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The quantized Coulomb field is decomposed into irreducible unitary
representations of the proper, ortochronous Lorents group. It is shown
that for e?/hc > x the Coulomb field contains representations from the
main series. For 0 < e?/hc < = there is additionally a representation

from the supplementary series corresponding to the special value of the
3
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1. Introduction

In Ref. [1] we constructed a closed dynamical system which is linear and
contains the electric charge as one of its degrees of freedom. Quantization
of this system gives quantization of the electric charge in units equal to the
constant e. This gives us a unique opportunity to investigate the quantized
Coulomb field in a rigorous way. Such an investigation is presented in this
paper. The quantized Coulomb field is decomposed into irreducible unitary
representations of the proper, ortochronous Lorentz group. It is shown
that for e?/hc > 7 the Coulomb field contains representations from the
main series. For 0 < e?/hc < 7 there is additionally a representation from
the supplementary series corresponding to the special value of the Casimir

operator
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This confirms the observation, first given in [1], that the value e? /hc = 7 is
distinguished and separates two regimes with markedly different kinematical
properties.

2. Formulation of the problem

The quantized Coulomb field is a state vector |u), associated with a

given four-velocity u and having the following properties.

1° |u) is an eigenstate of the total charge Q : Q|u) = e|u).

2° |u) is spherically symmetric in the rest frame of u : e*8#¥ ugMy, |u) = 0,
where M, are generators of the Lorentz group.

3° |u) does not contain the transversal photons: N(u)|u) = 0, where
N(u) is the operator of the number of transversal photons in the rest
frame of u. If u is the four-velocity of the reference frame in which
the partial waves expansion in Ref. [1] is carried out, then N(u) =

0 l
(4xe®)"1 Y % c;tnc;m, ¢im being the annihilation operators for
=1 m=-l
transversal photons.
These three conditions determine the state vector |u) up to a phase
factor.
Consider now a state vector | f) of the form |f) = [ duf(u)|u), where

_ duldu?dud
= =5

du

is the invariant measure on the set of four-velocities i.e. on the Lobachevsky
space of unit, future oriented time-like vectors. To avoid irrelevant mathe-
matical problems f(u) is assumed to be of compact support.

(1) = [ T [ dv(o)ulo).
It was shown in [1] that (A =1 = c)
e2
(u|v) = exp { - -1?(/\ cothA — 1)} ,

where A is the hyperbolic angle between u and v: uv = g,,u¥v” = cosh A,
Thus (u|v) is an invariant kernel in the Lobachevsky space; this suggests
immediately that properties of the norm (f|f) will be seen best when both
f(u) and (u|v) are Fourier transformed.
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The theory of the Fourier transform in the Lobachevsky space was given
by Gelfand, Graev and Vilenkin [2]. The theory is summarized in two
formulae (formulae (20) and (21) on page 477 in Ref. [2]; we write v instead
of p/2, as it is customary in more recent literature [3]) which give the Fourier
transform and its inverse in the Lobachevsky space:

flkv) = / duf(u)(ku)* 1,

flu) = @‘1;)—3 / dvv? / a2k f(k; v)(ku)~ 1.
0

Here k is a future oriented null vector, (ku)~*”~! is a plane wave in the
Lobachevsky space, d*k is the invariant measure on the set of null directions,
applicable when the integrand is a homogeneous of degree —2 function of k,
which is the case in the last formula.

We have

[ dvf(v){ulv) = / dva’lr—)g- 7dw2 / d2kf(k;v)(kv) ™ (ulv).

0

If €2 /7 > 1 we can change the order of integrations:
1 oo
—— 2 21, F( L. A |
/ o (3){ulo) = T3 / dvv / 2kF(k; v) / dv (ko)== (ulv),
0

the last integral being convergent for ¢2/7 > 1. Since (u|v) is an invariant
kernel, there is a function K (v;e?/x) such that

2

/dv(kv)"i""l(ulv) = (ku)~™ 1. K(u; .e;) .

Hence oo
1 e2 .
(19) = Grys [ @K (w5 [ &1 Fs) 1,
0

which means that the irreducible component f(k;v) enters the state vector
|£) with the weight K (v;e?/x).

We can formulate now the main goal of this paper: to find the equivalent
of the last formula in the physically interesting case 0 < e?/x < 1.
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3. Calculation of the integral K(v;e?/x)

It is easy to show that
4 7 2
K(v; == / dAsinh A sin(p))e~ F(AcothA=1)
x v
Put €2 /7 = z and consider the integral
f(vi2) = f d) sinh A sin(vA)e~2Acoth A

This integral exists for z > 1 and defines an analytic function of two real
variables v and z. Differentiating and integrating by parts one can show
that

z%

o & a?
f(V;Z)=—m(1+2a +32 ’a‘ﬁ)g(l/;z),

sm("'\) —zAcoth A
dA ZACO
9(v;z) = / sinh A ©

The last integral exists for z > —1 and satisfies the partial differential
equation

0%g 9% Og
(53 +53) +rg+ G+ glea=0. ®

Moreover

g(l’,o) ./dASI?IE;::\\) = 3 tanh (2 ) = ,;) {’;_{—";(‘51;:'?)' +c.c.} .

Thus g(v; z) is the solution of Eq. (1), analytic around z = 0 and having the
initial value g(v;0) given above. Eq. (1) can be separated in the variables
v+e¢, z/(v +c), c being a constant. One finds thus that the function

[v+i2n+1-2)"
[v +i(2n+ 1+ 2)]nt?
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is the solution of Eq. (1), analytic around z = 0 and having the initial value
[v 4+ i(2n + 1)]71. Using the superposition principle one has finally

o [v+in+1-2)
g(v;2) = ;{[y+i(2n+ T¥ ) +c.c.}.

Hence

. [v+i(2n+1-2)»?
f(Vy Z) Z— V + 1(211. +14 Z)]n+2

Let us summarize our results. For z > 1

oo
. . —zAcothA _ _,2 [ +i(2n+1 -
/d)\ sinh A sin(v)e Z v z(2n + 14 z)]n+2°

The right hand side of this identity is absolutely convergent for all values
of v and z except for the poles. Thus it gives the analytic extension of the
integral on the left hand side, valid for all values of ¥ and z except for the
poles.

4. Expression for the scalar product valid for 0 < e?/x < 1
If f(u) is of compact support, as it is assumed, the scalar product
(f9) = [ T [ dvfio)uln

is an analytic function of z = €?/x which for z > 1 can be written in the
form

(f1f) = / dnPK(vi2) [ k] fks) P,

(27)3
f(k; v) being the Gelfand, Graev and Vilenkin transform of f(u):
f(k;v) = ‘/duj’(u)(lsm)i"‘l .

We have seen in the previous section that the function K(v;z) has the
analytic extension valid for all » and 2. It is thus tempting to extend the
validity of the last expression for (f|f) replacing the integral K(v;z) by
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its analytic extension. This is basically correct but one has to note what
follows.
For z > 1 the norm (f|f) can be written as

(flf) = @ /duu’K(u, z)/dzk/duf(u)(ku)—w l/dvf(v)(kv)"’ _1

s1n(w\)

duf(u) [ dvf(v)- 2 3 dusz(,)
( )

A being the hyperbolic angle between u and v. For z > 1 we can use the
integral representation for K(v; z), which reproduces the original form of
the norm:

(£19) = [ auF@) [ avos(u)iate).

Replace now K(v; z) by its analytic extension and assume that 0 < z < 1.
The integral

sin(v )
ar )3/dVV2K( i 2) Y

can be treated as a contour integral in the complex v-plane. It is seen then
that when z changes from z > 1 to 0 < z < 1, certain poles of K(v; z) cross
the contour. The contribution from these poles has to be subtracted, since
(f|f) is a given analytic function of z, the same for all z. Thus the correct
prescription for extension of the norm (f|f) to the segment 0 < z < 1 is this:
replace the integral K(v;z) by its analytic extension and simultaneously
remove contribution from those poles of K(v;z) which cross the contour
when z changes from 2> 1to 0 <z < 1.

It is easy to calculate that the scalar product (f|f) for 0 < z < 1,
worked out in accordance with the above prescription, has the form

(FfIf) = (2r)° /dyyzK(u,z)/dzk | f(k v) k
— 2)2(2e)* 2142
+(1 16),|-£2 ) //’d(:lt)izl Flk;i(1 = 2)) F(1;4(1 - 2)) .

(e is the basis of natural logarithms.) In this way we have realized the goal
indicated at the end of the first section: to find the expression for the norm
(f1f) valid for 0 < z < 1.
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The second term in the norm (f|f) is the scalar product characteristic
for the supplementary series of unitary representations ([1], [2]); it corre-
sponds to the special value of the Casimir operator [2]

_Yar oy =2(2-z) 2= €
27 2 whe’

5. Conclusions

Our calculation confirms the observation, first given in Ref. [1], that
the value ¢ = x is distinguished and separates two regimes with markedly
different kinematical properties. It is also interesting to note that for small
e? almost entire norm of the Coulomb field is concentrated upon the second
(discrete) part of the norm: for |f) = [ dub(u;uo)lu) = |up) the first (con-
tinuous) part of the norm equals 1 — e*(—z + 1) while the second (discrete)
part of the norm equals e*(1— z), which is very close to 1 for small z = e? /.
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