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Quantum hadrodynamics (QHD) is the formulation of the relativistic
nuclear many-body problem in terms of renormalizable quantum field theory
based on hadronic degrees of freedom. A model with neutral scalar and vector
mesons (0, w) has had significant phenomenological success (QHD-I). An exten-
sion to include the isovector P through a Yang-Mills local gauge theory based on
isospin, with the vector meson mass generated through the Higgs mechanism,
also exists (QHD-II). Pions can be incorporated in a chiral-invariant fashion
using the linear sigma model. The low-mass scalar of QHD-I is then produced
dynamically through 7 interactions in this chiral-invariant theory. The ques-
tion arises whether one can construct a chiral-invariant QHD lagrangian that
incorporates the minimal set of hadrons {N, w, 7, p}, where N = (l‘:) is
the nucleon. These are the most important degrees of freedom for describing
the low-energy nucleon—nucleon interaction and nuclear structure physics. In
this paper we construct a chiral-invariant Yang-Mills theory based on the lo-
cal gauge symmetry SU(2)g x SU(2),. The baryon mass is generated through
spontaneous symmetry breaking (as in the linear sigma model), and the vector
meson masses are produced through the Higgs mechanism. The theory is parity
conserving. Two baryon isodoublets with opposite hypercharge y are necessary
to eliminate chiral anomalies. The minimal set of hadrons required consists of
{N, E; 0, w, &, p, G; 7, £}, where @ is the chiral partner of the p (the @
naturally obtains a higher mass in the model), and the 7 and £ represent scalar
and pseudoscalar Higgs particles. The parameters in this minimal theory con-
sist of eight coupling constants and one mass (g., gox + Y91, gp, a0 Ay B
Al; Mw), where 42 and X define the meson interaction potentials that lead to
spontaneous symmetry breaking.

PACS numbers: 11.15.Ex, 03.70.+k, 21.30.+y
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1. Introduction and motivation

Two goals of modern nuclear physics are to study the properties of
nuclear matter under extreme conditions of temperature and density, of in-
terest for example in condensed stellar objects, supernovae, and relativistic
heavy ion collisions, and to study the response of the nuclear system to
large momentum transfers, of interest for example at CEBAF. In devel-
oping any theoretical extrapolation from existing empirical knowledge of
nuclear behavior, it is essential to incorporate general principles of physics:
quantum mechanics, special relativity, and microscopic causality. The only
consistent theoretical framework we have for describing such a relativistic,
interacting many-body system is relativistic quantum field theor® based on
a local lagrangian density. Such theories based on hadronic degrees of free-
dom (baryons and mesons) have had significant phenomenological success
and have been the subject of numerous investigations in recent years. (For
reviews, see Refs [1], [2], and [3].) Renormalizable theories of this type are
known generically as quantum hadrodynamics (QHD).

A simple model (QHD-I) [4] based on baryons N = (), neutral scalar

mesons o coupled to the scalar baryon density %7, and neutral vector
mesons w coupled to the conserved baryon current 7)7,,1}: has been exten-
sively studied and applied. It has been extended to include the p field
through a Yang-Mills theory based on local isospin invariance (QHD-II) [5];
the vector meson mass is generated by the Higgs mechanism. Pions can be
included in a chiral-invariant fashion through the linear sigma model. The
low-mass scalar meson of QHD-I is then generated dynamically through the
7 interactions contained in the chiral-invariant lagrangian [6, 7]. Chiral
invariance plays a central role in low-energy pion physics.

One may ask whether the model can be extended so that the vector
mesons are also included in a chiral-invariant fashion. Qur goal is to develop
a QHD model with the following properties:

o It is based on hadronic degrees of freedom and contains at least N, w, =,
and p. These hadrons are the most important for nuclear phenomenol-
ogy and form the basis for successful meson-exchange descriptions of
the nucleon-nucleon interaction.

o It is invariant under isospin and chiral transformations.

¢ It is renormalizable.

e It conserves parity.

A model with these properties is constructed in this paper. We start
from the linear ¢ model with global SU(2)z x SU(2);, symmetry, which
requires both o and » fields. This model is converted into a locally invariant
Yang-Mills theory, necessitating the introduction of an axial-vector meson
a, the chiral partner of the p. The baryon is given a mass through the
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spontaneous symmetry breaking of the o model. Both vector mesons are
given mass through the Higgs mechanism. Equal treatment of the left and
right gauge fields guarantees parity conservation.

Chiral-invariant Yang-Mills theories are known to possess chiral anoma-
lies [8-10]. The simplest way to understand the appearance of anomalies
is by observing that while the classical action is invariant under local chi-
ral transformations, the fermion measure in the quantum path integral is
not [11, 12]. In the presence of anomalies, physical quantities such as the
partition function or § matrix will be gauge dependent. This implies that a
sensible quantum theory does not exist.

In the present model, chiral anomalies appear only in diagrams with a
single isoscalar, vector vertex. Thus we can eliminate the anomalies through
the following mechanism. The isoscalar, Lorentz vector w, which couples
to the baryon current in QHD-I, is assumed to couple more generally to
the conserved strong hypercharge current, where the hypercharge operator
isY =B+ S A second baryon 1sodoub1et is introduced, with hypercharge
(y=-1) opposxte to that of the nucleon (y = +1). For example, this could

be the = = (EE?.) The chiral anomalies from these two baryon fields cancel.

Physical quantities are now gauge invariant. The Ward identities are
preserved. The theory appears to be renormalizable.

The final set of hadronic degrees of freedom, which is the minimal one
required to achieve the desired goals, is {NV, E; o, w, =, p, 6; 7, {}; the last
two fields represent scalar and pseudoscalar Higgs particles. There are nine
parameters in this model eight coupling constants and one mass (g, gox +

Y917y 9ps Mg e HE Ams mw) (Another parameter, the pion mass my,
appears if the chiral symmetry is explicitly broken.) Here the parameters u
and ) enter in the meson-meson potential V responsible for the generation
of the baryon masses in the sigma model (Vi) and for the generation of
the vector meson masses through the Higgs mechanism (V31); we write this
potential generically as V(z%) = —u%2? + (A/4)z%. The phenomenological
consequences of the present model remain to be investigated.

A goal similar to that of the present paper has been pursued by Lovas
and Sailer [13]. The present model differs in several respects, namely, in the
minimization of the number of degrees of freedom and coupling constants,
in the imposition of parity conservation, and in the necessary elimination
of the chiral anomalies.

QHD must be viewed as a model of the underlying theory of quantum
chromodynamics (QCD), which describes the strong interactions that bind
colored quarks and gluons into the observed hadrons. To the extent that
QHD can successfully describe nuclear matter under extreme conditions,
it provides a powerful constraint on the low-momentum-transfer, large-
distance, effective degrees of freedom of QCD. There is evidence from QCD
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sum rules that the strong isoscalar, Lorentz scalar and vector potentials
predicted by QHD, and observed in nuclei, are a dynamical consequence of
QCD [14].

Although lattice gauge-theory calculations provide an impressive means
of directly exploring the consequences of the QCD lagrangian, the achieve-
ment of even a qualitative description of the relativistic, interacting, nuclear
many-body system through these techniques appears to lie well in the fu-
ture.

2. A chiral QHD model
2.1. The linear sigma model

To construct a chirally invariant model that contains the desired had-
ronic degrees of freedom (p, n, =, p, and w), we begin with the well-known
linear sigma model [15-17]. This model contains a pseudoscalar (y5) cou-
pling between pions and nucleons, and an auxiliary scalar field (denoted
here by s) to implement the chiral symmetry. Since chiral symmetry is only
approximate in nature, we will include a “small” symmetry-violating (SV)
term to generate a mass for the pion!. We will also add a massive isoscalar
vector field (representing the w) to supply a repulsive nucleon-nucleon in-
teraction, as in QHD-I. The isovector vector mesons will be omitted for now
and added in the next subsection.

By demanding that the theory be local, Lorentz covariant, parity in-
variant, isospin and chiral invariant, and renormalizable, one is led to the
form

Low = Lehiral + Lsv (2.1)
Lchiral = 1,[)[7”(1'3” —gvV#) = gn(s+ i75‘r-1r)]¢ + %(3,;33“3 + Opw-0¥w)

~IN? + w? —0?)E — 1F, F* 4+ ImiV, V¥ + 6L, (2.2)

Lsy = €s. (2.3)

Here ¢ = (iﬁ), =, and s are the nucleon, isovector pion, and neutral scalar
meson fields, respectively, g, is the pion—nucleon coupling constant, and 7
are the usual Pauli matrices. The parameters A and v describe the strength
of the meson self-interactions, and ¢ is a chiral-symmetry-violating param-
eter related to the pion mass; the exact chiral limit is obtained by setting
€ = 0. The form of the meson self-interactions allows for spontaneous sym-
metry breaking, which is used to give the nucleon a mass, as discussed

1 Note that while the pion mass is small on the scale of hadronic masses, it is
not small on the scale of nuclear physics observables!
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below. The w meson field is denoted by V¥, its field strength tensor is
F#Y = grVY — ¥V #, and its coupling to the nucleons is given by g,. Note
that this ow model is renormalizable, as it contains no derivative couplings
and is at most quartic in the meson fields; the counterterm contribution
0L will henceforth be suppressed. The conventions used here are those of
Refs [1-3).

The lagrangian L p;,,; is invariant under the infinitesimal global isospin
transformations

v — P = (1+ilra)y, (2.4)
*—orx=x—axw~, (2.5)

where a denotes three parameters that are independent of spacetime. (The
other meson fields remain unchanged.) Using Noether’s theorem, this in-
variance implies that the vector isovector current

=gyt rp+ 7w x OFx (2.6)

is conserved (9,T# = 0). This lagrangian is also invariant under the in-
finitesimal global chiral transformations (8 = constant)

Y — ¢ = (1+i3mB7s)9, (2.7)
*—n =7x—383, (2.8)
s— s =s+pB~x, (2.9)

which imply that there is a conserved azial isovector current
AV = Lpytysmp — mOHs + s0%w (2.10)
in the chiral limit ¢ = 0. When € # 0, we obtain instead the PCAC relation
O Al = —em, (2.11)

which follows from the field equations. (There is also a conserved baryon
current B* = Yy*4, as in QHD-I, since the lagrangian i is invariant under
global phase transformations of the baryon field.)

In the chiral limit, the conserved vector and axial-vector currents can
be used to define the generators of isospin and chiral rotations, which can
be combined to form generators for right- and left-handed isospin rotations.
These latter generators satisfy a Lie algebra corresponding to the group
SU(2)r x SU(2)L (see Ref. [17]). To illustrate this combined symmetry
explicitly and to make the imposition of local gauge invariance more trans-
parent, it is convenient to define right- and left-handed baryon fields:

=3(1+ys)y, YL=301-7)¥, Y=yr+vL, (212)



660 B.D. SErot, J.D. WALECKA

and to group the scalar and pion fields into a chiral four-vector:

1
= —(s—irnm 2.13
x= (s ir), (213)
which is represented as a 2 X 2 matrix.
In terms of these new variables, L.p;;a] can be written (to within an
additive constant) as

Lehiral = LN + Lx + Lo (2.14)
where
£N = i(-"l;R'fyD”d’R + JL']#D“"I’L) - \/ng(JLXtTPR + JRX@[’L) ’
(2.15)
Lr = §tr(8uxT0*x) - V(trx'x), (2.16)
Lo=—3F,F* + imiv, v, (2.17)

Note the particularly simple form of the meson—nucleon interaction with
these fields. We have written the baryon derivative as D* = 9* + ig, V¥,
which is a unit matrix in spin and isospin, and defined the meson self-
interactions as

—v2)
2

Vitrxtx) = (trx'x) + % (trx'x)?. (2.18)

The lower-case “tr” denotes a trace over isospin indices only. Here we have
defined 2 = vZA/2.

The transformation properties of the new fields are easily expressed by
defining a unitary SU(2) rotation matrix

U(w) = exp(37w) = cos(w/2) + if-Tsin(w/2) — 1+ irw, (2.19)

where w = #fiw denotes three real, constant parameters. There is one set
of rotation matrices for SU(2)g and another set for SU(2). It is now
obvious that L pja1 is separately invariant under the right-handed isospin
transformations

%?U'/’R, '/’L';”/’L, X"I‘{*UX, V“—E’V“, (2.20)
and the left-handed isospin transformations

Yr—Yr, YL U, xpall, VR VR (2.21)
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One can verify that these transformations reproduce the infinitesimal isospin
and chiral rotations given above, if one identifies a = %(wR + w,) and
B = }(wr — wL). Note that a mass term for the baryons is not allowed in
Lehiral, since it is proportional to ¥4 = ¥g vy + ¥, ¥R, which is clearly not
invariant. The baryon mass will be generated by spontaneous symmetry
breaking, which we shall discuss below.

What about the properties of Lcpira) under parity transformations? If
we denote the parity operator by P, the properties of scalar, pseudoscalar,
vector, and spinor fields lead to the transformation laws [18]

Px(t,z)P~ ! = xl(t,—z), PVE(Et )P =V, -2),
PyL(t,2)P ! = 1'Yr(t, —=), Pyr(t,z)P ! = 1 ¢L(t, —z). (2.22)

Observe that the parity transformation interchanges the right- and left-
handed spinor fields and flips the sign of the three-vector part of the vector
field (V# — V,). It is now easy to check that the action § = J d4zL,,, is
invariant under these transformations; note that with our conventions, the
change in dummy integration variables from @ to —z produces 0* — J,.

2.2. Inclusion of vector mesons

Now that we have a lagrangian that is manifestly invariant under global
SU(2)g % SU(2),, transformations, we want to add isovector mesons by gen-
eralizing to a local gauge theory. First, we follow the well-known Yang-
Mills procedures {19, 20] for the right- and left-handed isospin transforma-
tions, which will lead to a theory containing massless isovector-vector and
isovector-axial vector mesons. We will then implement the Higgs mechanism
to generate masses for these mesons.

Begin by defining right and left isovector gauge fields »# and £* that
transform as follows under infinitesimal local transformations w(z):

Tu Th T WR X P, — G ' wr, t,,——R—J,,, (2.23)
tu‘f"# —wp X £, — G—la,,wL, Tw T (2.24)
We will see shortly that parity invariance requires the same gauge coupling
G for the left and right vector fields. The transformations of the other fields
remain as in Eqs (2.20) and (2.21), except that wr(z) and wy,(z) are now

functions of spacetime.
The vector meson field tensors are defined by

Ry, = 0,r,—8,7u—G(ruxr,), Ly = 0,6,—8,0,-G(L,xt,), (2.25)
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and it is easy to verify that under infinitesimal transformations,

R“y ‘E" R“y — WR X R“y y L“y T L“y - W1, X L“y . (2-26)

Thus kinetic-energy terms of the form R,,-R*" and L,,-L*" are locally
gauge invariant. In contrast, mass terms of the form r,-r¥ or £,-£" are not
invariant, so we cannot simply add mass terms for these mesons.

When the rotation parameters wgr(z) and wy(z) depend on spacetime,
the lagrangian of Eq. (2.14) is no longer invariant. The invariance can be
restored, however, by defining covariant derivatives for the spinor and chiral
meson fields. These covariant derivatives take the form

Duym = (8 +igvVu + G mr, )R,
Dyyr, = (0, +igvVu + 3G 7L,)YL,
Dux =0u,x + 3G(rru)x — 3Gx(TL,). (2.27)
Note in particular the ordering of factors in the last line. The covariant

derivatives transform exactly as the fields in Eqs (2.20) and (2.21). It is
now straightforward to show that the lagrangian given by

L=CLn+Lr+Lg, (2.28)

where
Lg=L,—- 3R, -R¥ - 3L, - LW, (2.29)

and LN, Lx, and L, are given by Eqgs (2.15), (2.16), and (2.17), respectively,
is locally SU(2)g x SU(2),, gauge invariant, provided that all derivatives are
interpreted as the covariant derivatives from Eq. (2.27). For example, the
scalar-pion lagrangian now reads

Lx=3tr[(Dux)!D*x] - V(trxtx). (2.30)

The parity invariance of the action § = [d%zL can also be verified using
the relations (2.22) together with

Pré(t, )P~ = L,(t,—=), Per(t,z)P~! = ru(t,—=). (2.31)
These last relations make it clear that the gauge coupling G' must be the

same for the left and right vector fields if parity invariance is to be main-
tained.
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2.3. The Higgs sector

As noted above, local chiral gauge invariance precludes the addition of
mass terms for the isovector mesons. To give these mesons masses, we shall
use spontaneous symmetry breaking and the Higgs mechanism, as in the
standard model of electroweak interactions {20-23]. We therefore introduce
two complex doublets of spinless fields:

we(), we(8).  om

which transform as the fundamental representation under global SU(2)
transformations for each group:

¢R?U¢Ra ¢L_R""¢L$
¢ UdL, ¢r¢R. (2.33)

Thus any meson—-meson potential that depends on ¢£¢R or ¢£¢L is invari-
ant. ‘

For the kinetic energies of these fields, we define the covariant deriva-
tives

Dudr = (0, + %G rr)ér,  DudL = (0. + %G ). (2.34)

Thus the combination [(D,¢1,)! D#¢y] is locally gauge invariant, and simi-
larly for ¢R.

Under parity transformations, we have
ﬁ.qu(ta z)'f)_l = ¢L(t’ _3) ’ ﬁd’L(t, 3)73_1 = ¢R(t’ _z) ’ (2’35)

which implies both that the gauge coupling G must be the same for the
right and left fields and that the meson-meson potential must contain the
same parameters for the right and left fields. Thus we are led to the gauge-
invariant Higgs lagrangian

Cr = [(Dudr)!(D#6R) + (Dudr) (D 1)) + whi(dhom + 6 1)
-2 {(ghon)? + Gl (2:36)

By taking u2 > 0, the Higgs potential will allow for spontaneous symmetry
breaking, and due to the couplings between the Higgs and gauge fields
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contained in the covariant derivatives, this will generate masses for the
isovector mesons.

2.4. Summary

By combining the previous results, we can exhibit the lagrangian for
our chiral QHD model. If we call this model QHD-III, the lagrangian is
given by

L =LNn+Lx+La+La+Lsy, (2.37)
where LN, Lx, Lg, Lu, and Lgy are given by Egs (2.15), (2.30), (2.29)
and (2.17), (2.36), and (2.3), respectively, the scalar-pion self-interactions
are determined by Eq. (2.18), and the covariant derivatives are given by
Eqs (2.27) and (2.34). The action resulting from this local, Lorentz-invariant
lagrangian density is parity invariant, and in the absence of the symmetry-
violating term Lgy, the lagrangian 1is invariant under local
SU(2)g x SU(2),, gauge transformations. I{ is a minimal lagrangian con-
taining the desired degrees of freedom that obeys these constraints.

3. Representation in terms of physical fields

The model lagrangian Ly1; has been constructed by imposing the re-
quired symmetry constraints on a system containing the desired hadron
fields. The form in Eq. (2.37) is useful for demonstrating the chiral in-
variance of the theory, but for practical calculations, it is more efficient to
rewrite the lagrangian in terms of physical fields and familiar parameters.
This rewriting involves the following operations:

o Define vector meson fields with well-defined parity (representing the p
and a; mesons) to replace the chiral gauge fields r* and £*.

¢ Spontaneously break the global chiral symmetry to give the nucleon a
mass and rewrite the nucleon and pion sector in terms of fields with
zero expectation value in the vacuum.

o Spontaneously break the local chiral symmetry to give the vector mesons
mass and rewrite the field variables in the so-called “unitary gauge.”

o Ensure that the resulting lagrangian contains no bilinear terms that mix
fields. This is necessary to define the appropriate noninteracting parts
of the lagrangian and the corresponding noninteracting propagators for
use in the Feynman rules.

We now consider each of these procedures in turn.

Vector meson fields with well-defined parity can be constructed by tak-
ing linear combinations of the left and right gauge fields. We will denote
the p meson field by b, and the a; field by a,, where

ay = :}3("# ~4,), by= —=(rp +£,)- (3.1)



Chiral QHD with Vector Mesons 665

The overall factors of 1/4/2 imply that the jacobian of this transformation
is unity, so that the field-strength tensors become

R“y‘R“v + L#y'L“u = A“y'A#u + B“y'Buu 3 (3.2)
where

A“y = a“ay - aya“ gp(b X ay + a" X by) 9

Here we have defined G = «,/-2_g,, in terms of the physical p meson coupling
constant. Because of parity conservation, this single coupling defines the
interactions of both the p and a; mesons.

The properties of the b, and a, fields under parity transformations
follow from Eq. (2.31) as

Pb,(t,2)P ! = br(t,—z), Pau(t,z)P ! =-a*(t,-2z), (3.4)
and thus the p is a polar vector meson and the aj is an axial vector meson?.
These results also imply that the field strength tensors B*” and A*” have
well-defined parity transformation properties. Moreover, the gauge trans-
formations of the new fields can be deduced from Eqs (2.23) and (2.24):

a“——»a"—aXa"—ﬂxb“—g;la“B,

b“—»b“—axb“—ﬁxa"—ggla"a, (3.5)

where a(z) = {wr(z) + wi(z)] and B(z) = 3[wr(z) — wp(z)]. We will
postpone rewriting the covariant derivatives in terms of the b* and a* fields.

To respect chiral symmetry, no baryon mass term is allowed in the la-
grangian L piral- The baryon mass can be generated by spontaneous symme-
try breaking, [17, 1], which arises from the form of the potential V (tr x!x).
Symmetry breaking implies that the scalar field s has a nonzero vacuum
expectation value (s) and that the pion is a massless Goldstone boson (in
the limit € = 0).

After defining a shifted scalar field o = (s) — s and the physical masses

through
2 2

M ms —m
M = g (s), €=;;m?n /\=-12‘ﬁ2—‘1912n (3.6)
one can rewrite Ly + Lx + Lsy so that the particle masses are explicit. The
algebra has been discussed in the indicated references and the final result

2 Note that the a;(1260), not the by (1235), is the chiral partner of the p(770),
since the former has the correct G-parity.
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will be given below. Note that the explicit violation of chiral symmetry is
contained entirely in the parameter my, the pion mass.

A similar spontaneous symmetry breaking mechanism is applied to the
Higgs potential to generate the vector meson masses. To maintain both
parity and charge conservation, a nonzero vacuum expectation value can be
given only to a combination of Higgs fields that is a neutral, positive-parity
scalar. Thus we take the expectation values

m) =) =1 (3). 3.7)

u

and redefine the eight spinless fields in ¢r and ¢, according to

¢r = 3 exp(—iTp/2u) (u+?7+£) ,

o1 = Lexp(—ir-A/2u) (u +_‘,’7_ g) . (3.8)

Here p and A are triplets of right- and left-handed spinless fields that will
be absorbed by the isovector b# and a* fields. The remaining Higgs fields
7 and £ are respectively scalar and pseudoscalar:

’pn(t, 3)73_1 = 77(t1 —z) ’ 15£(t’ z)'ﬁ_l = _£(t’ "’z) . (3'9)

The algebra that follows after inserting the definitions (3.8) into Ly is
discussed in the literature {20] and will not be repeated here. The parameter
u is chosen to cancel the linear term in the classical Higgs potential, and p%
and Ay are replaced by the Higgs mass my and rho mass m, according to

2 4m? 2.2
2_Bem _2mp,  _ TMHIp (3.10)

2 _
- 2! 2
A" 97 my

K

mk, u

[

(Both Higgs fields 7 and £ have the same mass.) The remaining fields in L1
are then redefined using a particular point transformation, which is often
called “choosing the unitary gauge.” (For the details of these manipulations,
see Ref. [20].) The particle content of the theory now becomes transparent,
as it is written in terms of fields with zero expectation value in the vacuum,
and the isovector-vector mesons are massive.

After carrying out all of the above procedures, and after a slight reshuf-
fling of mass terms between parts of the lagrangian, one arrives at the desired
result:

Lt = Ly + Lox + Lg + LH, (3.11)
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where the nucleon contribution is
LN =${i‘7“ [a# +igy Vi + 5 gpm(bu + 75“#)]
— (M — gxo) — ig,,75‘r-1r}¢. (3.12)

The scalar and pion contribution is given by

Lox =1 [(8,.0 —gp®a,)? - m? 02]
+3 [(6,,1:’ + gp0a, + g% X b“) —-m2 2]
- (:—Q)Ma“-(a“x + gp0a” + g,x x b*) — V(0o, %), (3.13)
x

m§ 2
V(e,x) = —-g,,—-—-——cr(a + = )+g,

m2
x 242
T, Mo ~ M2 (52 4 x2)2(3.14)

8M?
and the mass and kinetic terms for the vector fields are
Lg = -1Fu, F* + imiV, V¥ - 1B, -B* + Jm2b,-b* — 1A, -A*”
+3 [m +( ) Mz]a“ a*, (3.15)

where the vector meson field tensors A,, and B, are defined in Eq. (3.3).
Finally, the lagrangian for the Higgs sector is

Ly = 3(8um0%n — min®) + 3(8,60%€ — m}€?)
+3 [gpmpn + 395(n° + 62)] (bud* +ay-at)+ (ypmpf + %yﬁnf)bu-a“

3mfig, "‘ng 2,2 Mhde 3 "‘?{92 4, 04
(4m,, * Tomz " )€ - im, 1 mmz (1 HE)- (316)

As discussed in Ref. [1], the Higgs mesons are to be given a large mass
so that they function as “regulators” that maintain renormalizability with
minimal effects on the low-energy predictions of the theory.

An examination of the final line in Eq. (3.13) reveals that our manipu-
lations are not yet complete, since there is still a bilinear term that mixes
a, and 0#x. This coupling, which arises from the spontaneous symmetry
breaking, can be removed by shifting the a, field according to

(m3 - m3)!/2

m3

M)a#‘?":“u'*‘

17
gnm2 Our, (3.17)

a“——-»a“-}-(
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where we have defined the a; mass [see Eq. (3.15)] by
mi = m3 + (9,M/gx)? . (3.18)

The transformation (3.17) leaves d,a, — 3, a, unchanged, so the quadratic
kinetic energy terms in —%A,,,,-A'“’ are unaffected. The canonical nor-
malization for the pion field can now be achieved by rescaling it according

to

™ — [1 - (M)z] 1 ® = (&) . (3.19)

gxMa mp
It is easy to verify that with the indicated redefinitions, the noninteracting
lagrangians for the » and a, fields take their standard forms. Nevertheless,
our previous identification of m, as the pion mass (which is absent in the
chiral-invariant theory) is incorrect due to the mixing of d,# and a,; the
correct physical pion mass can be restored by making the final replacement
2 _(9:M 2] 2,_(7_7}_;)_)2 2 :

m? — 1 (g,rm.) m} = (72) k. (3.20)
Since the multiplicative factor on the right-hand side is essentially unity for
reasonable masses and couplings, the explicit violation of chiral symmetry
is still small. The a; mass m, remains as in Eq. (3.18). We will not exhibit
the final expressions obtained by making the preceding replacements, since
the results are not particularly illuminating.

The lagrangian given by Egs (3.11)-(3.16) defines a minimal, parity
conserving, locally chiral invariant model (when m, = 0) containing the
desired degrees of freedom (p, n, =, p, and w). The additional fields o,
a,, 1, and § necessarily appear to maintain the local chiral invariance. It
is straightforward to verify that Ly (with m, = 0) is still invariant under
a set of global isospin and chiral transformations, leading to the conserved
vector and axial isovector currents

T+ :%$7"1't/1+ ™ X [3“17-*' gpm X b* — (g&) (M - g,a)a“]‘
T
+b, x B"* +a, x AV*, (3.21)
b 178 u M [
Al =3y ysTp + w0 o'-}—(——a)a T
g=
M
M _ B .at
e op(M o) w8 — gpx(mat)
2
- .qr»(M - 0) a* +'b, x A¥* +a, x B"*, (3.22)
9=

For a nonzero pion mass, we find the PCAC relation

2
M m") x, (3.23)

OpAt = —emr = —( g”
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which follows from the field equations. (To express the currents in terms of
physical fields, one must redefine the a* and = fields as discussed above.)

Moreover, since the lagrangian Ly still obeys the (now hidden) local
SU(2)g xSU(2),, gauge invariance, and since all masses have been generated
by spontaneous symmetry breaking and the Higgs mechanism, it is tempting
to conclude that the field theory described by L1 is renormalizable. There
are, however, two problems with this conclusion. First, because of the
explicit violation of the chiral symmetry when m, # 0, the axial current is
not conserved and instead obeys the PCAC relation (3.23). Since the proof
of renormalizability in massive Yang—Mills theory relies on the conservation
of the relevant current, it is possible that this symmetry violation destroys
the renormalizability. However, an examination of Egs (3.11)—(3.16) shows
that the parameter m, enters fairly innocuously; ‘it will appear only in the
pion propagator and in the ox self-interactions, whose strength is arbitrary,
since m, is a free parameter. It is possible that this “soft” violation of the
symmetry will not destroy the required cancellations between baryon, gauge
boson, and ghost loops (when the theory is quantized) that are necessary
to maintain renormalizability. Nevertheless, we have no proof of this result.
To ensure renormalizability, it may be necessary to compute quantum loops
in this theory in the exact chiral limit, with m, = 0. (One can certainly
retain a finite m, at the tree level.)

Second, and much more important, is the possibility of chiral anoma-
lies. These are known to arise in chiral gauge theories, and one of the
consequences is the loss of renormalizability [9]. It is therefore necessary to
address this question in some detail, and we turn now to this point.

4. Cancellation of chiral anomalies

In the presence of both vector and axial-vector couplings to the mesons,
it is possible that quantum loop corrections will modify the conservation of
the axial current, change the axial Ward identities, and destroy the renor-
malizability of the theory [8, 9, 24]. More generally, as discussed below,
the fermion measure in the quantum-mechanical path integral may not be
invariant under chiral gauge transformations, and physical quantities then
become gauge dependent [25, 11, 12, 26]. In other words, the symmetries
of the classical lagrangian may not remain when the theory is quantized.

As a simple introduction, and to provide some insight into both the
problem and the proposed solution, consider first the fermion-loop triangle
diagrams in QED, as illustrated in Fig. 1.

Wick’s theorem implies that these two diagrams provide separate con-
tributions to the S matrix, and the combined contribution is proportional
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Tu Y

7)\ 7p 7)\ 7p

Fig. 1. Fermion-loop triangle diagrams in QED. Application of the Feynman rules
to these two diagrams generates the analytic expression in Eq. (4.1).

to

L} + L2 = /d‘z; d422 d423 ’I‘r{Gy(zl el 33)7pGE‘(33 — 22)‘]’,,6;.\(22 — zl)-y;\
+Gr(21 — 22)71,Gr(22 — 23)7,Gr(23 — 21)72},  (41)

where Gp(z — y) is the noninteracting fermion propagator, and the upper-
case “Tr” denotes a trace over Dirac indices. Now make use of the existence
of the Dirac (charge conjugation) matrix C satisfying

CruC =17, (4.2)

which implies
CGe(z —y)C™ = Ge(y - 2)7 . (4.3)

Insertion of C~1C between all the factors in Eq. (4.1) and use of the cyclic
property of the trace then yields

L+ Lz =
fd431 dizodiz; Tr {(—-1)3GF(23 -2 )T'y;pr(zz —za)T’y;pr(:c] —zg)T‘yK’
+(-1)2Ge(z2 — 21) 71 Ge(z3 — 22)T7IGr(z1 — 23)T71 } . (4.4)
Use of the cyclic property again, together with the relation
Te{aTdT ... yT2T} = Tr{zy...ba}, (4.5)
leads to
Li+L:=
/d“z; diz,d%z; Tr {(—-1)3Gp(:c1 — 22)7,Gr(22 — 23)7,Gr(23 — z1)7)

+ (—1)3Ge(z1 — 23)1uGr(zs — 22)7,Gr(22 — 21)72}
=—~L;- L. (4.6)
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Hence L; + Lz = 0, and these two contributions cancel identically in QED.
(This is Furry’s theorem.)

Now include the possibility of inserting a 75 at any vertex in the loop,
and consider triangle diagrams with an odd number of v5’s, so that one is
calculating a potential contribution to the axial-vector current. Since

C’YSC_I =75, c7u7sc_l = (7#75)T ) (4'7)

one generates a factor of (+1) at each vertex containing a 7,7s, instead of
the factor (—1) found above. Hence the contribution from the two triangle
diagrams now add:

Ly=+L;, odd number of 75's. (4.8)

Thus the sum of these diagrams can produce an anomalous contribution to
the axial-vector current and its divergence.

Now suppose that the fermion is an isodoublet ¢ = (ﬁ), as in QHD,
and that each of the vertices has an isovector coupling proportional to 7;.
Then, since the isospin trace factors out of each loop integral, the sum of
those graphs with an odd number of v5’s will again vanish:

tr(ritjTi) L1 + tr(iTeT;) L2 = tr(ri{7j, T })L1 = 0. (4.9)

Note that the sum of the loops vanishes here because the required trace of
the T matrices is zero. Loops with an even number of v5’s can be shown
not to produce anomalies [8]. Thus, in this SU(2)g x SU(2);, theory, there
are no anomalies at the triangle level.

What happens if the loop contains an odd number of 75 matrices, but
there is a coupling to an isoscalar vector meson at one vertex, so that the
contributions of the two loops do not cancel, and the trace of the r matrices
does not vanish? This is the case in QHD with one axial vector vertex
(Ly = L) and two isovector vertices [tr(7j7;) # 0]. Now, however, one
can arrange for the triangle loops to cancel by the following device. Take
the isoscalar vector meson to couple to a fermion charge, assumed for the
w to be the strong hypercharge y = B + §, with y = 1 for the nucleon;
now add a second fermion isodoublet to the theory with identical vector
and axial-vector couplings, but with opposite hypercharge, for example, the
2= (2) withy = -1,

There are now four triangle diagrams, as illustrated in Fig. 2. Although
the loops do not cancel exactly when the fermions have different masses, the
anomalous contributions to the divergence of the axial current are indepen-
dent of the fermion mass (9], and thus the anomaly from the second set of
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YuVsTi Yu?sTi
A ' Zl
Y7 Vo7 Y7a VT
YuVsTy YuYsTi

) & ' Z{l
—Y7a 7pT' —Y7a 7ij

]

Fig. 2. Triangle-loop diagrams for SU(2); x SU(2),, with an additional isoscalar
vector meson coupled to the conserved hypercharge current and two fermion isodou-
blets with opposite hypercharge.

loops with y = —1 cancels that from the first set with y = +1. This model
therefore eliminates chiral anomalies at the triangle level3.

The preceding arguments apply only at the level of triangle loops. To
investigate the entire problem of potential chiral anomalies, one needs more
powerful methods. The chiral anomalies can be viewed as arising because
the fermion measure in the quantum-mechanical path integral is, in general,
not invariant under chiral transformations. This implies that in any quan-
tum field theory with fermions coupled to vector or axial vector fields, it
is impossible to satisfy simultaneously the vector and axial Ward identities
derived from the lagrangian through Noether’s theorem. When anomalies
are present, physical quantities will be gauge dependent and the quantum
gauge theory is ill-defined. However, if one can choose the particle con-
tent of the theory so that the complete measure is invariant under chiral
‘transformations, then one will have succeeded in eliminating the anomalies.

Define the fermion integration measure as follows:

du = D(F)D(Y), (4.10)
and assume one has a gauge theory with a covariant derivative defined by

V= AVV,, A, = 2545 (4.11)

8 Although we have not proved it, radiative corrections to the lowest-order loops
do not change the value of the anomaly [8].
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Here A% and A{; are hermitian matrices in some intrinsic space, and repeated
Latin indices are summed.
If we now define a local chiral gauge transformation by [see Eq. (2.7)]

¥(z) — exp {if(2)rs}¥(2),
B(z) = B*(z)X%, (4.12)

the general transformation of the fermion measure under this chiral trans-
formation follows from the analysis of Fujikawa [11, 12] and is given by
Einhorn and Jones [26]:

ap— dpexp { - 2i / &z 4%(2)A%(2)} (4.13)

where

A%(z) = —— —gerof 1 (x4 [16Y,6Y, + 164G
+4(4,4 Gaﬂ+G Aadp + AuGloAp) + £ 4,4, 4045] }(419)

The field tensors are defined as matrices in the intrinsic space:

GV, =0,V, - 8,V — [V, Vo] - [4,, 4],
Ghy, = 0uAy — 8, A, — [V, 4] - [4,, V). (4.15)

The result (4.14) agrees with that of Bardeen [8] and thus obeys the con-
sistency conditions of Wess and Zumino [27]. It also generates the minimal
anomalous contributions, in that any redefinition of the path integral (by
adding counterterms to the lagrangian) will either violate the Ward identity
for the vector current or add more terms to the right-hand side of (4.14) [8].

In the case at hand, the covariant derivative is given by [see Eq. (3.12)]

D,=0,+igV, + %g,,r- b, + %g,,r- a,7s, (4.16)

and Eq. (4.14) becomes

Aa(z) = 1672 spyaﬁ tl‘( { (vapu + 2ngBp,u)(gv af + 2ngBa,B)
+ 71; g,z, T AT Aqp — -3-gp [r-a,,,-r-a,,(gv aB + fgp‘r-Baﬁ)
+ (ng;w + %ng'Bpu)T'aaT'aﬂ + T'a#(ngua + %gPT'Bya)T'ap]

- %g: r-a“r-a,‘r-aar-aﬂ}) . (4.17)
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After some algebra, one can show that the change in measure under a local
gauge transformation in the gauge theory of Eq. (3.11) reduces to

dp — dp exp {—i %fzﬁ /d"z FeB ﬂ-B;ﬁ} , (4.18)

where FoB = 1caBuwvF,  with F,, = 8,V, - 8,V,, and

The result in Eq. (4.18) is indeed linear in the field and coupling constant
of the w meson, and thus the anomalies can be cancelled by the mechanism
discussed above. Note also that if g, = 0, the theory with local SU(2)g X
SU(2),, invariance is explicitly anomaly free (as we saw above at the triangle
level).

We therefore extend the theory so that the fermion carries an additional
internal charge (the hypercharge y = § + B) and couple the isoscalar w to
the corresponding conserved hypercurrent ¥y#yi. The baryon part of the
lagrangian now takes a form analogous to Eq. (2.15), with one set of terms
for the baryon doublet 1 and another for the cascade doublet =. The
covariant derivatives look exactly as in Eq. (2.27), except that we make the
replacement g, — ygy, and we also replace the coupling g, in (2.15) with
gor + Y91x, which will allow us to generate different masses for the N and
Z by spontaneous symmetry breaking.

The spontaneous chiral-symmetry breaking proceeds exactly as before,
and the couplings go» and g;» are adjusted to produce the observed nucleon
and cascade massés. The algebra is straightforward, and one finds

ME) , (4.20)

gox = %gﬂ'(l + J—MA';) y Jixn = %97(1 - -I—w—

where M is the nucleon mass and g, is the pion—nucleon coupling. The
remainder of L1 follows exactly as before, and only the baryon part of the
lagrangian changes. In the end, the new lagrangian can be written as

Lin=£Lp+Lox+ Lg +LH, (4.21)
where the baryon contribution is now

Ly =¥ {iv*[0, + iygvVu + § 9o (b + 1504))]
— (M - gro) - ig,,75‘r-1r}\I' . (4.22)

Here we have introduced the hypercharge doublet ¥ composed of the two

isodoublets:
¥ = (ﬁ) , (4.23)
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and the following quantities in Eq. (4.22) are to be interpreted as matrices
in the hypercharge space:

(1 o (M o (ge O
y”(ﬂ —1)’ M“(O Ma)’ 9""(0 g,,Mg/M)'('*'?“)

All other terms involve unit matrices in the hypercharge space.

The addition of the second fermion with opposite hypercharge produces
a combined fermion measure that is indeed invariant under chiral gauge
transformations:

dp = D(¥)D(¥)D(E)D(E) — dp, (4.25)

and hence the theory will be free of chiral anomalies. This cancellation can
be interpreted in the language of fermion loops by observing that the total
hypercharge of all species in the baryon sector is zero. The phenomenology
of this new model in the hypercharge y = 1 sector, for which it is specifically
designed, should be little changed by the addition of the second fermion,
which only contributes at the loop level in that sector.

Note also that since the (electromagnetic) charges of the baryons add
to zero, this theory will still be anomaly free if the local gauge group is
extended to include electromagnetic interactions, as discussed in chapter 7
of Ref. [1]%.

Several comments are in order about our anomaly cancellation mech-
anism and the mass generation for the new fermions. Note first that we
cannot cancel the anomalies by changing only the sign of the coupling to
the axial vector meson a,. This corresponds to switching the gauge fields
¢, < r, in the covariant derivatives (2.27), which clearly violates local
gauge invariance. Moreover, we cannot generate a mass for the new fermion
by coupling it to the Higgs field (as is done, for example, in the standard
electroweak theory [22, 23]), because our fermions appear in both right-
and left-handed doublets, which cannot be combined with a Higgs doublet
to produce an isoscalar Yukawa coupling. We must generate the = mass by
coupling it to the scalar and pion fields, and we cannot introduce new scalar
and pion fields, since the spontaneous chiral-symmetry breaking would then
produce another isovector of massless “pions”, which are not observed. Thus
the coupling-to-mass ratio g»/M must be the same for the nucleon and the
= [see Eq. (3.6)). There is no advantage to making the = extremely massive,
since the #= coupling must scale accordingly, and loop diagrams involving
the Z will remain as large as those involving nucleons. In summary, we are

4 We remark that the usual argument for hadronic contributions to 7% — yv
decay no longer holds in this model.
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essentially forced into the mechanism described above, which we implement
with a new fermion that has a mass comparable to the other hadrons in the
theory.

5. Discussion

The purpose of this paper is to construct a renormalizable quantum field
theory based on hadrons (quantum hadrodyramics) that is isospin invariant,
chirally invariant, parity conserving, and that contains p, n, n, w, and p.
These hadrons are the most important low-mass degrees of freedom for
describing the nucleon-nucleon force and nuclear structure.

We begin with the linear sigma-omega model, which contains nucle-
ons, pions, an auxiliary scalar field to implement the chiral symmetry, and
isoscalar, Lorentz vector w mesons. This model is invariant under global
isospin and chiral transformations. These global symmetries are then ele-
vated to local symmetries, which requires the addition of vector and axial-
vector gauge fields representing the p meson and its chiral partner, the a;.
To maintain the local SU(2)g x SU(2);, symmetry, the masses of the baryons
and vector mesons are generated by spontaneous symmetry breaking and
the Higgs mechanism.

The model lagrangian is locally chiral invariant and parity conserving.
The spontaneous symmetry breaking naturally produces an a; mass that
is larger than the p mass, although the former is still substantially smaller
than the empirical a; mass for reasonable values of the coupling constants.
(Explicit chiral-symmetry violation may be responsible for the remainder
of the mass shift.) Moreover, although the classical lagrangian respects the
local chiral symmetry, quantum corrections produce anomalies that violate
the symmetry and render the theory nonrenormalizable. Since the chiral
anomalies occur only in fermion-loop diagrams that contain a single cou-
pling to the w meson, they are eliminated by assuming that the w couples
to the conserved strong hypercharge current and by introducing another
isodoublet of baryons that couples to the w with a hypercharge opposite
to that of the nueleon. For definiteness, we take this additional baryon
to be the cascade (£). Note that this cancellation mechanism differs from
that usually suggested in the literature, because we reverse the sign of the
coupling to the isoscalar vector meson rather than the sign of the coupling
to the tsovector axial-vector meson [9]. The complete model, which we call
QHD-III, is isospin and chirally invariant, parity conserving, and apparently
renormalizable.

One of our goals is to minimize the number of degrees of freedom and
coupling constants. This has been achieved, since the current model (QHD-
III) contains only one more parameter than the simpler model (QHD-II)
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involving nucleons, pions, and isoscalar (w) and isovector (p) vector mesons
[1]. In fact, no new parameters are needed to implement the chiral symme-
try, as long as parity conservation is enforced. The single extra parameter
(Mz) enters only to achieve the cancellation of the chiral anomalies. The
minimal set of hadrons required is {N, Z; o, w, =, p, a; 0, (}. These re-
sults are in contrast to the model proposed by Lovas and Sailer [13], where
the number of degrees of freedom is not minimal, parity conservation is not
imposed, and the lagrangian still produces chiral anomalies when quantized.

The lagrangian for our minimal model is given in terms of the physical
degrees of freedom by Eqs (4.21), (4.22), (3.13), (3.14), (3.15), and (3.16).
The shifts in Eqs (3.17), (3.19), and (3.20) must also be made to achieve
the correct forms for the noninteracting meson lagrangians. The resulting
lagrangian can be quantized using path-integral methods and well-known
gauge-theory procedures, such as the implementation of the Faddeev—Popov
Ansatz to handle the local gauge invariance [20, 1]. Predictions can then be
made (and tested) for various hadronic observables; for example, the decay
width of the a; meson can be calculated in terms of parameters determined
from other processes (such as p meson decay).

Moreover, if one enlarges the local gauge group to include the U(1)
of hypercharge [1], electromagnetic interactions can be included, and some
electromagnetic decays of these hadrons can be calculated. (The theory still
remains anomaly free, since the sum of the charges of the baryons is zero.)

To obtain predictions for nuclear matter from QHD-III, one must uti-
lize the procedures advocated for chiral models in Refs [2] and [3]. First,
the scalar field (o) in the QHD-III lagrangian should not be identified with
the low-mass scalar field of QHD-I. The o of QHD-III is instead to be as-
signed a large mass, and the mid-range scalar attraction between nucleons
must be generated dynamically from the exchange of two correlated pions
in the scalar-isoscalar channel [6, 7]. This correlated two-pion exchange can
be simulated by introducing an “effective” low-mass scalar field, which can
then be studied at the mean-field level. Moreover, the baryon, pion, and ¢
fields must be redefined using a chiral transformation, so that the lagrangian
can be rewritten in terms of derivative couplings between the baryons and
pions [1]. These procedures will produce a phenomenology resembling that
of QHD-I (i.e., large isoscalar scalar and vector interactions), while also
including pions with derivative couplings to nucleons (which guarantees the
soft-pion theorems) as well as chiral-invariant interactions with isovector
vector and axial-vector mesons. Another degree of freedom central to low-
energy nuclear dynamics, the A(1232) resonance, also arises dynamically in
this model [28]. The effects of the additional (Z) baryons will appear only
through loop corrections in the nonstrange sector, and hopefully these cor-
rections will generate only modest changes to successful QHD predictions.
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Finally, the Higgs mesons should also be assigned a large mass, so that they
serve only to implement the renormalizability of the theory, with minimal
impact on low-energy predictions.

To obtain a renormalizable model, we must introduce a single degree
of freedom (denoted here as Z) from outside the “nuclear domain.” Thus
the present model is not interided to correctly describe the physics of the
strange sector. For example, in a system with net hypercharge zero — equal
numbers of nucleons and cascades — the source term for the w meson will
vanish. Without this short-range repulsion, the properties of the system
will be sensitive to the details of the other short-range interactions. It is
clearly necessary to augment the QHD-III lagrangian to include additional
strange hadrons (K, A, ¥) with realistic interactions [for example, by using
SU(3)g x SU(3),, symmetry] before meaningful results can be obtained in
the strange sector.

In summary, the present model contains the important low-energy had-
ronic degrees of freedom for describing physics in the nuclear domain of
up and down quarks. It manifests the isospin and chiral symmetry of the
underlying QCD lagrangian. Moreover, it incorporates hadronic resonances
dynamically while respecting these symmetries. The strong, mid-range,
scalar attraction between nucleons, which is observed in nuclei and sug-
gested by QCD sum rules [14], is a dynamical consequence of this chirally
invariant model lagrangian. The investigation of relativistic nuclear many-
body systems in a hadronic model that respects the symmetries of QCD is
an important area for future research within the QHD framework.

This work was supported in part by the U.S. Department of Energy
under contract DE-FG02-87ER40365 and the Continuous Electron Beam
Accelerator Facility. B.D.S. thanks CEBAF and the CEBAF Theory Group
for its hospitality and financial support.

REFERENCES

[1] B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 168, 1 (1986).

(2] B.D. Serot, J.D. Walecka, Proc. Seventh Int’l. Conf. on Recent Progress in
Many-Body Theory, eds C. Campbell, E. Krotscheck, Plenum, New York, 1992,
in press.

[3] B.D. Serot, Indiana Univ. preprint IU/NTC 92-06, submitted to Rep. Prog.
Phys.

]
5] B.D. Serot, Phys. Lett. 86B, 146 (1979); 87B, 403(E) (1979).
6] W. Lin, B.D. Serot, Phys. Lett. 233B, 23 (1989).
7] W. Lin, B.D. Serot, Nucl. Phys. A512, 637 (1990).



Chiral QHD with Vector Mesons 679

[9] D.J. Gross, R. Jackiw, Phys. Rev. D8, 477 (1972).
[10] J.C. Collins, Renormalization, Cambridge University Press, Cambridge, 1984.
[11] K. Fujikawa, Phys. Rev. Lett. 42, 1195 (1979).
[12] K. Fujikawa, Phys. Rev. D21, 2848 (1980); 22, 1499(E) (1980).
[13] I. Lovas, K. Sailer, Phys. Lett. 220B, 229 (1989).
(14] T.D. Cohen, R.J. Furnstahl, D.K. Griegel, Phys. Rev. Lett. 87, 961 (1991).
[15] J. Schwinger, Ann. Phys. 2, 407 (1957).
(16] M. Gell-Mann, M. Lévy, Nuovo Cimento 16, 705 (1960).
[17) B.W. Lee, Chiral Dynamics, Gordon and Breach, New York, 1972.
[18] 1.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics, McGraw-Hill, New
York, 1964.
[19] C.N. Yang, R. Mills, Phys. Rev. 96, 191 (1954).
[20] E.S. Abers, B.W. Lee, Phys. Rep. C9, 1 (1973).
[21] A. Salam, J.C. Ward, Phys. Lett. 13, 168 (1964).
[22] S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).
[23] S. Weinberg, Phys. Rev. D5, 1412 (1972).
[24] S.L. Adler, Phys. Rev. 177, 2426 (1969).
(25] C.P. Korthals Altes, M. Perrottet, Phys. Lett. 39B, 546 (1972).
[26] M.B. Einhorn, D.R.T. Jones, Phys. Rev. D29, 331 (1984).
[27] J. Wess, B. Zumino, Phys. Lett. 37B, 95 (1971).
[28] W. Lin, B.D. Serot, Nucl. Phys. A524, 601 (1991).



