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Dedicated to Wiestaw Czy2 in honour of his 65th birthday

This note is written as a tribute to professor Wieslaw Czy% on the occa-
sion of his 65-th birthday. It is a variation on a paper {Acta Phys. Pol. B9,
433 (1978)) entitled “A quasi-classical description of isospin-conservation
in multiparticle production”, written when he and his wife spent some
time in Utrecht. In that paper the correlations between charged and neu-
tral pions were calculated and expressed in terms of the average charge
multiplicity and the charge dispersion. Similar calculations will be re-
ported here, but now also K- and #-mesons will be included. Again the
conservation law has a large effect on the multiplicity distribution of the
particles produced in a high energy reaction.

PACS numbers: 12.40.-y

Suppose that in a high energy collision only mesons are produced be-
longing to the pseudo scalar octet
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and that the isospin and hypercharge are conserved. The many meson final
state must then be an SU(3) singlet. Such a state is not uniquely defined,
but the concept of independent particle production will suggest a special
form for this singlet. For scalar particles it is known to lead to a coherent
state, while in the present case the result is a so called squeezed state, which
also plays an important role in quantum optics [2]. In the following it will be
shown how such a many particle singlet state can be constructed with the
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octet bosons (1). For that purpose eight boson creation operators af, ..., a}
are defined, which are connected to the octet creation operators as follows

1 . » »
W;=E(aiiw§); 75 =a3; 0" = ag;
1, . 1 , 1
—(a tar); Ky = —(ai +1a}); K3 = —(a; —ia3). (2
\/i—’.( 1t as); 0 \/5( ¢ +1iaz); o \/-2-( 6 7). (2)

The generators of SU(3) can be written in terms of these a}, and their
hermitean conjugates:

K;:

8
Ak = =2ifrimazam (k=1,...,8), ( Z implied) y  (3)
4 1

ym=

where the fig,, are the structure constants of SU(3), which satisfy the
relation (3]

Jiptfime = fiptfemt = frjefome (4)
From (3) and (4) follows immediately that
[Ajs M) = 2ifrede, (5)

which are indeed the commutation relations for SU(3). The A’s, it should
be stressed, are not Gell-Mann’s 3 X 3 matrices, but rather an infinite
dimensional representation of them. The other octet operators

tr = digmAtAm, (6)

constructed with the fully symmetric coefficients dg,,,, automatically obey
the correct rules under SU(3) transformations, i.e.

[Aiste] = 2ifkete. (7)
The Casimir operators
Co=MA  and O3 = Mtg = digm A dedm (8)

are scalars, so they commute with all A;. Table I and Table II give examples
of other octet and scalar operators.
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TABLE 1
Octet operators
frtmAdm = 3id
JetmAddm = fetmtidm = ity
ditmAitm = dimtidm = (3C2 + DA
Sretmtetm = i(C: + 3),\;,
ditmtetm = 3C3h+(1- 1Ca)a
TABLE 11
Scalar operators
ety = %sz + Cq
fklmAk AtAm = 3iC,
fklmAk At = 3iCy
JremAtetm = 1C§ + 3iC,
Fremtatitm = iC3C3 + 3iCs
dktm’\k AtAm - C3
diemAxActm = iCi+C,
ditmArtelm = 31C;:C3+Cs
drtmtititm = ici-1Ci+C

The expressions can be proved using a number of identities between f;,
and d;z, [4]. They are, however, not independent of A;,¢;,C2 and C3. The
simplest scalar operator C2, moreover, is of 4-th order in a; and a}, and
is therefore too complicated to serve as Hamiltonian, of which the ground
state is a good candidate for a many particle singlet state.

Since, however,

[AJ, ak] = 2ifjk£a¢ and [)\J, ai] = 2ifjk¢a2, (9)

the operators a;, and a} themselves are octet operators. They can therefore
be used to construct other scalar operators, like

N =ajar; G=aray; FoFy; HpHy; HeH,; HyHE, etc., (10)

where
F = dggmagam  and  Hp = dpgmaram. (11)
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Only N, G and G* are of second order, while the other scalars are of higher
order in a; and a}. For reason of simplicity, therefore, the Hamiltonian is

chosen as
H=N+4+ 3(tG+t*G*), (12)

where 4 is added for later convenience and ¢ is a complex number of mag-
nitude less than one. For |t| > 1 the Hamiltonian is of the same form as
H = p? — ¢ and is then not bounded, neither from above nor from below
[5]. When the Hamiltonian (12) is written in the form

8
H =Y [(akar+}) + Jtaras + }t*a}a}], (13)
k=1

a physical interpretation suggests itself immediately. In addition to a mass
term for each fundamental particle and its zero point energy, the Hamilto-
nian contains an interaction term, which shows that pairs of particles of the
same kind are created or destroyed independently of other particles.

It is now assumed that the mesons produced in a high energy collision
will quickly approach an equilibrium state in which their interaction is de-
scribed by the Hamiltonian (13). If the temperature is low enough this will
be the ground state, which is an SU(3) singlet. For higher temperatures
also other singlet eigenstates will be present, but this possibility will not be
considered now.

It is not difficult to diagonalise the Hamiltonian (13) by a Bogoliubov
transformation

ar = u*cp — veg, with inverse ck = uay + vay, (14)
where ¢3,...,¢s are new Bose operators. If
t =e**tanhy then u=e'® cosh% and v=e **sinh % (15)
The Hamiltonian then takes the form
8
H=4Y (cien+ ), (16)
k=1
with

1
coshy’

Let |y) be the ground state, defined by

(17)

crly) =0 for k=1,...,8. (18)
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If this state is written as |y) = f(a},...,a3)|0), where a;|0) = 0, the
function f(zi,...,zs) must be a solution of

i}
u-é-g;+va:kf=0 (k=1,...,8). (19)

This equation is easily solved and the normalized state |y) is found to be
1 * %
ly) = (1 - |w|?)? exp ("‘2‘!” Z%“k) 0) (20)
k

with )
w = e~ ¥**tanh % (21)

For special values of a the state |y) is the squeezed state referred to before.
Its name can be understood from the following consideration. Take one of
the eight modes and define a coordinate and momentum operator by

e = a*—a
z:E(a + a) and p.—\/.2_( )- (22)

The product of the uncertainties Az - Ap, where (Az)? = (z — Z)? and
(4p)? = (p — P)?, is equal to

Az - Ap = %\/l + sin? 2a - sinh? 5. (23)

For increasing « it will be shown that the average multiplicity is also grow-
ing. From (23) it is therefore seen that the wavefunction ¥(z) = (z|v)
will produce a large value of Az - Ap in the high energy limit v — oo.
Two exceptional cases arise when either a = 0 or a = /2, because then
Az - Ap = 1/2, no matter how large the value of 7. One therefore obtains
a Gaussian minimum width packet. In the first case the z-distribution is
very narrow

Az = ~1—2e—7’7 and = —-—-e

%

while the p-distribution is narrow in the second case:

Ntu

for a=0, (24)

§ bt

Az = Lo and Ap= —l-»e_%" for a=~ (25)
= p = ﬁ 2.

V2

This sudden narrowing of the wavefunction for certain values of its phase is
a typical quantum mechanical effect and is called “squeezing” [2].
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Returning to Eq. (20) for the multiparticle state |y) it is now possible
to calculate the probability P({n,}) to find n; particles of type 1,...,ng
particles of type 8. Since

N
a, *

8
{ne}) = 0}, (26)

this probability is P({n,}) = [{({n¢}|7)]?. It is easily calculated and found
to be equal to

8
P({ne}) = [] p(ne), (27)

=1
where p(n) = 0 for odd n and

(2m) = LE0 (20 (28)
p _cosh% nJ°

Apart from the replacement of SU(2) by SU(3), the probability (27) is the
same as obtained in Ref. [1] from a very different point of view.

In order to calculate averages and correlations between the number of
particles of different types, the number operators are first expressed in terms
of a; and a}. The result is given in Table III.

TABLE III
Number operators
n(xz) = 1(ajar+aja;) F i(ajaz — ajay)
n{mg} = ajas
n{K+) = (aias+agas)F %(a;as — aga4)
n(Ks) = j(asas+ajar) F §(agar — a3as)
n(n) = agag

Averages are now easily calculated using Eqs (14) and (18). With n; =
a?a; (no summation) it is seen that the number of charged- and of neutral
particles are

Ne=ny+ny;+n4+ng and Ng = n3 + ng + ny + ng. (29)
Their averages are

N. = Ny = 47; = 4|v|? = 4sinh? -;1 (30)
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With
nn; = Iv[4 + 2|u|2 . |v|25,'j (31)

the correlations become

D? = NZ - N? = sjul? - |v|? = 1N + 2N, (32)
NNy — N.Ny =0, (33)

and —— —2
D? =N%Z -N* = 16|ul?- |[v|? = 2D2. (34)

Other correlations between charged and neutral particles can be calcu-
lated similarly, but will not add much to the conclusion that in independent
pair production the SU(3) invariance gives an important contribution to
these correlations.

No dependence on the phase of the many particle state is seen. This
would be different if it were possible to measure the average value of the
neutral current

J= %(w;r: - TpT_). (35)
The average value of this operator is
J = (7|J}7) = sin2a- |u| - |v| = } sin2a - sinh . (36)

For high energies this would be a large number, proportional to N.. If,
however, the phase a would, for some reason, be energy dependent and
pass through 0 or 7/2 for some energy, then there would be a dramatic
change in J, caused by the squeezing of the final state.
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