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With the aid of two exactly solvable models, interference effects are
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1. Introduction

In this paper we shall discuss, with the aid of two simple models, the
passage of a fast nucleon through a nucleus. After the first collision with
a nuclear nucleon, the incident nucleon will be excited. However, because
of time dilation, the lifetime of the excited nucleon is greatly increased so
that it will not have decayed appreciably before it collides with another
nuclear nucleon. Its wave function will thus not have attained its free space
asymptotic form at the time of the second collision. Quantum mechanically
we can therefore no longer consider the two collisions to be independent and
it is thus necessary to solve the three-body problem of the collision of the
incident nucleon with two nuclear nucleons. In the case of the passage of
a nucleon through a nucleus we must therefore consider its collision with
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N nucleons that it encountered and our problem becomes an N + 1-body
problem.

To assess how important this quantal effort is we shall solve exactly two
model problems. In the first the incident nucleon has only one excited state,
in the second two excited states. We find in the limit of strong coupling
between the ground state and these excited states that the decay probability
is substantially changed from what it would be if the collisions with each
nuclear nucleon was independent. Because of this effect, nuclei will be more
or less transparent than that predicted by a naive calculation.

The important parameters are functions of the dilated width
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where I is the width at rest. This is to be compared with the average
time between collisions which is the interparticle distance ry divided by the
velocity which is approximately ¢. The resultant parameter is
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v he
which is expected to be small for large enough +.
A second parameter which measures the strength of the coupling is valid
when p/I" and A/T are large where u and A are defined in Sections 2 and 3.
The models used in this paper are too schematic to permit quantitative

comparison with experiment. However, the results show some of the issues
which must be carefully considered in interpreting experimental data.

2. Model A

In both models it is assumed that the incident nucleon travels through
the nucleus with a velocity v, close to light velocity. It suffers collisions
at times t,%2...t, where n is a small number of the order of the nuclear
radius divided by the mean free path A.

In Model A which has been discussed in Ref. [1], the nucleon is assumed
to have only one excited state 1; in addition to the ground state 9. The
excited state has a complex energy (e — iI'/2) while the ground state energy
is taken to be zero. The constant I" governs the decay of the excited state by
the emission of pions, kaons, etc. The interesting regime is one in which the
coupling of ¥ to 1, is strong. In this limit the excited state will preferably
decay to the ground state so that the system will be in the ground state g
one-half of the time the incident particle is in the nucleus. The emission
governed by I' will be reduced by at least one-half so that the total decay



On the Passage of a Fast Particle Through a Nucleus 693

probability per unit time will be reduced by one-half and the mean free path
correspondingly increased. However the total probability may be changed
from that value as we shall see.

The wave function of the system is assumed to be a sum of terms, each
of which describe the system presuming that a total of s collisions have
occurred, s = 1,...,N. Moreover, it is assumed that the collisions are
impulsive so that the Schrodinger equation can be written

-yZJ(t—-t,)x,(t ) 0y
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In these equations for the s-th component total wave function, &, is the
wave function for the system in the ground state while x, refers to the
excited state whose energy is complex, E = € — iI'/2. The constants ¢;
are the times at which collisions occur. The coupling constant between the
ground and excited state is given by u. Integrating these equations one can
obtain the recurrence relations:

v 1 — - . -
) = x () = 7 [e7=al ) —inal Y] (3)
v 1 - . g -
§£ ) = &, (t',f') =TTz - [QS" n_ ipe "vxﬁ" ])] . (4)
In these equations
z,=(t, - t,1)E. (5)
Defining the vector
(v)
(V) 1 ®, (6)
1+ u2) 2\ )

equations (3) and (4) may be written as follows
g‘(u) = My,v—lwsy-l) ] (7)

where

Mv,v—l = e—-izy/2 ( (8)

cos 5e"”/2 —2sin ge""”"/z )
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or
M, -y =e = /25(8)T(2,).
Here
9 )
cos¥ —isinkt
—~48in % cos %
and

etzv/2 0
T(z,,)=( . e-,-z,/z)-

The angle ¥ is defined by
J 1

cos — =

2 14
The solution of Eq. (7) in terms of an initial #(%) is

!FS") = Mv,u—lMu~l,u—2 X -MI,Ow(o) .

(9)
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This expression has been evaluated for the case of equal time intervals (z,
independent of ) in Ref. [1}. In this paper we consider only the strong
coupling limit (9 ~ x/2), but drop the assumption of equal time intervals.

In the limit ¥ ~ x/2

0

0 —isin2 9
S(9) — Soo(¥) = = —isin 2%z

]
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If we now take ¥(°) to be a where

() ()

then

w{ = (—i sin g) e 222 ¢, T(2,)0.T(25-1) ...0:.T(21)] @

Assume that s is even. Then after s collisions

) = (‘isin g) ei/282; g=i/2E(-Y 2.

(13)
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The exponent is therefore

—i(za+24t+2ze+...+2,). (17)
If the intervals 23, 24 etc. were all equal to Z the exponent becomes —i(s/2)Z
so that o\ r
- . s
o) = (—z sin 5) exp {-—- (ze + -2—) ET} B, (18)
where

Z=FEr.

Hence the attenuation is given by exp(—I'/4 s7), the rate equal to one-half
of the rate of decay of the uncoupled x.

Equation (18) gives the amplitude at the time given by s7. At the time
given by nr,n > s

¥,(nt) = (—isin g)s exp {— (ie + %) [%T + (n - s)r] },B. (19)

Averaging classically over the number of collisions would lead to a decay
rate which lies between that of the free decay of x and the rate given by
Eq. (18). However, such a calculation is incorrect since there is interference
of the n-th component (n even) with all components which differ from n by
an even number of steps. Thus for even n

. n 19 n 19 n—2 B
¥(nr) = e~ (ETE [(—i sin E) + (——isin E) e iET

'9 n—4 . ‘0 2 A
+ (—i sin —2-) e iEQT) 4+ ...+ (-—i sin -2-) e_‘EG'l)']ﬂ,

19 n
e~ ‘ET(n/2) (sin §_) + e—iBnT

B.
1+ e"iE”/ (sin2 -g—)

We observe that when ET is large, ¥(nr) ~ e *E7"/2 yjelding once again
the decay rate of I'/4. However, in the case of interest I'nt << 1. Then

¥(nt) —> % (1+ (sin2 g)n) —iET [n (%+ % (sinz-;— )n) - %] +....

(21)

#(nr) = (=)™ (20)
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As a consequence of interference, which in this case is destructive, the rate
of decay is increased from I'/4 to 3I'/8 for sin% =1 close to the free decay
rate of the x channel.

One can relax the assumption of equal time intervals, and the average
over their distribution. This is readily carried out. The result no longer
given by Eq. (21) but the conclusion remains that for small I'T, where T is
the total time interval the effect of interference is significant and cannot be
neglected.

3. Model B

In Model A the system under strong coupling oscillated between the
excited and ground states. To better conform to what we believe to be
the experimental situation we would prefer the system to remain excited
throughout its passage through the nucleus under strong couplings. Of
course there is a probability that the system will not be excited on the first
scattering, but may be excited at a later collision. These possibilities are
realized when there are two excited states both coupled to the ground state.
The equations replacing Eq. (1) are

'aad;" = uB8(t — t:;) ¢ (¢F) + ATt - t:) ¥ ()
'a:‘ = uZ6 (t — t;) o (t]) + Ervn,
381,(;2 AT6 (¢ — t:) o (tF) + Eava, (26)
where
Eo=¢€a—3ile, a=1,2. (27)

Integrating these equations permits one to establish recursion relations
for ¢((,°), gn), 1/)(n) in terms of qb("_]), gbln“l), 1,[:.5,"—1) where for example
1/1((,n) = to(tn). These are

1 - . n-— —3z . - —1¥Yn
WY = T T -t Ve gt e (28)

1 1) s 1) _ _

= T+ N+ 2 [(”'\2) (P Demizn _app{mVemivm _ipyl" ])]
(29)

and

1 _ ) - i , _
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(30)
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where
z, = Ey (tn - tn—l) and yn = E3 (tn - tn~1) .
Defining
(n)
0
g™ = | ) (31)
(n)
2
we obtain
(™ = §(u, TV, (32)
Here
1 —ip —iA
— 1 : 2
S(F:A) - 1+ A2 +“2 iy 1+A _Aﬁ (33)
—iA =g 14u®
and
1 0 0
T,=]0 e = 0 . (34)
0 0 e i¥n

Remarkably, for A, g >> 1, the coupling between the two excited states is
much stronger than the coupling of each with the ground state satisfying
the goal described at the beginning of this section.

One can immediately exhibit a general solution of Eq. (26) as follows:

¥N) = STNSTN_...STy#V, (35)

1
!17(0)=( 0 )
0

We shall again discuss this solution in the limit of strong coupling, taking
first the case when the system is excited on the first scattering. That is, for

where

0 0 0
1

Soo — —= 1|0 1 -k}, K

112 s (36)
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The first step using the exact § is

1 ' 0
1 i
T,%(0) — —i _—
ST T+ ra) | ) o T AT e (37)
—iA
Operating on this result with ST, yield
) 0
g — W [ —iza _ —iva 1 1. 38
A@+ﬂf( ) (38)
-K
0
We now establish the lemma that ( 1 ) is an eigenstate of SooTy:
-K
0 0 0 0 1 0 0 0
1 .
SecTn| 1 =1 s 0 1 -« 0 e t®n 0 1
-k 0 —x &2 0 0 et -K
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= 0 1 -« e o
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\0 P —Ke tn
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=13 a2 e - + K%e .
\—n e~ i%n _ x3giUn
0
1 . .
=72 (e‘""‘ + k%e '”") 1
-K

In other words, after the second scattering the system remains in the state

0
( 1 ) for the remainder of the scatterings. Hence
-K

0
femmoemmn) 1 ] (39)

—K
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We turn now to the amplitude which is generated when the first exci-
tation occurs at the third scattering. (The amplitude for excitation at the
second scattering is of the order of (1/)) compared to this term). Toward
this end we calculate ST ST;%(?) exactly. This yields in the limit A > 1

ST,STyw® - —— 1
A1+ 2)
1 0
x % (nze'i”’ + e-"vz) 0| +ix (e"‘” - e""h) 1 || . (40)
0 —-K

The second term agrees with Eq. (38). The first term can now be developed
using additional steps SooTNSoocTN—1:-.50T3 to obtain

(M) = ;(—ll—nﬂ-{ﬁ [(e—i’N + nze“in) e (ei”s + n%""”‘)]
% [(e—iz4 + nze—m) (e—izs + x2e—iy3) (e—iz, _ e-iy,)
0
- (e"in - e_i"‘) (Iczea_"”2 + e"i"z)} 1 1. (41)
-K

Additional corrections would come from the sixth, eighth, etc. collisions.
Interference is now explicitly exhibited. To illustrate the effect of the inter-
ference, we assume that the z, are equal to Z and the y, to §j, and that
they are small. Then

_ _Ki-2) . (z+4%9) | (_#2
¢(~)_A(1+ o) [—z(N—4) T2 ](an)
0

x[l (2y+1+.n2+n2?f;fz)2)] 1 |. (42

—K

This is to be compared with the result which would be obtained using
Egq. (39). In the same limit

_ k(Z-19) . (z + %9) 2i (z + 27)
(V) = L) [1"’(N"4)"——"1+~2 ] [1— o ’

(43)
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For x = 1, the last square bracket in Eq. (42) becomes
1-3c+9)

while the corresponding term in Eq. (43) is 1 — i (Z — ). Once more we see
the importance of interference.

Finally, note that the solutions for model A and model B depend on the
times between collisions, ty —tn_1, tN—1 — tN—2 etc. One should average
over these time intervals. The assumed distributions could be tailored to
take into account phenomena like shadowing by reducing the probability
that a collision occurs when the time interval is small. The calculation is
not difficult. The qualitative conclusion that interference effects are im-
portant acquires if anything more validity. Clearly, classical kinetic theory
calculations are suspect.
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