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A REDEFINITION OF THE HADRONIC STRING
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The covariantly quantized momentum operator of the relativistic
string in Minkowski space is redefined so that its domain is within the
forward light cone. This leads, by definition, to a positive spectrum for
the mass-squared operator.
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Hadronic strings arose from analyses of low momentum transfer (|g|)
reactions [1]. Although this was circa 1970 prior to the advent of QCD, a
satisfactory quantum theory of hadronic strings has not yet been created
[2]. QCD itself independently leads to the idea of strings. In particular,
lattice QCD in the string coupling low |g| limit [3] is in fact a quantum
hadronic string theory but it is not translation, rotation or boost invariant.
The natural emergence of hadronic strings both from QCD and from the
pre QCD analyses, strongly suggests that they provide the correct way to
view low |g| interactions.

Since there does not seem to be any principle prohibiting construction
of a covariant Minkowski space string description of low |¢| QCD, difficulties
encountered in its construction suggest that the model has not been properly
defined. This paper discussed a possible redefinition.

In the usual formulation of string theory [2], (gauge) invariance under
general coordinate transformations of the two surface parameters plays a
central role. However, no theory can be expected to be invariant under
this group unless it includes sufficient degrees of freedom. For example,
classical electrodynamics is not by itself invariant under the full space-time
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coordinate transformation group; it is invariant only in conjunction with
the metric when the latter is included as a dynamical variable.

Similarly, since the hadronic string does not describe high momentum
components of QCD fields, it need not be invariant under the full gauge
group. There is direct evidence that it is not in fact invariant. Strong cou-
pling QCD implies the existence of baryons having junctions of three strings
but boundary conditions at such junctions are inconsistent with gauge in-
variance. The problem originates in the model’s idealization requiring mo-
mentum conservation and continuity across a point junction and thus over
arbitrarily small distances and high momentum transfers.

Dropping gauge invariance, the basic open boson string action may be
simply taken to be

1
= g/dfo/dfl[602°60z—6123'312]- (1)
-1

The low |g| restriction can be covariantly imposed either by truncating the
string’s normal mode expansion or by restricting it to a lattice in parameter
space. In either case gauge invariance is lost and the surface parameters
€%, €' gain implicit physical meaning. For present purposes it is convenient
to limit the mode expansion to N terms.

Since gauge invariance usually determines the mass operator and allows
nonphysical states to be decoupled from dynamics, these questions must be
reconsidered. The mass-squared operator can be obtained heuristically as
follows. The parameter space Hamiltonian is

1
H=(2x)"1 /d{l[p-p+n2312 - Oy z)
-1

N
= (45) 71 P? + ) " 2[pn - pn + (kwn)’zn - Zn],
1
p= &aoz ) (2)

where the modes are given by

N
z#(€) = X#(E%) + Y zh(€%)un(€h),
1

un(€') = cos(wa(1 +¢')),

Wn = —2-. (3)
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This Hamiltonian generates displacements in ¢°. The complete amplitude
gets contributions from all (2 and so must be an average of form

¥(z1,...,2N) ~ (exp(—iHT) % (z1,...,2N))T- (4)
But T averaging projects out all functions except those for which
H¥=0. ()

This defines the physical subspace of relativistic wave functions. The mass-
squared operator therefore has the usual form

N
P? = _ Z 2[}7-,1, *Pnt (Wn)zzn . Zn] . (6)
1

The main idea suggested here appears to be nothing but the usual one
requiring that classical theory string histories be single valued surfaces and
€9 a timelike parameter. This can be expressed as the requirement

(Boz(£))> > 0; 8oz°(€)> 0. (N

Although always assumed classically, it is not usually formulated kinemat-
ically upon covariant quantization. This is done here by simply defining
the domain of the four-momentum operator p(£) to be in the forward light
cone. The result is a positive mass-squared spectrum by definition since

+ 00
P= [ dg'p(€)

p(€) - p(€) > 0
p°(&) >0

The theory truncated to one normal mode suffices to show the main
effect of the four-momentum operator redefinition. The string becomes a
version of the relativistic harmonic oscillator model and Eq. (6) for N =1
becomes

=>P-P2>0. (8)

M2 8(g) = -2 + () () ] ¥(0),

37(6)!51=q:1 =M+,
M+q¢">q >0,
q= Pn|n==1 . (9)
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More explicitly, for each angular momentum state we get

T=%ﬂ W=%ﬁ'43751;03031—h“ A=£§Y
(2)' - () () #1017 20— -

(10)

Solutions to Eq. (10) which vanish on the boundaries determine allowed
mass values and since it is linear, different mass solutions are linearly in-
dependent. However, it is not obvious that they are not orthogonal to one
another relative to the expected norm

/dq°...dq3 vy (11)

because the eigenvalue appears as part of the operator. On a formal level
they should be since total momentum commutes with relative positions and
momenta. This suggests that the boundary conditions applied to these
eigenvalue equations need to be more carefully evaluated. For the present
we simply assume that functions vanish on the boundaries.

The boundary conditions prevent the separation of variables in Eq. (10).
To get a rough idea of the spectrum we can fix this by approximating the
boundary as

-3<7<3; 0<o<i. (12)

This covers most of the original domain of q. Furthermore, the neglected
portion tends to be blocked by the harmonic oscillator potential. We take
advantage of this and simplify further by ignoring the potential completely.
The equation is now separable

¥ = §(a)T(1),

( ) T(7) = —a*T(7),

() ()t st =5,
%/\2=ﬂ2—02- (13)

Thus for Eq. (13) exactly and Eq. (10) approximately, the spectrum
is just determined by the boundaries within which the string moves freely.
This is asymptotic freedom at low |g|.

The spectral values are easy to obtain but the model is too rough for
details to be relevant. The fact that a difference of squares enters directly
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reflects the hyperbolic nature of the differential equation. The derivation
shows that negative values of this difference do not satisfy the eigenvalue
condition. The redefinition of four-momenta means they are to be discarded.
The set of eigenfunctions with positive mass-squared are, modulo the ap-
proximations made, complete within the Hilbert space of square integrable
functions of timelike four-momenta.

Finally, we note that the four-momentum condition makes it possible to
attach Dirac spinors to the ends of strings and is local so that when a string
breaks, each part automatically satisfies the condition. These properties
make realistic extensions of this model very promising.
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