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The dependence of the angular decay distributions of particles (res-
onances) on the decay dynamics is discussed. The simplest cases, where
this dynamics either is irrelevant, or affects only one constant parameter
are described. A simple method of calculating the parameters entering
the angular decay distribution is presented for the case, when the decay
dynamics is known.
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1. Introduction

The study of the decay dynamics of particles (here and in the following
particle means particle or resonance) is an important branch of particle
physics. Consider a generic decay

X—-a+...4+an. (1)

Its decay distribution is shaped by three factors:

o The spin state of X, which is determined by the production mechanism.
This spin state can be described by the corresponding spin density ma-
trix pmn, or equivalently by the statistical tensors (cf. [1] and references
contained there)

TM Z )a+m— 8, —m; 3, mllj’ M)pmm" (2)
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Here (...) are Clebsch-Gordan coefficients and s is the spin of X.

o The decay kinematics, which explains (for a given spin state of X' ) much
of the observed decay distribution. In the next section we present an
example, where kinematics yields a complete description of the decay
distribution. In such cases, of course, the decay distribution teaches us
nothing about the decay dynamics.

o The decay dynamics, which is the subject of the present paper. Our
aim is to separate it from the previous two factors shaping the decay
distributions.

The final state of the decay (1) is described by giving the momenta
pi (here and in the following momentum means three-momentum unless
explicitly stated to the contrary) and the spin states (e.g. the helicities A;)
of all the decay products. The full decay distribution is a distribution in all
these variables. Here we shall consider only the angular decay distributions,
i.e. the distributions summed over the spin states A; and integrated over all
the invariant masses (p; — pi)? for i,k = 1,...,n, where p are four-vectors.
The reasons for these two summations are different. The summation over
the spin states corresponds to the usual experimental situation, where the
particle polarizations are not measured. The invariant masses, on the other
hand, are measured. E.g. for n = 3 their distribution is presented on the
Dalitz plot. We do not discuss these distributions, because their kinematics
(phase space, threshold factors etc.) is rather trivial, while their dynamics is
little understood. We shall denote the independent parameters constructed
from these masses by wy,-*+,wy. In general for n > 2 there are v =3n -7
such parameters! and for n = 2 none. After these summations the final state
can be described by specifying the three Euler angles ¢,6,vy. We define ¢
and @ as the spherical angles of the analyser i.e. of a vector or pseudovector
constructed from the momenta of the decay products. We shall study the
angular decay distribution W(9 @) defined in the rest frame of the decaying
particle, integrated over ¢ and normalized by the condition

/ W(6,$)d = 1. ®)

For n = 2 the only possible choice of the analyser is the momentum of
one of the decay products. This is a simiple example of a vector analyser.
For n = 3 it is usual to choose as analyser the normal to the decay plane
defined in the rest frame.of particle X. This normal can be defined as the
vector product of two momenta and is, therefore, a simple example of a
pseudovector analyser.

1 3n momentum components minus the four constraints from four-momentum
conservation minus the three Euler angles corresponding to the rigid rotations
of the final state.
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For the definition of the decay distribution we still need the reference
frame to which the angles 8 and ¢ refer. We shall always assume that this
frame is defined in the rest frame of particle X, besides that, however, our
results will be valid for any choice of frame.

The plan of this paper is as follows. In the next section we consider two
simple examples illustrating the fact that a decay distribution may, but does
not have to, depend on the dynamics of the decay. The general formula for
the angular decay distribution is given in Section 3. In this formula the decay
dynamics affects at most the coefficients F{J). In Sections 4 we discuss the
case, when these coefficients can be predicted without assumptions about
the decay dynamics and the case when one parameter dependent on the
dynamics is necessary and sufficient. In Section 5 we show a simple method
of obtaining the values of the necessary dynamical parameters, when the
decay dynamics is known. Section 6 contains some generalizations of the
results described in the preceding sections.

2. Two examples

Let us consider two textbook cases as examples. We begin with the
decay of a spin one particle polarized along the z-axis (m, = 1) into two
spin zero particles. For definiteness we choose the decay p® — =tz
From angular momentum conservation the two-pion final state has both the
angular momentum and its projection on the z-axis equal one. Moreover,
from the definitions of spin and of the angular momentum, the projection
of the angular momentum on the direction of the momentum of the =+
vanishes. Therefore, the amplitude of the final state is [2,3]

A(8,4) = ND1%(4,6,0). (4)

Here D is the D-function known from the theory of angular momentum
and/or as the wave function of the symmetric top, ¢ and 6 are the spherical
angles of the momentum of the #+ and N is a normalization factor. The
value zero for the third argument of the D-function is a matter of conven-
tion. Taking the squared modulus of both sides of (4) and substituting the
expression of the D-function in terms of trigonometric functions, we find
the angular decay distribution

w(6,¢) = —sm 0, (5)

where the normalization (3) has been used. This example illustrates the
case, when the decay angular distribution is completely determined by kine-
matics and consequently yields no information about the decay dynamics.
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As the second example consider the decay. of a spin one-half particle
polarized along the z-axis (m; = !/;) inte a spin one-half particle and a
spin zero particle, For definiteness we choose the decay A — px~. In
the final state both the total angular momentum and. its projection on the
z-axis equal one-half. There are, however, two possible helicities of the
proton: A, = :E/g. Consequently two amplitudes contribute

%:& ’ A—'(0$ ¢) = N—Dir_i_ ’ (6)
and the angular decay distribution depends on one dynamical parameter
. characterizing the decay:

A4(6,¢) = Ny.D

1 Ny -N_ ;

W(g, ¢) = ;—1; [1 + m cos 0] . (7)

Higher spins usually imply more independent dynamical parameters.

On the other hand symmetries decrease their number. E.g. for the decay

N* — pr parity conservation implies Ny = N_ and formula (7) reduces to
an absolute prediction.

3. General formula

The general formula for the angular decay distribution W(6, ) can be
obtained by a simple extension of the method described in the preceding sec-
tion. This, however, leads to formulae quadratic in D-functions and much
trigonometry is necessary to simplify them. Fortunately, using Clebsch-
—Gordan coefficients it is possible to transform in the general case the ex-
pression quadratic in D-functions into an expression linear in spherical har-
monics (cf. [1] and references contained there). One finds

W(6,8) = 3 FUYTH Y5 (6,4). (8)
J,M

Let us make some remarks about the angular part of this formula, Note
that this is an expansion in complex conjugates of the spherical harmonics.
Since the distribution W is real, one could take the complex conjugation of
both sides of (8) and go over to an expansion in spherical harmonics. This
is not done, however, because the choice (8) leads to the convenient identity

(Yir(6,8)) = F(J)Tip, (9)

where (...) denotes averaging over. all the events in the sample. After ex-
pressing the spherical harmonics in terms of trigonometric functions, one
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may be tempted to simplify the resulting expression. For instance to re-
place
a+b(3cos?6-1) (10)

by
a+ B cos? ¥, (11)

where a = a — b/2 and 8 = 3b/2. It is recommended to resist this temp-
tation for two closely related reasons. In formula (10) the normalization
condition (3) fixes a, while in formula (11) it fixes a + 3/3 and the determi-
nation of either parameter cannot be decoupled from fitting. This makes the
evaluation of experimental errors more difficult. Moreover, when formula
(10) is extended by adding the term with the next Legendre polynomial
(cP4(cos 0)) the coefficients @ and b are not affected, while, when a term
~ cos* § is added to the right hand side of formula (11), the coefficients a
and 3 have to be recalculated.

The coefficients Tg‘ are given by formula (2) and depend only on the
production mechanism. Thug, the information about the decay dynamics is
contained only in the coefficients F(J). These coefficients are given by the
formula [4,5]

F(3) = Ny ST IR s, b 5,01, ), (12)
B

where N is a normalization constant. For n > 2:

Rt = Y [ don e donlM(on, e wnida e )P, (13)
ALrndn

where u is the projection of the total angular momentum on the analyser
and M are the decay amplitudes. For n = 2: R, are the decay constants
M(A1,A2) and choosing the momentum of particle one as analyser we have
# = A1 — Az [1]. Note that the coefficients F(J) do not depend on the
spin projection m, of the decaying particle. This is a consequence of the
Eckart—Wigner theorem.

4. Simplest cases

By the simplest cases we understand the cases with the smallest number
of dynamical parameters necessary to predict the decay angular distribution.
We shall discuss in detail the case, when an absolute prediction can be
made, i.e. a prediction without information about the decay dynamics, and
the case, when one dynamical parameter is necessary. The elaboration of
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more complex cases can be done along similar lines. Parity conservation and
symmetries with respect to exchanges of particles can sometimes be used to
reduce the number of necessary independent dynamical parameters. In such
cases the number of parameters is understood as the number of independent
parameters after the symmetry has been used.

The decay distribution (8) depends on the dynamical parameters |R ul?
for p = ~s,+++,+s via the parameters F(J),J = 0,...,2s and N. The nor-
malization factor N can be eliminated by using the norma]ization condition
(3). This yields

VAxF(0)TQ = 1. (14)

Substituting the definitions (2) and (12), then using the identities

(851 0, 0ls,p) = 1,
(s, ~m;8,m|0,0) = (~1)*+™/v/2s +1

and the condition that the trace of the spin density matrix equals one,
one finds the relation between the parameters |R,|? and the normalization

factor N: 5 + 1
s
NZ IR, = (15)

Using the formulae (12) and (15) one derives the (trivial) absolute pre-
dictions that the angular decay distribution for any spin zero particle into
any decay channel is spherically symmetrical and that for a spin one-half
particle the decay distribution can be expressed in terms of one dynamical
paraineter, e.g. of the asymmetry

_ |Bul? — |R_,P?

TR+ |R (16)

b
_“P

where, of course, in this case y4 = 1. We go over now to less trivial
predictions.
When |R,|2 # 0 for one value of x only, formulae (12) and (15) yield

2s+1

F(J) = (s, p; J, 0|3, ). (17)
For two-body decays with the momentum of the first particle chosen as anal-
yser u = Ay — A2. Thus for decays into two spin zero particles u = 0 is the
only possibility and (17) holds. ‘An example is the decay p® — #Tx~ pre-
sented in Section 2. Another application is to decays via the V — A coupling
into a massless lepton and an antineutrino. Choosing the lepton momen-
tum as analyser one has g = A} — Ay = —1. Similarly for the corresponding
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decays into a massless antilepton and a neutrino g = A\; — Ay = +1. The
case of massive leptons will be discussed later.
When |R,|? is different from zero for one value of |u| only, one can use
the identity
(s, 1 J, Olssl‘) = ("1)J(3! —-p; J,0s, —’4) (18)
to derive
2s + 1 1Rul* +(-1)7IR_,pp

F(J) =
) 4z |Rul>+|R_,

(3,1 7,003, ). (19)

Thus, in this case we get absolute predictions for the parameters F(J)
with J even, while the parameters F(J) with J odd are proportional to the
asymmetry (16). Formula (19) applies with 4 = 1/, to two-body decays into
a spin zero and a spin one-half particle like the decay A — px~ presented
in Section 2. When parity conservation holds, |R,|?> = |R_,|? and a = 0.
Then we get an absolute prediction for the angular distribution. Another
application is to decays into a spin zero particle and a photon. Then |u| =1
and again in the general case the decay angular distribution depends on the
asymmetry a, but this drops out when the decay conserves parity.

Situations with one dynamical parameter in the decay distribution occur
whenever for exactly two values of x4 the parameters IR“S2 are different
from zero. Examples not reducing to the previous case of opposite values
of .y include the decays via the V — A coupling into a massive lepton and
an antineutrino (4 = 0,—1) and the corresponding decays into a massive
antilepton and a neutrino (¢ = 1,0). For parity conserving decays we may
add decays into a spin zero particle and a spin 3/; particle, or a spin zero
and a spin one massive particle.

For decays into three particles we choose the normal to the decay plane
as analyser. For decays into three spin zero particles parity conservation
implies that ;2 must be even (0odd) when the product of internal parities of
the four particles (further denoted ) is +1 (—1). Thus for parity conserv-
ing decays with s = 1, » = +1, like w — 37, only g = 0 is possible and
again formula (17) with no dynamical parameters holds. For = —1 and
s = 1,2, we have u = +1 and one can use formula (19) with one dynamical
parameter. An additional reduction occurs, when the final state is symmet-
ric or antisymmetric with respect to the exchange of two out of the three
final state particles. Then the vector product of the momenta of these two
particles can be chosen as analyser and a = 0 leading agam to an absolute
prediction. Examples are the decays a] — xtxtx~ and af — xtxta—,
where the symmetry with respect to exchanges of identical particles can be
used. With exchange symmetry one gets absolute predictions for decays
(not necessarily parity conserving) of a spin one-half particle into any final
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channel, while one dynamical parameter is enough to predict the decay an-
gular distributions for parity conserving decays into three spin zero particles
fors=2,7=+1,0ors=3,n= %1 or s = 4 and 7 = —1. The same holds
for arbitrary parity conserving decays of spin three halves particles. In all
these cases it is assumed that the vector product of the momenta of the
particles related by exchange symmetry is used as analyser.

5. Evaluation of the decay constants

When the decay dynarmics is known, or when a model is assumed, it is
possible to calculate the dynamical parameters occurring in the formula for
the decay angular distribution. One can derive either linear or quadratic
expressions for the decay amplitudes. Here we present the calculation lead-
ing to linear formulae. As an example we calculate the decay constants for
an off-shell W-boson of mass \/q_i decaying into a massive antilepton and
a neutrino. The analogous calculation using trace and tensor methods in
order to get quadratic formulae can be found in Ref. [6].

In our approach the decay amplitude

A =5y (1 -7 (20)
is compared with the same amplitude written in terms of the decay constants
A= Ma(Af’ AV)03;(¢9 6, 0)’ (21)

Here the subscript s refers to the spin of the W-boson. On shell the W-boson
is a vector particle, in semileptonic decays, however, the W is far off-shell
and both the s = 0 and the s = 1 states contribute. The amplitudes (21)
refer to decays with the spin projection on the z-axis m, = 0. The analysis
of the s = 1, m; = X1 amplitudes would give nothing more. Note that
the overall normalization is here unimportant, because any overall constant
factor can be absorbed into the normalizing factor N.
The necessary D-functions are

Dgo(‘ﬁ; 0, 0) =1, (22)
D}1(4,6,0) = %"- (23)
D}y($,6,0) = cosé. (24)

For the Dirac 4 matrices we use the Dirac representation

0 _ 1 0 . z _ 0 oz ). 5 _ 0 1
v _(0 _1), v —-("o‘z 0)’ Y "‘(1 0)' (25)
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The necessary Dirac bispinors are

— , - (FV1-14
uj = (¢ja -4’;*), 5= ( \/m‘ﬁfl) . (26)

Here v is the Lorentz factor of the antilepton in the rest frame of the W-
boson, the F sign is minus the sign of the helicity of the antilepton and the
@’s (the spinors corresponding to the spin states of the particles) are:

6, = e~ ¢ cos% & = e‘5¢sing _ e ¢ cosg
" e"“i“’ssing- e A —e'*'%‘bcos-g » 9= e+§¢sing ’
(27)
where 0 and ¢ are the polar angles of the antilepton momentum. The polar
angles of the neutrino momentum are = — 6 and ¢ + x. The third Euler
angle, which is a matter of convention, has been put zero for the antilepton
and = for the neutrino. When evaluating the amplitude (20) one uses the
identities

(¢-8(F-B)=a-b+i7-(@nD), (28)
where the dot denotes the scalar and the wedge the vector product, and
(Vr+1ltr-1)=2v2", (29)
where \
€= -2’1;17 (30)

is in practice usually a small parameter.

The procedure is to evaluate expression (20) for s = 1, m, = 0 (i.e.
for p = z), Ny = 14, Ay = =1/ and for s = 0, (i.e.p = 0), N = -1,
Ay = —1f2, to compare the results with formulae (21) and to extract the
decay constants. One finds

M3 -1 = 7= (31)
Ml(—%’ "'%) = —\/EMI(%7—'%)1 (32)
MO(_%’ ‘”%) = \/EMI(%’ _% . (33)

The relative sign of the decay constants (32) and (33) must be minus, while
their overall sign and the sign of the amplitude (31) are a matter of conven-
tion.

Note that in the present case the normalization condition (3) does not
imply the normalization condition (15), because now two spins of the decay-
ing particle are involved. We discuss this more complicated case, as well as
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some other extensions, in the following section. Since, however, the decay
constants (31), (32) and (33) contain all the dynamical information about
the decay process considered, they must be sufficient also for the general-
izations of the present analysis. In the next.section we show that this is
indeed the case.

6. Generalizations

Formula (8) holds for the decay of one particle with a well-defined spin,
when (for non-two-body decays) the decay distribution has been integrated
over the third Euler angle . It is possible to remove these restrictions.

For decays of pairs of resonances one finds the joint decay distribution [1]

W (01, ¢1;02,42) =
Y Rh)FR(J) 1‘\]411?43 J"(ol:‘ﬁl) L (02,42). (34)
J T2 My M,

Note that this formula does not factorize, so that it contains all the possible
correlations between the two single particle angular decay distributions. The
double statistical tensors

Jy J- : —Jy—J:
A
m,m/,n,n'
!
(319"m’;31’m'|J1M1)<32’_n; s$2,n |J2M2)pnnl ’ (35)
where p™ n, , the joint spin density matrix of the two decaying objects,

depends only on the production dynamics. The decay dynamics affects
only the single particle coefficients F(J) defined by (12). For instance, the
six joint angular decay distributions obtained for pairs of vector mesons in
[7] are special cases of formula (34) and can be obtained by substituting
into it the various sets of coefficients F(J) calculated in Section 4 and using
the reference frames defined in [7)].

The case, when various spin states contribute to a given decay channel,
has been much discussed in the physics of strong interactions, where often
resonances interfere with each other, or with a nonresonant background. Cf.
[4] for examples. It reappeared in the physics of weak interactions, where
the virtual W-boson is usually far off-shell and its spin zero component
sometimes cannot be neglected (cf. [6]). With interference [4,5]:

W(0,6) =Y Fu(J)TiH(k,)Yir (6, 6) (36)

JM ki



Angular Decay Distributions of Particles and Resonances 551

and for a joint decay distribution of a pair of particles
W(61,¢1;02,¢2) =
3" F(D)Fa(B)Tag i, G di DY 38 (01, 61)Y327 (62, 62).  (37)
Ji My J3 M,
Here the arguments i, 7, k,l label the interfering objects. The statistical
tensors for decays of single particles

Tk = Y (1™ (s, s sl T MYy (38)
mEmy
and for joint decays of particle pairs
J J: , e Ty —
Tl ik = Y (cpmhermme s
mymjmgmy ‘
(sks —mms st my| JA Ma ) (si, —mis 85, m5| T2 M) oty (39)
contain the information about the spin states of the decaying objects i.e.
about the production dynamics. The information about the decay dynamics

affects only the coeflicients F;;, which for the simplest case of two-body
decays are [4]

A
Fu(J)=N
rk(J) = 5o 11
D Mi(A, A2)M[ (A1, A2)(—1)** "% (s, 3 , 0]y, ). (40)
A1z
The normalization condition (3) yields now
Var Y T3 (k, k)Fi (0) = 1, (41)
k

but other normalization conventions may be more convenient.
For instance, substituting the decay constants from Section 5, we find
for the decays of a W-boson into a massive antilepton and a neutrino

3e

1
Virl+¢€’

Fio(1) = —Fo1(1) = —\/glj-e’ (43)

Fu1(0) = 4% (44)

/3 1

F]](l): 8_1rl+6, (45)
/ 3 1-2¢

F11(2)= m 1+€ . (46)

Foo(0) = (42)
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Here the normalization is chosen so that condition (3) is satisfied for ¢ = 0.
Substituting these formulae and the formulae obtained in Section 3 into
(34) one finds, using suitable reference frames, the formula given for the
joint decay distribution in the process B — D*W — Dxlv in Ref. [6]. A
generalization of formula (40) to more-than-two-body decays can be found
in Ref. [5].

When for the more-than-two-body decays the integration over the third
Euler angle ¢ is not performed, one obtains instead of formula (35) the
formula [5]:

W(6,6,9)= > Tis(k,)Fx(k,)Disn(,6,9). (47)
JMN

Again all the decay dynamics is contained in the coefficients Fyi(k,1).
Since, however, these formulae have found little application, we shall not
discuss them any further referring the reader to Ref. [5].
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