—2;—1)51.1 +1 T2 (;{Pk, pi} + w{gs, qz}) (10)

and

1 A2-11
wlgw @) = Zlpe Pl =~y 2-({%, p}—{ape}). (1)
In the latter relation
1{ax> 21} — {a1, Px}) = qp1 — ik (12)

since [qr, Pi] = [qi, Pr), according to the symmetry of Eq. (10) in the in-
dices k,l. Thus, the coordinates q; as well as the momenta p;, of the alge-

braically deformed harmonic oscillator do not commute for different k (are
non-Abelian), though the annihilation operators a; as well as the creation
operators a’: commute, what was postulated in Eq. (2). Using Egs (8), (3)
and (5), one can write

A? 41 1
H—Xk:( 2 N;,+§)hw, (13)
and hence readily find the exact energy spectrum
) = (ne) _ N (A4 1L ()
E(ninans _Xk:Ek k _zk:( 2N +2 i (14)

with N, (") as given in Eq. (7). So, the quantum-dynamical system is exactly
solvable If A2 < 1, the new saturation phenomenon for the energy spectrum
(14) appears®.

2 In contrast to non-Abelian Eqs (10) and (11), the hypothesis (1F) in footnote
1 together with the assumption (2) gives Abelian commutation relations

[, 1] = 86 [1 + (A* - 1)) (10F)
(no summation over l) and

lov, 1) = 0 = fpx, 7, (11F)

where Ny = aff ag = (A? + 1)} [Aw~(p? +? g?) — 1]. So, then, coordinates and
momenta are Abelian, though they still are deformed. The Hamiltonian (8)
or (13) and its spectrum (14) (with all consequences of the latter) does not
change.
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The operator of the form

-

J = —ihdt x @ = (—icpimar am) (15)

satisfies, due to Eqs (1) and (2), the algebra of the usual, non-deformed
rotation group

(Vs J1) = thertmdm - (16)

Making use of Eq. (9) and of the symmetry of Eq. (10) in the indices k,!
(implying § X = —§ X §), one can show that

=4 — g '1 1-0 — -
J=q><p—z§(;pxp+wq><§), (17

where by means of Egs (11) and (12)

— - 1 - — -Az - 1 - —
wixg=— xP—-zA2+1qXp. (18)
Thus, the operator (15) equal to
= -1y,
J:—.(l—m)qxp (19)

is the (non-deformed) orbital angular momentum of our algebralcally ‘de-
formed harmonic oscillator {described by the ‘deformed pos1tion ¢ and de-
formed momentum p)*. If antxsymmetnzed with respect to @t and @ (i.e.,
multiplied by 3(A? +1)), it becomes §'x 7 and then satisfies Eq. (16) whose

r.hs. is multlphed by 1(A2 4+ 1).

4 The anisotropic h};péthes}s (lF) in footnote 1 and the assumpiion (2) imply
the deformed orbital angular momentum satisfying the commutation relations

[Tay 7] = iherim [l 4+ (A2 — 1)Npn ]I (16F)

(summation over m) with J as given in Eq. (15), though it takes now the usual
form

-~

IT=gxp. (19F)
Note that for N=) Ny=4&*t-a
1
,[Jk’ N] = iheum(/\z - l)a;"(Ng — Nm)am # 0

(summation over ! and m), while in the case of isotropic hypothesis (1) one
gets [Jx, N] = 0.
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Notice that J commutes with N = 3, N =d+-dand H = }[(A%2 +1)
N + 3)hw (but not with N, though N and H commute with N;). So,
eigenstates of H can be alternately labelled by N, j, m, while its eigenvalues
depend only on N, E(N) = 1[(A2 + 1)N + 3]hw where N denotes now

eigenvalues of the opera.tor N (here, spectrum N = spectrum Y N, (m)

with N,E"*) as given in Eq. (7)). Calculating J? from Eqs (15), (3) and (6),
one can deduce that
N(N +1) = j(j +1) + X(Njm|@*"*a*|N jm), (20)

where 7 = 0,1,2,..., and hence
gt =N —j = N+ 1 = [(N+1)? = \3(Njm|at?a®|Njm)]*/? > 0

(21)
In the case of A2 = 1 one gets N =n = 0,1,2,... and 2Ny,gial = 2nradial =
n—j=0,2,4,... (of course, for n = 0,1 only j = n is possible). In general,
from Eq. (20) it follows that

A3(Njm|at?@|jm) = (N - j)(N +j +1). (22)

Two first terms of the spectrum N are always N = 0 and N = 1 (for them
j = N only, as the Lh.s. of Eq. (22) vanishes for N = 0,1). Further on, we
shall put & = 1 (and still ¢ = 1, of course).

The algebra of deformed a.nmhxlatxon and creation operators a; and
aj, defined by their commutation relations (1) and (2) or (3) and (2), can
be generalized to an arbitrary number of dimensions, finite or even infinite
(while different frequencies wj, may be ascribed to different dJmensxons) In
the infinite case one may speak of an algebraically deformed boson field.

For instance, the algebraically deformed real scalar field (in the free
case)

o(7, t) = +(7, t) + - (7, t) (23)
with
p-(7, t) = p1(7, 1) (24)

may be defined by the explicit formula

1/y2
2o [ZATEDPAS L (21 )R
el t) = [T Z,,: TR (13O +1)(E-7-wt))
(25)
where w;, = vV k? + m2. Here, the field commutation relations have the

form

azak., z\za.. a5 = 6gi (26)
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and
[ag, ag)] = 0= [a.., aﬂ] , (27)

following from Eqs (3) and (2) through their extension to the index k given

by k = (2x/L) 7 with ¥ bemg a running vector of integral components (in the
box approximation). Extending Eq, (8) one gets also the field Hamiltonian

1 : X241 1
H=3 Z (ai'k.'a; + a;a;l'-)wk = Z( N+ 2)"% »  (28)
k

-

k

where the commuting operators N = a'.’:.’a; have the simultaneous eigen-

values N‘(.;n':)y = (A*™ - 1)/(A? - 1) with ng = 0,1,2,... which arise
from the extension of Eq. (7). The zero-point energy will be rejected in
Eq. (28). It can be done by normal-ordering of the operator (28), where
ca-a¥ :=A2qta-
tagaz, #o%

Due to the formulae (25) and (24) one obtains the free field equation -

i04(7 t) = ¢/~ A+ 1 (0 + 1)2m?pu(F, t) (29)

or
[O-1(A% + 1)’ m?]ps (7 t) = 0. (30)
On the other hand, Egs (28), (26) and (27) imply that

apH — A Hag = 3(A? + )wia;. (31)
Hence, making use of the formula (25), one can-infer that
@+ (7, ) H — N Hop, (7, t) = ip4(F, ). (32)

Thus, the evolution law for the free, algebraically deformed boson field
¢+(F, t) is given by the biunitary transformation

p+(F, t) = exp (N Ht) ., (7, 0) exp(—iH1)
= exp(-—-z\/—A+ 1 (A% + l)mzt) o+(7 0) (33)

which reduces to the unitary transformation only in the non-deformed case
of A2 = 1. Note that

exp (iz\zﬂt)ai; exp(—iHt) = agexp ( - i%(z\2 + 1)wkt) 3 (34)
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but the products a'i:.'az, (that appear in field observables) transform unitarily

(and conventionally). Finally, the formulae (25), (26) and (27) lead to the
explicit field commutation relations

e+(F, )1, 1) - ML, e+ (7 t) = k8 (F-7')  (35)

and [+ (7 8), o+ (7, )] =0 = [pf (7, 1), 0}(F,¢)].  (36)

The two last can be differentiated separately with respect to t and ¢'. From
Eqs (23), (24) and (25) one can also deduce that the field Hamiltonian (28)
may be rewritten as

1=} [ E#{6F 0P + Fel 0F + 102 +1) w35 0}, (31)

what is its explicit field form. To get rid of the zero-point energy operator
(37) should be normal-ordered.

If A2 < 1, modes k of an algebraically deformed boson field' would
display a new, non-familiar phenomenon of saturation of their effective oc-
cupation numbers N ,(c"-"‘) — 1/(1 — A?) and, consequently, their energies

E,(en") — (1 + A?)/(1 — A%) 4 1)w;, when n; — . Such a phenomenon
could be a subtle but characteristic feature of the deformed modes, provided
AZ<18,

® In the case of hypothesis (1F) in footnote 1 and assumption (2), both extended

to the index k = (2x/L) 7 the real scalar field given by Eqgs (23), (24) and (25)
satisfies the commutation relations

[e(F, 2), (7, t)] = il6°(F — 7') + (A* - )N (7~ 7)) (35F)
and le(7 1), o™, )] =0=[g(F, 1), (", 1)) (36F)

L1.,2 3 -
Here, N(7—7) = [102] £ Ny exp (502 + D - (7 77)
5

while N; = a;!'a; and has the space-reflection symmetry N_; = N; implying
N(F'—7) = N(F—7"'). For [p,(, t), $1 (7, t)] the equation of the form (35F)
holds, but with the factor 1/2 on its r.h.s. The Hamiltonian (28) and (37) and
its spectrum do not change, so if A? < 1 the saturation phenomenon still exists
in the case of Eqs (1F) and (2). However, Eq. (31) should be replaced by

faz, H] = 3(A% + Dwe[1 + (A? — 1)Ni]a;, (31F)
what makes the counterpart of the Eq. (32) involved,
[o+(7, 2), H] =i [ &F[8(F — ) + (A* - YN (7~ 7))@+ (', 1), (32F)
though the simple equation (29) is still satisfied (due to the definition (25) of
v+ (7 1).
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A priori, any boson fields appearing in Nature, say the electromagnetic
field, might be actually algebraically deformed (very slightly, of course).
Then, the case of A% # 1 (but A? 2 1) would be realistic. Such a possibil-
ity seems to deserve some (probably long-term) experimental investigations,
including very fine experimentation with laser which can provide us with
practically monochromatic modes of the electromagnetic field in highly ex-
cited coherent states (corresponding to large n;’s with single k’s). The case
of A? < 1 would be most interesting.

Finally, I would like to thank Andrzej Trautman for a lot of interesting
conversations and Jan Rzewuski for a helpful remark.
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