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ties of nuclear matter is discussed. It is shown that for the momentum-
dependent Skyrme effective interaction the method is exact.
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1. Introduction

We want to discuss the energy E of nuclear matter (NM) of density
p = A/ and with an arbitrary nucleon momentum distribution n(ky),
where k) denotes the nucleon momentum k and the z component of its
spin and isospin [in most cases n(ky) = n(k,)]. The energy F is impor-
tant in describing many phenomena. In particular, in the NM approach
to the heavy ion (HI) scattering presented in our previous papers [1-4], the
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combined system of two colliding nuclei was approximated locally by a piece
of NM, and the energy E of the system was expressed as

£= / dri, (1.1)

where the energy density
H=fp, (1.2)

where f = E/A is the energy per nucleon in NM of the local density p and
with the local momentum distribution n.

The momentum distribution n, discussed in the present paper, is an un-
perturbed distribution, i.e., the distribution in the non-interacting system,
which is modified when the two-body interaction is switched on. The point
is that we are concerned here with the energy of the system, calculated as the
expectation value of the effective Hamiltonian (with the effective two-body
interaction) in the unperturbed state of the system.

In the present paper, we discuss the approximate method of calculating
f for a given p and n, applied in [1-4]. In our discussion, we assume the
effective two-body interaction in NM in the form of the Skyrme force, and
show that in this case the approximate method is exact.

The problem of determining the local density p and momentum distri-
bution n will not be considered here. For the initial stage of an HI collision,
the problem was resolved in [1-4] by introducing the frozen density approxi-
mation with a two Fermi sphere momentum distribution. In the latter stage
of the collision, the distribution approaches that of one hot Fermi sphere.

The paper is organized as follows. In Section 2 we outline our approxi-
mate method of calculating f. In Section 3, we apply the Skyrme force to
calculate f, and demonstrate the accuracy of our approximate method. A
discussion is given in Section 4.

2. The approximate method of calculating f

To determine the energy E of NM with given p and n, we first consider
normal NM (i.e., NM in its ground state) of the same density p, and with
momentum distribution ng(kp) = 0(kF — kn), where the Fermi momentum

kr = (3x2p/2)}/3. Its energy is denoted by Eg = fo(p)A. For small changes
dn = n — ng, we have the following approximate relation between E and Fy
[1] (see also [5]):

E=FEy+ E [n(kn) — no(kn)] ‘%N ) (2.1)

L3V

where EZN = [6E/6n(kn)] no 15 the s.p. removal energy in normal NM.
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If we assume for &° the effective mass approximation,

-0 €k
Ery = —yi + const., (2.2)

where €, = hzkfv/ 2m, and v = m*/m is the ratio of the effective to the
real nucleon mass, we get from (2.1):

_ T—To
£=folp)+ 22, (23)

where 7 and 7¢ are the kinetic energy densities
T=4 Zn(lc_N)ekN , 10 = $erpp. (2.4)

ky
In [1-4], we assumed for fo(p) the form:
kp\3 kp\4 kp \$
=3 LF ~F ZF

R S A S

where kpg is the Fermi momentum at the equilibrium density pg, and the
constants b, ¢, d are determined by kg, by the volume energy of NM,

€vol = fo(po), and by the compressibility K. = Ic%o(j—l?)o, and for the
dependence of v on p the form (suggested in [6}):

1
1
RN
where v(pg) was adjusted to the empirical energy dependence of the nucleon
optical potential.

Thus our approximate method of calculating f is very simple. With
the effective mass v(p) given in (2.6) [with an empirical value of ¥(po)], we
may apply expression (2.3) for f, provided we know fo(p) which we treat as
a semiempirical function of form (2.5), adjusted to the empirical values of
P05 €vol, and K. In this way we bypass the difficult task of solving the NM
problem (with an arbitrary momentum distribution n) starting from the
NN interaction. This task was undertaken and solved approximately within
the Brueckner theory by Feassler and his collaborators [7-10] in the case of
the two sphere momentum distribution n. Their “exact” results for f were
shown in [1-3] to agree satisfactorily with those obtained by our approximate
expression (2.3) even for n markedly different from no. In the next section,
we present an argument for the accuracy of our approximate method of

v=1(p) = , (2.6)
1+ (
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calculating f by showing that for the Skyrme effective NN interaction our
approximate expression (2.3) for f is exact.

3. Calculation of f with the Skyrme force

We assume the effective interaction v between nucleons 1 and 2 in spin
and isospin saturated NM to have in momentum space [k = (k, — k,)/2 is
the relative momentum of nucleons 1 and 2] the following Skyrme form:

(klvk') =to(1 + 20Ps) + 1t1(1 + 21 Po )(k? + k 2) + ta(1 + 22 Py )k’
+ §t3(1 + z3P5)p%, (3.1)
where the last term is a generalization of the term %t3 p which results from

the three-body part t36(r, —1,)é(r, —r,) of the original Skyrme interaction.
For the energy per nucleon of I{IM, we use the expression:

F=AT'E=AT1) n(ky)[ek, + 3Vi,) > (3.2)
ky
where the s.p. model potential
Vi, = Z n(ky)(kykz|vik ks — ko ky) . (3.3)
kg

In the case of normal NM, we get the s.p. model potential V’31 by changing
n into ng in (3.3), and fo = A~1E, by changing n into ng and Vi, into Vh"1
in (3.2).

Inserting (3.1) into (3.3) and (3.2) leads to

1
VE1 =z leg, +C, (3.4)
- .
f - VP + 2 ] (3'5)
where 1 4
m
; -1= —8—’—{2' [3t1 + 5tq (1 + —5—1:2)]p, (36)
3 1
7= Jtop+ gtap™tl, (3.7)

C=(%—1)%+7. (3.8)
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For the s.p. model energy e = € + V, we get the effective mass form:
e, = V—lekl +C, (39)

where according to (3.6) the effective mass v for a given p does not depend
on n.

The s.p. removal energy &, differs from the s.p. model energy e, by
the s.p. rearrangement potenti

VR = 2 3 nlka)n(ks)(koks[50/dn(k)loks — koky).  (3:10)

kaks
Since the Skyrme force depends on n only through p = 271 Y n(k;), we
ky
have §v/én(k,) = 2~ 10v/8p = A~1pdv/8p, and we get

[s 4 -
ékl = eh + —133[.'!":'[-*-l = V-1€k1 + C, (311)

16
where € = C + (a/16)t3p**1. Thus é has also the effective mass form with
the same effective mass as e.

Notice that the linear dependence of 1/¥ — 1 on p, e.g. (3.6), leads
directly to the dependence of v on p assumed in (2.6).

In the case of normal NM, we get V0, fo, €% and &° by changing in
(3.4), (3.5), (3.9), and (3.11) T into 7, and C into Co = (1/v — 1)T0/p + 7.

Thus we get
T—T0

f-rl= vp

in the case of the Skyrme interaction, which is exactly the result {2.3) of
the approximate method of Section 21.

Of course, in the case of the Skyrme interaction (3.1), one has for fy
expression (3.5) with 7 = 79, which may be written as

fo(p) = ekp + b( kr ) + c(km)s(a“) + J(%)S ) (3.13)

where the constants

(3.12)

16 ’

80[3t1+5t2(1+ zz)]pok%o (3.14)

-

Eq. (3.12) would hold also if we added to v in (3.1) a density dependent k? term,
e.g., 34(1+25P,)p%(k? +k'3)/2. In this case Eqs (3.4)-(3.9) would hold with
t) replaced by t; + 15p®, and Eq. (3.11) with ¢3 replaced by ¢3 +1; (m/hz)r/p
Of course, 1/v would cease to depend linearly on p.
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may be adjusted to the empirical values of pg, €,.1, and K. In the special
case of a = } (the Skyrme interaction SK a and SKb of Ref. [11]), expression
(3.13) for fo coincides with expression (2.5) applied in Section 2.

There is one difference between the approximate method of Section 2,
where pg, €01, K¢, and v(pg) are independent parameters, and our present
procedure. Notice that Egs (3.6) and (3.14) imply that 1/v(po) - 1 =
5d/3<5,e . Thus after we adjust d to the empirical values of pg, €01, and
K., the value of v(po) is fixed. Namely, we have:

-1-3a + 5 Kc+9! 1+a)eyq)

—_ €kro
=1+ 2@ —3a) : (3.15)

1
v(po)

4. Discussion

We want to discuss why the results for f of Section 2 — based on
approximate relation (2.1) and the effective mass approximation (2.2) —
become exact in the case of the Skyrme interaction.

The kinetic energy part of relation (2.1),

Ekin _ Ekin Z [n(kl) - no(kl)] €k; » (4.1)

is, of course, trivially satisfied. Let us then discuss the potential energy part
of this relation.

In general, the effective interaction v = v[n] is a functional of the mo-
mentum distribution, and this dependence of v on n introduces an additional
dependence of the s.p. model potential on n:

Vi, = 3 n(ks)(kyko|v[n)|ks by — koky)

k,
= Vi, [n,no] + Zn(&z)(&kzl”["] — v[nollks k; — koky), (4.2)
ko
where we use the notation
Vi, [n, m0] = Z (k2 )(kykg|v[no)lky ks — koky). (4.3)
ks

In this notation

Vi, = Viy[monl, Vi, = Vi, [0, o], (4.4)
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where n as the second argument indicates the dependence of the effective
interaction v on n.
With this notation we have

o (o] 1
EPt _ EP°t = 3 > {n(ky)Vg, - no(ky )V, }

ky
= Z["(kl) — no(ky)](3Va, [7,mo] + 3V)
k ’
+3 3 nl)n(k) (b kaloln] - slnallksks - kaky),
kikg
(4.5)
where we use the identity
% 3 {ro(k)Vi, [, mo] - n(k;)V2 } = 0. (4.6)

k,

For small changes §n(k,) = n(k;) — no(k;), for which we may restrict
ourselves to terms linear in dn, Eq.(4.5) takes the approximate form:

EPet — BBt = Y dn(ky)[Ve + V], (4.7)
ky
where
VE = 1S nolks)no(ks) (kaks [ o] Ikoks — ksk (4.8)
ky 2 = =2 =3/ =2=3 571(&1) ng 223 2322
2223

is the s.p. rearrangement potential, Eq. (3.10), in normal NM. The s.p.
removal energy égl =Eg, + V,?1 + V&o, and thus adding Eqs (4.7) and (4.1)
we get approximate relation (2.1).

In the case when v has the Skyrme form, Eq. (3.1), it depends on n only
through the density p, v[r] = v(p[n}]). Since the density p is kept constant,
p[n] = p[no), the second (rearrangement) part of the r.h.s. of Eq. (4.5)
vanishes. For the same reason

Vﬁl [n,no} = Vﬁl [n,n] = V!‘.l = V.’gl +C - Cy, (4.9)
where in the last step Eq. (3.4) was used. Since Eh [n(ky) — no(ky))(C —

Co) = 0, we may replace Vi, [n,no] in (4.5) by V,?l, and — after adding
Eq. (4.1) — we get:

E - B = Y ln(k;) — nolky)lel, - (4.10)
ky
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Since the second (rearrangement) part in (4.5) vanishes, and it is the
source of the s.p. rearrangement potential, we may replace eg in (4.10) by

ek (as obviously follows also from (3.11)), and we see that rela.t:on (2.1) is

satxsﬁed exactly.

In addition to relation (2.1), the effective mass approximation, Eq. (2.2),
was used in Section 2. In the case of the Skyrme interaction, this approxi-
mation too is satisfied exactly, as is seen from Eqgs (3.9) and (3.11).

The approximate method of calculating f of Section 2 becomes exact
in the case of the Skyrme interaction v, Eq. (3.1), because the interaction
depends on n only through p, and its dependence on k is purely quadratic.
Because of this quadratic dependence, Vi, depends on n only through the
constant C, and furthermore the s.p. energy has the effective mass form.
The medium dependence of v only through p is of course crucial. Although
Skyrme interaction has been successfully applied in describing various prop-
erties of finite nuclei, and also in the description of HI scattering {12, 13],
one cannot expect it to be applicable when n differs markedly from ng.

In general, it appears impossible to incorporate this n dependence into
a reasonably simple form of the effective interaction v[n]. The situation is
somewhat simpler in the two cases mentioned in Section 1: (i) two spheres
separated by the relative momentum K, of the two ions; (i) Fermi distri-
bution for the temperature 7. In both cases the distribution n is defined by
one parameter (K, or T'), and the problem is reduced to determine v(K,)
or v(T'), which still is very difficult. A solution of the problem of v(K,) has
been presented by the Faessler group [14] in the form of numerical tables.
The T dependence of the effective interaction v has been recently consid-
ered in [15] with the (numerical) result suggesting an increase in v with
increasing T.

Of course when the momentum distribution n differs so much from ng
that it noticeably affects the effective interaction, the approximate method
of calculating f, described in Section 2, is expected to break down. Our
previous work [1-3] showed nevertheless surprising agreement between our
simplified approach and the more detailed but also much more complicated
approach in Ref. {7]. The present investigation sheds some light on the
reason for the success of our simple approach.
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