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Theoretical ideas concerning the Pomeron in perturbative QCD are
reviewed. The Lipatov equation with asymptotic freedom effects taken
into account is recalled and the corresponding spectrum of eigenvalues
controlling the bare Pomeron intercept analysed. Possible phenomeno-
logical implications of the perturbative QCD Pomeron for deep inelastic
scattering at the HERA ep collider are briefly discussed.

PACS numbers: 12.38.Bx

1. Introduction

The name “Pomeron” concerns the mechanism of diffractive processes
at high energy. It originated from the Regge pole model developed in the
sixties {1]. Within this model one assumes that the dominant mechanism
describing the high energy processes is that of the Regge pole exchange
(Fig. 1). Formally the Regge pole corresponds to a pole of the partial
wave in the crossed t-channel in the complex angular momentum plane.
Position of this pole is described by the trajectory function a(t). The high
energy behaviour of the scattering amplitude corresponding to the Regge
pole exchange is :

A(s, t) x 52, (1.1)
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where s is the CM energy squared of the colliding particles while ¢ is the
square of the four momentum transfer.

Combining (1.1) with the optical theorem one gets the following be-
haviour of the total cross-section:

Trot(s) x s2(0)-1, (1.2)

The quantity a(0) is called the intercept. Since, in general, several Regge
poles can be exchanged the scattering amplitudes (and the total cross-
sections) are given by the sum of terms given by the formulas (1.1) and
(1.2) corresponding to exchange of different Regge poles.

b d
Fig. 1. Regge pole exchange.

The Regge pole exchange is to a large extent the generalization of the
one particle exchange. Thus like the ordinary particles also the Regge poles
are characterized by the quantum numbers like isospin, G-parity etc. Being
responsible for diffractive scattering Pomeron corresponds, by definition,
to the vacuum quantum numbers. Other Regge poles carrying quantum
numbers different from those of the vacuum are called Reggeons. Within
the Regge pole model the Pomeron is a pole having the largest intercept.
Historically it has been introduced as the mechanism responsible for the
(approximate) energy independence of the total cross-sections that would
correspond to ap(0) = 1. It should also be noticed that since the Pomeron
corresponds to the vacuum quantum numbers it gives the same total cross-
section for particle and antiparticle interactions i.e. to the Pomeranchuk
theorem which the name “Pomeron” stems from.

The high energy behaviour of scattering amplitudes and so the nature
of a Pomeron may be more complicated than that which corresponds to a
simple Regge pole exchange picture. In particular the Pomeron should ac-
count for the important experimental fact that total cross-sections actually
tncrease with the increasing energy [2].

Very important question which is still not entirely understood is the
high energy behaviour of elementary processes (and so the Pomeron) in
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quantum chromodynamics. This problem is complicated by the fact that
the complete description of the high energy behaviour of hadronic processes
in QCD is not possible without understanding of colour confinement [3-6].
Much progress has, however, recently been made in understanding the high
energy behaviour of elementary processes within perturbative QCD [7-15].
It is believed that the results obtained in this field may be used in the
description of the so-called semihard processes where perturbative QCD is
expected to be applicable [17-19]. The semihard processes are the hard
ones when magnitude of the scale Q2 characterizing the “hardness” of the
process is large but much smaller than the total CM energy squared. One
of the processes belonging to this class which will be very soon studied in
HERA ep collider is the deep inelastic lepton-hadron scattering in the limit
z = 0, where z is the canonical Bjorken z variable (see the formula (2.2) of
the next Section).

The purpose of this paper is to review briefly some aspects of the
Pomeron physics in perturbative QCD. In Sec. 2 we introduce the Lipa-
tov equation for the bare Pomeron. We discuss its properties analysing
numerically the spectrum of eigenvalues of the Lipatov kernel in the case
when the asymptotic freedom effects are taken into account. The maximal
eigenvalue is directly connected with the bare Pomeron intercept. In Sec. 3
we discuss some of the phenomenological implications of the QCD Pomeron
in particular for the HERA ep collider. Finally Section 4 contains brief
summary and conclusions.

2. Lipatov equation and the bare Pomeron
in perturbative QCD

When studying the high energy limits of scattering amplitudes in quan-
tum field theories within perturbative approach one usually proceeds in two
steps: At first one considers the so-called leading log(s) approximation.
This approximation corresponds to retaining only those-terms in the per-
turbative expansion which give the maximal powers of In(s) where s is the
CM energy squared of the process. The sum of those terms after projecting
on the vacuum quantum numbers in the ¢-channel gives the so called bare
Pomeron. The leading log(s) criterion does not, however, respect unitarity.
As the result one finds that in gauge field theories the intercept ag of the

bare Pomeron is above unity. Since o¢o¢ s"‘g“'l this gives the total cross-
sections growing as a power of energy with increasing energy. This violates
the Froissart bound [18] for sufficiently high energies. In the second step
which is in general much more difficult one attempts to understand how the
unitarity is restored.

In the non-abelian gauge field theories the leading log(s) approximation
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has been studied in Refs [7-15]. The physical picture of the bare Pomeron is
rather simple: it corresponds to the sum of ladder-like diagrams with the ex-
change of the reggeised gauge bosons (i.e. gluons in QCD) along the ladder.
In other words the bare Pomeron is given by the multiperipheral production
of gauge bosons where the multiperipheral production mechanism is that of
the multiregge exchange. Both the gauge vector boson Regge trajectories
and the vertices are theoretically calculable. In QCD one may associate
the produced gluons with gluon jets. The virtual corrections which lead to
the reggeisation of the gluons which are exchanged along the chain can be
retranslated into the “non-Sudakov” form-factors [19-22].

In what follows we shall consider the deep inelastic charged lepton-
-nucleon scattering with its kinematics defined in Fig. 2. In the one-photon
approximation this inelastic scattering is related through the one photon
exchange mechanism to the virtual photoproduction process induced by the
virtual photon. The total cross section of this process is related through
the optical theorem to the imaginary part of the forward virtual Compton
scattering.

2
2=t x=3°
7 2pg

Fig. 2. The kinematics of the deep inelastic scattering and its relation through the
optical theorem to the Compton scatiering for virtual photons.

We shall consider the virtual Compton scattering in the limit
2pg > Q% > A2, (2.1)

where A is the QCD scale parameter and Q2 = — ¢? where ¢ is the four
momentum transfer between the leptons (see Fig. 2). The limit (2.1) corre-
sponds of course to the high energy limit of the virtual Compton scattering.
Important point here is that the magnitude of Q2 is also kept large that
will justify the use of perturbative QCD. The limit (2.1) is also equivalent
to the small # limit where the Bjorken variable z is defined as:

R

= 5o (2.2)
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Fig. 3. The ladder diagram for the deep inelastic scattering in the leading log(1/z)
approximation with reggeised gluon exchanges along the chain. The upper part of
the diagram corresponds to the sum of the quark box and crossed box of Fig. 4.

In the leading log(1/z) approximation the structure functions defining the
deep inelastic scattering are given by the ladder-like diagrams (Fig. 3) with
the reggeised gluon exchange along the ladder. (The leading log(1/z) ap-
proximation is equivalent to the leading log(s) approximation for the vir-
tual Compton scattering amplitude where s = (p + ¢)?). In this approx-
imation the small z behaviour of the structure functions is driven by the
gluons which couple to the virtual photons through the quark box diagrams
(Fig. 4). The fundamental quantity in the leading log(1/z) approximation
is the unintegrated gluon distribution f(z, k?) related in the following way
to the ordinary (scale dependent) gluon distribution g(z, Q?):

_ 0zg(=,Q?%)
f(z, k?) = “m0?

: (2.3)
Q2=k2

The deep inelastic structure function F3(z,Q?) is related to this function
through the following formula:

Fy(z, Q )= / da’ /dkkz Fzg(z kZ)Q )f( )s (2.4)

z 0
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where the function Fp4(z', k2,Q?) is the (suitably defined) gluon structure
function corresponding to the sum of quark box diagrams of Fig. 4. The for-
mula (2.4) is an example of the “k, factorization theorem” [23] (k = k; where
k¢ is the transverse momentum of the gluon). The physical content of this
theorem is that the cross-sections of semihard processes in the leading log(s)
(or log(1/z)) approximation can be expressed as the (double) convolution
in the transverse and longitudinal momenta of the universal (unintegrated)
gluon distribution and the corresponding hard cross sections on the partonic
level. The small z behaviour is entirely driven by the unintegrated gluon
distribution.

Fig. 4. The two diagrams describing the gluon-photon interaction. The internal
lines correspond to quarks.

In the leading log(1/z) approximation the formula (2.4) simplifies to
give:
dk
Fy(2,Q%) = [ 7 %5, (. Q") f(z, k) (2:5)
0

with the “impact factor” Qg‘;)(kz, Q?) defined by:

#0(K,0%) = / Z Fagle' 1,07, (26)

0

The ladder-like iteration gives the Lipatov equation for the unintegrated
gluon distribution f(z, k%) [7-17,19-23):

Fo k) = (k%) + 22252 / %
z 0
f(:c' kfz) - f(z' 2) (z:’kz)
( | k2 — | + (Ic“ + 4kl4)1/2) ' (2-7)

In this equation k2(k'?) are the transverse momenta squared of the gluons,
a, is the strong interaction coupling and fy(k?) is the suitably defined
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inhomogeneous term. In order to study this equation it is convenient to use
the moment f(n, k?) of the function f(z,k?) defined as below:

1
f(n,k?) = | dzz™" % f(z, k?) (2.8)
/

which satisfies the following equation:

folk?) | _ 3a T dk"
f(n, k) =22 k2 o/ .

(-1 " r(n-— 1)
(f(n, ) i) Sl )
l k2 — k2 l (k“ +4k'4)1/2
:({;)El—czl)) + (ni I)KL ® f (2.9)

The leading singularity ny, of f(n,k?) in the n-plane controls the small z
limit of the gluon distribution f(z, Icz) This leading singularity is given by
the maximal eigenvalue Ap,ax of the Lipatov kernel K7, i.e.:

np, = 1+ Amax (2.10)

with Apmax given by the following formula:

121n(2)a,
®

The formulas (2.10) and (2.11) give the intercept of the bare Pomeron
i.e. ag = nj,. A simple explanation of the relation between the maximal
eigenvalue of the Lipatov kernel and the bare Pomeron intercept is given in
Ref. [24]. It can have potentially large magnitude af > 1.5 or so. This bare
Pomeron controls the small z-behaviour of the gluon distribution f(z, k%)
t.e.:

(2.11)

'\max -

f(z,k?) —W (1 + O(E(—%;—))) . (2.12)

The relatively unimportant factor 1/[In(1/z)]!/? comes from the fact that
the spectrum of the Lipatov kernel is continuous.

Although the Lipatov equation is free from infrared singularities at k? =
0 one does not expect that the region of low k2 where the confinement effects
are important is treated reliably. The possible way of incorporating the non-
perturbative effects in the Lipatov equation has been discussed in Ref. [25].
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Moreover in the large k2 region the asymptotic freedom effects should be
included.

The simplest way to eliminate the low k2 region is to impose the lower
limit cut-off k2 in the integrals in Eqs (2.7) and (2.9). The asymptotic
freedom effects can be taken into account substituting the running QCD
coupling a,(k?) in place of the fixed (i.e. k? independent) coupling a,. The
Lipatov equation then reads:

Flm ) =2

(n—1) ,,
f(n, k) — f(n, k) f(n, k%)
X ( | k'2 — k2 | + (k4 +4kl4)1/2)
_fo#) 1
(rn-1) " (n-1)

The spectrum of the kernel Ky, (k2) is now discrete. The maximal eigenvalue
can be shown to satisfy the following inequality [26]:

a,(k )

3a,(k?) k2/ dk'?
x(n—1) k2

Kr(k3)® f. (2.13)

Amax < 121n(2)9’—5rk—§—). (2.14)

The most recent discussion of the Lipatov equation is presented in Ref. [27].
Eq. (2.7) is also modified accordingly i.e.:

£a k%) = fo?) + 228D 2/ -/ T

z k?
f(z', k'z) - f(Z', kz) f(z'a kz)
x( (k7 k2| +(k4+4k'4)1/2). (2.15)

This equation has been studied numerically in Refs [28-31]. It turns out that
the effective z—* behaviour emerges relatively soon in the solution of this
equation with A being dependent upon cut-off k% [30,31). The magnitude
of ) is still relatively large (i.e. < 0.5 or so).

The solution of the Eq. (2.15) contains contributions of all eigenvalues
particularly in the region of moderately small values of z. It may therefore
be interesting to analyse the distribution of eigenvalues. To this aim we have
analysed the spectrum of the kernel Kp,(k2) suitably adapting the numeri-
cal methods used in [28-31] where the solution of the Lipatov equation was
approximated by the truncated series of the Tchebyshev polynomials linear
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in In(k2). (We also impose upper limit cut-off but the results are very insen-
sitive to its magnitude.) In this way the problem is reduced to finding the
eigenvalues of the (finite order) matrix constructed from the kernel Ky,(k3).
The distribution of eigenvalues (for k3 = 2 GeV?) is presented in Fig. 5.
It may be seen that the leading eigenvalue is very well separated from the
non-leading ones. This may explain the relatively rapid onset of the simple
power-law behaviour found in [30,31). In Fig. 6 we illustrate the cut-off
dependence of the leading eigenvalue Ap,x where we plot its inverse with
respect to In(kZ/A%). We find approximate linear dependence suggesting
that Amax  a,(Bk2). From Fig. 6 one finds Amax = 1.84 - 3a,(9.16k2) /7.
This should be compared with the fixed coupling case (2.11) which gives
Amax = 2.77- 3a, /.

l X X Y3 Y] x setor e x ..L % xl l J
-1.5 -1 -0.5 0 0.5 !

A
Fig. 5. Distribution of eigenvalues of the Lipatov kernel Ky,(k3) for k2 = 2 GeV?.
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Fig. 6. The cut-off dependence of the leading eigenvalue Apax of the Lipatov kernel
Ry (k3).

For the very small values of z the indefinite increase of the gluon distri-
butions enhances the probability of gluon fusion and recombination. This
interaction of small z partons leads to screening effects which modify the
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Lipatov equation in the following way [15,31]:

1 oo
2y 2y . 3a,s(k?) dz' [ dk'"
£(2, k%) = ) + Tkz/?,,[

k2

0
(f(:c', k'?) - f(z', k?) f(=', k%)
X [ &2 — k2 | + (k% + 4k'4)1/2)

1
81a2(k?)
16 R2k2

z

%(z'g(z', k?))>. (2.16)

The screening effects are given by the last term in the Eq. (2.16) where the
parameter R corresponds to the (transverse) size of the region within which
the partons (i.e. gluons) are concentrated.

Eq. (2.16) goes of course beyond the leading log(1/z) approximation.
It is in fact an example of the unitarization procedure on the parton distri-
bution level. The negative screening term tames the indefinite increase of
parton distributions in the small z region turning it into (approximately) z
-independent saturation limit. To be precise the Eq. (2.16) generates in a
self-consistent way the 2~ behaviour and simultaneous taming of this be-
haviour by the non-linear screening term. Its detailed analysis is presented
in Ref. [31].

More conventional way to introduce parton screening effects is to in-
clude them in the standard QCD evolution formalism [24,32]. An imple-
mentation of both the singular z~* behaviour and screening effects within
this formalism was done in [24] and will be very briefly discussed in the next
Section.

3. Possible phenomenological implications
of the perturbative QCD Pomeron

In the previous Section we have discussed the bare Pomeron in pertur-
bative QCD concentrating on the small z limit of gluon distribution in a
hadron. The Pomeron singularity which corresponds to the exchange of the
gluon ladders diagram is of course universal and should manifest itself in any
elementary process in which the exchange of the vacuum quantum numbers
are possible. The process should also be “hard” i.e. it should involve some
large scale “Q2” for perturbative QCD to be applicable.

The deep inelastic lepton scattering in the limit of small z is the pos-
sible “hard” process where the effects of the perturbative QCD Pomeron
should show up. The perturbative QCD analysis of the parton distributions



Pomeron in Perturbative QCD ... 617

in a nucleon which incorporated both the QCD Pomeron as well as par-
ton screening was performed in Ref. [24]. The QCD Pomeron effects were
included using the singular parametrization (i.e. proportional to 2z~ with
A = 14) of gluon and sea quark input distributions at the reference scale

2 = 4 GeV*. We label this parametrization as B_. The parton screening
was next included by suitably modifying this input parametrization and by
adding the non-linear terms in the evolution equations like the last term i m
the Eq. (2.16). The screening effects were considered for B = 2 GeV ™!
and R = 5 GeV~!. In Fig. 7 we show the results of this analysis for the
structure function Fz in the region of small z which will be soon probed by
the HERA collider. For comparison the result corresponding to the By set
of parton distributions based on the non-singular input is also shown.

T T I T T T T T t

151 E%®tx)at Q%= 20Gey? .

i i i
104 10° 107

Fig. 7. The structure function F5P as a function of z at Q% = 20 GeV?>. The solid
line corresponds to the B_ set of parton distributions. The dashed and dot-dashed
lines indicate the correction due to parton screening effects with R = 5 GeV ™! and
2 GeV ™1 respectively. For comparison the prediction from the By set of partons is
shown by the dotted curve. (Results of this analysis were taken from Ref. [24]).

Presumably the ideal process which may test the perturbative QCD
Pomeron most directly is the jet production in deep inelastic scattering in
the small z region {33-36]. The kinematics of the jet should be such that
ZTjer > = and k? = QZ%, where k is the jet transverse momentum. The jet
production in this configuration is expected to be described by the diagrams
of Fig. 8. The upper part of this diagram corresponds just to the (bare)
QCD Pomeron. Important point here is that it can be computed entirely
within perturbative QCD including its normalization which is controlled
by the sum of quark box (and crossed box) diagrams contribution to the
virtual photon-gluon interaction (see Fig. 4). By choosing the configuration
k2 = Q? it is possible to eliminate the effect of the ordinary QCD evolution
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(from the scale k2 to Q%) in which transverse momenta are ordered along
the chain. In this configuration one is therefore able to test directly the
complete ladder equation in which the transverse momenta are not ordered.
The detailed theoretical analysis of this process has recently been performed
in Refs [35,36].

The differential structure function z ;0 F3(z, Q%; =, k%)/8z j6k? describ-
ing the jet production is given by the following formula {36]:

OF,(z,Q%z;,k*) _ 3a,(k?) z
i 3‘13]'3”62], = ;k4 ;zjfﬂ(zj’ kz)F (Ev kz’ Qz) H
(3.1)
where the sum over parton distributions in a nucleon is:

Y fa=g+3(a+0) (3:2)

The function F satisfies the Lipatov equation suitably adapted to the kine-
matics of Fig. 8 [36].

q It

K + + ..
: k .
j/ Xj'k

P e ¥
p —X_ > »p

Fig. 8. The leading log(z;/z) approximation to the deep inelastic scattering con-
taining an identified jet of longitudinal and transverse momentum z;p and k re-
spectively. The upper part of the diagram corresponds to the sum of the quark
box and crossed box of Fig. 4.

In Fig. 9 we present the prediction for the differential structure function
z;0F,(z, Q% zj,k?)/8z;0k? obtained in Ref. {36]. For comparison we also
show the case when the ladder effects are neglected. In this approximation
one sets in the Eq. (3.1) in place of the function F(z/zj, k%, Q?) the z/z;
independent impact factor Fy(k?,Q?) corresponding to the sum of quark
box and crossed box diagrams. It may be seen from this Figure that the
QCD Pomeron significantly modifies the jet spectrum. Measurement of jet
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Fig. 9. The differential structure function for deep inelastic (z, @?) events with an
identified jet (z;, k?) as a function of z; for different values of z, z = 1074,10-3
and 1072, and for Q* = 5 GeV>. The dashed curve is obtained from (3.1) with F
replaced by the driving term Fy corresponding to the quark box diagram contribu-
tion alone. The magnitude of the cut-off defining Fy as well as the magnitude of
the cut-off k2 in the Lipatov equation is chosen to be equal to 1 GeV2. Figures (a)
and (b) correspond to the jet transverse momentum squared k% = 5 and 10 GeV?
respectively. (Results of this analysis were taken from Ref. [36]).

production in deep inelastic scattering should in principle be possible at
HERA.

The perturbative QCD Pomeron should also affect the heavy quark
production and the detailed analysis of this problem is presented in Ref. [23].

Important process which may test the partonic content of a Pomeron
(and so its underlying QCD structure) is diffractive production in deep
inelastic lepton scattering i.e. the process: v*(Q?) + p = X + p with large
rapidity gap between the proton in a final state and the hadronic system
X [37-40]. The diffractive production in inelastic lepton scattering controls
also the nuclear shadowing effects in deep inelastic lepton scattering on
nuclei at small z [41-43]. The partonic content of a Pomeron can also be
revealed in studying the jet production within the diffractively produced
system in hadronic collisions {44,45).

The QCD Pomeron should also manifest itself in total cross-sections in
hadronic collisions. The natural component of the total cross section which
can be associated with the QCD Pomeron is that which corresponds to the
mini-jet production [46,47].

4. Summary and conclusions

In this paper we have reviewed some of the problems concerning the
Pomeron in perturbative QCD. We have discussed with some detail the so
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called bare Pomeron which emerges from the study of the high energy limit
of elementary processes in QCD in the leading log(s) approximation. In
deep inelastic scattering this approximation becomes the leading log(1/z)
approximation where z is the canonical Bjorken  variable. The main con-
tribution in the small z limit of the deep inelastic scattering comes from
the sea quarks and antiquarks which are driven by the gluons. In the lead-
ing log(1/z) approximation the gluon distributions are given by ladder-like
diagrams with the reggeised gluon exchange along the chain. The sum of
these ladder diagrams gives the Lipatov equation which generates the bare
QCD Pomeron. We have briefly analysed the eigenvalue spectrum of the
Lipatov equation kernel with the asymptotic freedom effects taken into ac-
count. In the small z limit the parton distributions (multiplied by z) have
the 2~ behaviour where ) is equal to the maximal eigenvalue Ayax. The
bare Pomeron intercept ag is equal to 1 + Apmax. The unique feature of

S

the QCD Pomeron is potentially large magnitude of its intercept af = 1.5.
We have also briefly mentioned the parton screening effects which bring the
bare Pomeron within the unitarity limits. More detailed discussion of these
effects is given in Refs [16,17,24,31,32,48|.

The choice of problems presented in this paper has been very selective
and we decided to discuss those aspects of the perturbative QCD Pomeron
physics which can be directly accessible to experimental verification par-
ticularly at the HERA ep collider. Our discussion focussed entirely on the
Pomeron at ¢ = 0. In particular we have entirely omitted important issues
concerning shrinkage patterns of the diffractive peak. These problems are
discussed in detail in Ref. [48]. Moreover our discussion concerned only
properties of the perturbative Pomeron. Possible non-perturbative effects
which take into account non-perturbative modifications of the gluon prop-
agators coming from the gluon condensate are discussed in Refs [4-6,25].

In Sec. 3 we discussed some of the experimental measurements which
can reveal the properties of the QCD Pomeron. The measurement of jet
. production in deep inelastic lepton scattering at HERA in the kinematical
configuration z; > z and k? = Q? will presumably be the “landmark”
measurement in this respect..

I am most grateful to Barbara Badelek, Krzysztof Charchula, Krzysztof
Golec-Biernat, Maria Krawczyk, Alan Martin, Dick Roberts, James Stirling,
Dorota Strézik-Kotlorz and Peter Sutton for numerous discussions and for
very enjoyable collaboration on some of the problems discussed in this paper.

Note added in proof: After this paper had been completed I became
aware of the new structure function analysis performed in the Ref. [50] which
included the most recent NMC data [51]). The results of this analysis differ
from those obtained in the Ref. [24] and summarised in Fig. 7.
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