Vol. 23(1992) ACTA PHYSICA POLONICA B No 6

DISCUSSION OF THE HIGH SPIN SPECTRA
IN LIGHT NUCLEI IN TERMS
OF THE ROTATING HARMONIC OSCILLATOR*

A. MAJHOFER AND Z. SZYMANSKI

Institute of Theoretical Physics, University of Warsaw
Hoza 69, 00-681 Warsaw, Poland

(Received April 16, 1992)
Dedicated to Wiestaw Czy2 in honour of his 65th birthday

The potential of an anisotropic harmonic oscillator rotated externally
with constant frequency is employed for the investigation of the basis for
the high spin spectra in the sd-shell nuclei. The analysis emphasizes the
search for proper nucleonic configurations. Various physical effects typical
for the yrast region in these nuclei are discussed.

PACS numbers: 21.60. Cs

1. Introduction

High spin spectra of light nuclei exhibit several remarkable features.
Many interesting phenomena that have been predicted to occur in heavy
nuclei at very high angular momentum show up in light nuclei already in
the region which is directly accessible to experiments on the discrete nu-
clear states (cf. Ref. [1]). For example, the rotation of a light nucleus with
A ~ 20 at angular momentum I ~ 10 requires rotational frequency w which
would correspond to I > 300 in a heavy nucleus (cf. Ref. [2]). Light nuclei
may, therefore, be very useful for the investigation of some phenomena that
are characteristic for very high spin behaviour such as for example: dras-
tic shape changes including possible appearance of superdeformed states,
sharp band crossings (often referred to as backbending phenomena), band
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terminations when the oblate nuclear shape is reached, rotations of the nu-
cleus about the classically unfavoured axis, coexistence of different nuclear
shapes eic.

Moreover, light nuclei, for example those with valence nucleons in the
sd-shell (i.e. with 16 < A < 40) may be rather attractive as objects of the-
oretical analysis. In fact, if the independent particle approach is accepted
as a basis for the treatment there exist at least two favourable features that
simplify considerably the analysis. One of them is the less important role
played by the spin-orbit coupling and the other one — a possible unimpor-
tance of the two-body pairing force. Consequently, the solution for single
particle orbitals is rather simple and may become an attractive test-ground
for the validity of the model employed in the calculation.

An extensive analysis of the spin spectra in the sd-shell nuclei has been
performed on the basis of the Nilsson potential rotating with a frequency w
about a fixed axis (procedure usually referred to as the cranking model) in
a series of papers by the Lund group (Refs [1-8]). It has been possible to
find an adequate understanding of many of the observed features of spectra
in these nuclei. Apart from this cranked Nilsson approach some other more
general approaches have been introduced such as for example those based
on the Hartree-Fock method (Refs [9-13]).

In the present paper we propose to get a “step backwards” and to em-
ploy an even simpler model namely that of the rotating harmonic oscillator
(h.o.). This model, although much less realistic, can provide a simple set
of basic states that could then be used as a starting point for more refined
calculations. It is well known that the cranking model for the rotating
h.o. may be solved exactly (i.e. to all powers of rotational frequency w) in a
closed form (Refs [14-21]). An even simpler form of the solution is known in
the case when the coupling between the major h.o. shell caused by rotation
is neglected (Refs [18, 22, 23]).

It is worth mentioning that the rotating harmonic oscillator description
" formulated in this way may provide a basis that already incorporates all
couplings following from the Coriolis term of the cranking model.

Our present aim is to discuss the above solutions and to provide a simple
way of constructing the basis of a rotating harmeonic oscillator. It is hoped
that the h.o. potential may offer attractive possibilities of introducing ap-
propriate quantum numbers for the yrast states, providing more insight in
the fast rotating nuclei, of interpreting the rich structure of various rota-
tional bands, of understanding the nature of deformation changes etc.

While the papers quoted above (Refs [14—21]) deal mostly with the anal-
ysis of a rotating system with a fixed nucleonic configuration, in the present
paper we concentrate mostly on the method providing all the relevant h.o.
configurations that occur in the yrast line in the range extending to high
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angular momenta.

Sections 2 and 3 introduce the model and explain the calculation
method. In Sections 4 and 5 applications to few selected nuclei are given.
Finally, Section 6 summarizes the conclusions.

2. Diagonalization of the Hamiltonian

As it is well known the high angular momentum excitations in atomic
nuclei are well described by the cranking Hamiltonian (Routhian)

A A
HY=H-wly =Y h“(k)=>_ {h(k) - wjr(k)} (2.1)
k=1 k=1

corresponding to a rotation of a system of A nucleons about a fixed axis
(“1” axis) with constant rotational frequency w. Here

A
Ji= Zjl(k) (2:2)
k=1

denotes the projection of the total angular momentum I on the axis of
rotation. For the original Hamiltonian H the triaxial harmonic oscillator
has been adopted throughout this paper

A 3
H=7) 7 wy[bd(k)by(k) + 3] (2.3)

k=1v=1

corresponding to the nucleus with A nucleons. Quantities wy, wy, w3 are
the three h.o. frequencies characterizing the range and shape of the po-
tential. We assume that the volume enclosed by the equipotential surfaces
remains constant independently of the nuclear shape. This leads to the
usual (Ref. [24]) constraint for the frequencies

Wiwawi = c33 (2.4)

with « being a deformation independent constant. Taking into account this
constraint we can express the three h.o. frequencies w;, w2, w3 in terms of
the constant & and the two Nilsson quadrupole deformation parameters ¢
and v defined through the relations

_ €cosy = e€siny
w1 = wo(f’ 7)(1 + 3 + V3 ) 1 (2.56)
_ €cosy esiny
wy = wolen) (1 + 5 7 ) (2.5b)
2¢cos
w3 = Wﬂ(fs’f)(l T T3 7) ) (2.5¢)



704 A. MAJHOFER, Z. SZYMANSKI

together with
e 26 cos 8¢3 cosd v\ —1/3
wo(f,‘Y):‘s(l— "é“l‘ 9 T_ 27 7) .

Quantities b¥(k) and b,(k) appearing in Eq. (2.3) are the creation and
annihilation operators of the h.o. quanta corresponding to the k-th nucleon
and y-th axis (y = 1,2,3). Their phase have been chosen as in Ref. [18]
(page 231, see also formulae (2.5) and (2.6) of Ref. [23]) in such a way that
both H and J; have real matrix elements.

The description of nuclear rotation by means of the cranking Hamil-
tonian H* (Eq. (2.1)) may be also understood as a variational search for
the lowest energy with a fixed value I of the angular momentum projection
(J1) on the rotation axis. Thus w plays a role of a Lagrange multiplier. The

constraint
(hy=1 (2.7)

for the angular momentum J; projection instead of the total angular mo-
mentum should be a good approximation in the range of large angular mo-
menta (I 3> 1). The right-hand side of Eq. (2.7) depends on w since the
expectation value should be taken in an eigenstate of H. The single nucleon
angular momentum j; (k) may be expressed in terms of the h.o. operators
b,‘;’(k) and b, (k) as

(2.6)

w2 + w3
2f—
=3 (b5 (k)b3 (k) + ba(R)bs(k)) (2.8)

ja(k) = i1+ jrr = (b3 (k)bs(k) + b3 (k)ba(K))

w2

2\/_—_
where j; describes the mixing of the h.o. quanta corresponding to b;’(k)
and b;"(k) within each major h.o. shell and j;; — the coupling between
different major h.o. shells due to rotation. Egs (2.2) to (2.8) determine fully
the cranking Hamiltonian (2.1) and its exact solution can be found in the
literature (Refs [14-24]) in the explicit form providing the spin degrees of
freedom are neglected. When the total Routhian E* is found for any given

w (for details see below) one may invert Eq. (2.7) i.e. find w as a function
of I. Finally, the total energy E may be calculated from the relation

E = E* +w({J1) (2.9)

as a function of angular momentum I. Now, let us come back to the proce-
dure of determining E“.

The corresponding calculations are rather easy and have been discussed
in Refs [14-21] and also in the papers quoted above in the case of fixed
nucleonic configuration.
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The solution of this problem follows from the fact that it is possible to
transform the Hamiltonian (2.1) into the form of a “new” three-dimensional
anisotropic harmonic oscillator which describes the normal modes of the
system. The transformation when expressed in terms of the creation and
annihilation operators for the h.o. quanta has the form

af = Z (Agadd + ppyba)s (2.10a)
¥=2,3

ar= 3 (ggby + 33, (2.100)
v=2,3

where 7 = 2 or 3. Here the particle index k has been omitted for the
sake of simplicity. As can be seen this transformation describes a mixing
between the creation and annihilation operators b# and b,. When the
transformation matrices A, and p,., are chosen in an appropriate way the
transformed Hamiltonian h“ entering Eq. (2.1) is of the form

hY = w, (ai"oq + %) + nz(a;—‘ag + %) + 03(&?&3 + %) , (2.11)

where a3 = b; and the two frequencies §2; and {23 corresponding to the new
normal modes of the system depend on w2, w3 and w:

1/2
3 = +w? £ [(w] - w?)? 4 8w?(w? +w§)]11/2} . (2.12)

¥

(=5

The eigenvalues E“ of the total cranking Hamiltonian H“ are thus given
by
EY = w133 +’0222 + 2333, (2.13)

where the three occupation sums X, X3, X3 are given by
By =Y (Maday+3¥) =D (m +3) (2:14)
1 4 1 4

with ¥ = 1,2 or 3 and the sum X running over all occupied single nucleon
states.

The three values of £;, ¥ and X; are related to the particle occupa-
tion distribution over the h.o. shells. For a given configuration the set of
T3, 2, I3 is fully defined (however, the inverse is not true). The corre-
sponding set of energy levels obtained with fixed ¥;, B2, X3 and I increas-
ing could be defined as a “rotational band” within the cranking model. The
energy levels may then be obtained from Eq. (2.9) with w = w; determined
for each I as a solution of Eq. (2.7).
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The total energy E obtained in this way for any fixed value of I should
then be further minimized with respect to the deformation. Results of
the above procedure have been extensively discussed in previous papers
(Refs [14-18]) as already mentioned.

However, this has been done only in the case of a fixed configuration
(21, 2, E3). On the other hand, it seems obvious that the rotating nu-
cleus can pick up its angular momentum either by adjusting its orbitals to
the increasing angular momentum at fixed configuration or else by changing
its configuration (say, into another set of £1, £; and X3) as to accommo-
date more angular momentum. This is intimately related to the crossing of
energy levels and will be discussed in the next section.

3. Selection of the lowest bands
3.1. The U(3) symmetry and the h.o. occupation sums

In the previous section we have derived a procedure for finding energies
of the rotational bands following from the cranked h.o. potential for a fixed
configuration that has been specified by the three numbers ¥;, ¥, and
T3 (occupation sums). We shall now discuss how to select the interesting
configurations i.e. those which come low in energy for a given angular mo-
mentum. For this purpose it is convenient to use the symmetry arguments
provided by the theory of groups. Let us observe that the transformed
cranking Hamiltonian (2.11) is entirely expressed by the bilinear forms of
the boson operators a® and a. The Lie algebra formed by all the possible
nine products

A
A= Y ad (B)ay(k) (3.1)

k=1
with 4, n = 1,2,3 is that of the unitary group U(3) in three dimensions
as is well known for the case of a three-dimensional harmonic oscillator (cf.
Ref. [25] see also Ref. [27]). Thus the U(3) group becomes a dynamical
symmetry of the H¥ in the cranked h.o. model. It is well known (see
Refs [25-27]) that the irreducible representations of U(3) may be labelled
by the Young diagrams [A;1, A2, A3]. For a given set of three integers A1, Az
and A3 the eigenstates of H“ may be further labelled by additional (integer)

quantum numbers p, ¢, r with

0<p< A2, (3.2a)
0<g<A—2As, (3.2b)
0<r<X-A3+p—g. (3.2¢)
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For a given representation specified by the Ay, A, and A3 the additional
quantum numbers p, ¢ and r specify the basic vectors in the representation
space. The notation used here has been taken from Ref. [27]. Numbers
of oscillator quanta n;, ny and n3 along the three coordinate axes may be
expressed by the quantum numbers (A;, A2, A3, p, ¢, r) specifying the
basic vectors in the representation space

np=X+p-r, (3.3a)
ng=Az+q+r, (3.3b)
ng=A1-p—q. (3.3¢)

In this way we can determine all the values of £;, ¥; and X3 for each
representation and each vector A;A2A3pgr) within the representation. For
a configuration of A nucleons distributed over N major h.o. shells filled
and the remaining valence nucleons corresponding to the representation
[/\1, Az, /\3] we obtain

N
z,=g+§ 3 m(m+1)(m +2) + no, (3.4)
m=0

with 4 = 1, 2, 3. In this way one can find all possible sets of £;, X;, I3
for a given distribution of nucleons over the nuclear shells and given U(3)
representation [A;A2A3]. Our problem has thus been reduced to the search
for all possible irreducible representations of the h.o. symmetry group U(3)
for a given number of nucleons distributed over nuclear shells.

We have adopted the unitary group U(3) in three dimensions as an
underlying symmetry of the rotating h.o. In fact, we could have used the
special unitary group SU(3) instead. This follows from the existence of one
U(3) generator (A1 + A2z + Aj3) that commutes with all the other gener-
ators. The two numbers (), x) labelling the irreducible representations of
SU(3) could replace the three numbers A1, A2, A3 specifying the irreducible
representations of U(3) with

A= A] - /\3 ’ (3.56)
H= Az - /\3 ’ (35b)

(see e.g. Ref. [26]). Then the sum Ay + A2 + A3 would not be necessary
for the symmetry specification. We shall, however, remain within the U(3)
formalism since it is sometimes convenient to remember that in our notation
A1 + A2 — A3 is equal to the total number of oscillator quanta occupied by
the valence particles.
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3.2. Search for all possible U(3) representations corresponding to a
given nucleonic symmetry by the method of plethysms

We shall now demonstrate how to find all possible representations
[A1A2A3]) of U(3) corresponding to all possible configurations of particle
occupying a set of h.o. shells in the nucleus. It is well known that the sym-
metry of the wave function of n nucleons in the shell model may be labelled
by the Young diagram (see e.g. Refs [25-28]) with n boxes. In the case
of neutrons and protons the spin-isospin part of the many nucleon wave
function may be labelled by a Young diagram of no more than four rows. In
order to obtain a fully antisymmetric total wave function the corresponding
space part of the wave function has to be labelled by a transposed Young
diagram {f} with no more than four columns. We shall use curly brackets
{ } for Young diagrams for the set of fermions (nucleons) while for Young
diagrams for the boson U(3) representation we shall use square brackets [ ]
as before. The problem is, therefore, to find all possible representations [A]
for the set of bosons in an h.o. shell [u] corresponding to nucleon symmetry
given by the Young diagram {f}. This decomposition has been known in the
theory of group representations as an operation of plethysms (Refs [29-34]
see also Refs [25-28])

[u] = {f} = G ua[A], (3.6)

where the integer number G ¢y indicates the multiplicity of the appearance
of representation [A] of U(3) in the plethysm [u] » {f}.

The procedure is best illustrated by the following example. Let us take
n=3 nucleons in the sd-shell. The product state may be fully symmetric
i.e. {f} = {3}, fully antisymmetric {f} = {111} or else it may be of a mixed
symmetry {f} = {21} (see e.g. Ref. [27]). The number of one nucléon states
in the sd-shell is six and the dimensions of {f} = {3}, {21} and {111} are 56,
70 and 20, respectively. Formulae for the dimensions of these representations
are given in many textbooks (see e.g. Ref. [24] p. 118, Ref. [28] sections 4-6
or Ref. [27] chapter 10). Since the representation {f} = {21} appears twice
in the product function of three nucleons we obtain the dimensional check

56 + 2% 70 + 20 = 216 = 6°

as the total number of product states in the sd-shell must be 63. Now, we
are interested in what would be the [X;A2)A3] content of each of these three
possible particle states. We have thus to calculate the following plethysms

[2]* {3}, [2]*{21} and [2]=* {111}.
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Below we give only the results:

56 28 27 1
2] » {3} = [6} + [42] + [222],

70 3 27 8
(2] = {21} = [51] + [42] + [321] ,

20 10 10
[2] * {111} = [33] + [411] .

The numbers above each formula give dimensions of corresponding [A;A2A3)
and {f} representations.

We shall not discuss here fully the methods for calculations of the
plethysms (see Refs 34-35]). Some of the simplest cases have been given
explicitly in Refs [25] and [26]. More extensive tables exist in the literature
(see e.g. Ref. [34]). For the purpose of this paper all plethysms for [u] = [2]
(sd-shell) and some cases for [u] = [3] (fp-shell) and [4] (sgdg-shell) are
needed. They are given in Table A1l. Moreover, few mixed cases for [2]+(3]
are included in Table A2. Appendix A presents a very brief description of
some methods and theorems used for the calculation of simple plethysms.

Using the results of Tables A1 and A2 we can immediately find all possi-
ble U(3) representations [A; A2A3] corresponding to each nucleon symmetry
{f} and thus, determine all possible sets of the h.o. occupation factors
21, 22 and 23.

4. Description of some typical configurations
in the yrast region in the sd-shell nuclei

In this section we intend to discuss briefly the appearance of some most
interesting (i.e. of the lowest energy) configurations in the sd-shell nuclei. As
a representative example we shall use the 120 nucleus. These configurations
may then be eventually used as a quantal basis for the nuclear wave functions
in the framework of some current nuclear models as e.g. the Nilsson model
or the selfconsistent Hartree-Fock model. Such a quantal basis may be
especially useful in the investigation of the high-spin rotational states as it
incorporates already to all orders the existence of the rotational couplings
characteristic for the cranking model. Moreover, treating the basic states
as a zero-order approximation to the nuclear wave function one can hope to
gain some preliminary orientation about the behaviour in the yrast region
in nuclei from the sd-shell.
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Let us now discuss briefly the behaviour of a nucleus with a fixed con-
figuration (¥;, X2, X3) that is rotated with increasing frequency w. Let
us first consider the case of rather small deformation, where the intershell
rotational coupling given by the second term jrs in Eq. (2.8) may be ne-
glected. The Coriolis and centrifugal forces manifest themselves tending to
align gradually the nucleonic orbits with the rotation axis and by attempt-
ing to locate the nucleons as far as possible from this axis. These tendencies
result in mixing the h.o. quanta corresponding to axes 2 and 3 within the
h.o. major shells and in changing the nuclear shape towards the axial sym-
metry with respect to the rotation axis 1. Finally, in the limit of maximum
possible angular momentum

I— Iy =X3 -3,

the corresponding nuclear shape will reach the ¥ = 60° line in the deforma-
tion plane (in some cases ¥ = —120°) and the rotational band terminates.
Further increase of angular momentum is only possible by means of the re-
arrangement of the configuration. This often requires rearranging of the h.o.
quanta over more shells, Simultaneously, it may be important to include
the intershell coupling given by the second term jsr in Eq. (2.8).

All the configurations characterized by the three occupation sums (X;,
T3, ¥3) may be found by the methods described in the preceding sections.
Let us briefly summarize the procedure. First, for a given number of valence
nucleons one should write down all possible Young diagrams {f} that define
all the possible symmetries in the corresponding fermion function. Then
using Tables Al and A2 one can find all possible irreducible representations
[A1A2A3] of the group U(3) contained in the relevant plethysm labelled by
the fermion Young diagram {f}. Finally, methods described in Section 3.1
enable us to find all sets of the occupation sums (¥;, E3, X3) existing
within a given irreducible representation [A; A2 A3].

Following the above procedure we shall give few typical examples of the
low-lying configurations in the nucleus 180. The spherical ground-state of
this nucleus with the h.o. shells N = 0 and N = 1 filled completely would
correspond to the h.o. basic state with (2;, X;, ¥3) = (12, 12, 12). Then
the typical positive parity states are of the 2p-2h (i.e. 2 particle, 2 hole),
4p—4h ... etc. character. For example the lowest 2p—2h configurations may
be found as (1, Zz, X3) = (10, 12, 16), (11, 11, 16), (10, 13, 15), (13, 10,
15), (11, 12, 15), (12, 11, 15) etc. Two configurations that differ from each
other only by the order of ¥; and X, correspond to rotations about the low-
est and intermediate axes (%.e. largest and intermediate moments of inertia).
The lowest 4p~4h configurations in 60 turn out to be (Z;, X2, Z3) = (8,
13, 20), (12, 8, 20), (8, 13, 19), (13, 8, 19), (9, 11, 20), (11, 9, 20) etc. The
lowest 8p—8h configurations start with (X;, Bz, X3) = (8, 8, 32). Fig. 1
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Fig. 1. Calculated energies (a) and deformations (b) of very high spin states of
16
0.

illustrates the energy curves corresponding to some configurations in 10
that extend to high angular momenta (part (a) of the figure) and the spin
trajectory in the deformation plane (e, 7). Examples of the negative parity
states could be first of all the 1p—1h states such as (11, 12, 14), (12, 11, 14)
... etc. while the 3p—3h states start with (9, 12, 18) and (12, 9, 18).
Similar procedure may be easily applied to all nuclei in the sd-shell.

5. Behaviour at very high angular momenta

In the preceding section we have illustrated methods for constructing
the set of basic states that form a convenient representation for the states in
the sd-shell nuclei and extend to the high-spin region. Alternatively these
states could be considered as the zero-order approximation to the nuclear
states arising from a description that is more realistic than that of the
harmonic oscillator.

Now we would like to extend our considerations to the region of still
higher angular momenta going beyond the termination of the few lowest
energy rotational bands (formed out of the valence particles only). We
expect that states characterized by very large angular momenta are built
out of nucleons occupying higher oscillator shells. In the same time the
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condition of selfconsistency between the deformation of the nuclear potential
and density distribution will lead to the appearance of higher deformations.

Below we would like to present a procedure.of finding the behaviour of
the nucleus described by the model given above in the yrast region. For
each fixed configuration (X3, X2, I3) the nuclear energy E can be found
from Eq. (2.9) including the minimization with respect to deformation pa-
rameters ¢ and 4. This procedure is repeated for several values of angular
momentum I. In this way the trajectory in the (I, E) plane is determined
for a given configuration. Now, various trajectories corresponding to given
sets (31, X2, X3) form a family of curves in the (I, E) plane. The curves
may cross at some points and one can select these parts of the curves that
form the yrast line i.e. lie lowest in energy for any given I. The main prob-
lem is to find all the relevant configurations (out of many possible, cf. the
preceding section) that contribute to some parts of the yrast line. Figs 1-3

(a) (b)

(10,0,50)
(10,06,34)
(16,13,25)

£~

(=]

0 8 1(m) 16 24
Fig. 2. Calculated energies (a)and deformations (b) of very high spin states of 2°Ne.

illustrate the results for three nuclei 10, 2°Ne and 28Si (in the left portion
of each figure). The right-hand side portions of Figs 1-3 illustrate the
variations of the deformation parameters (¢, 7). Some of the curves in
the (I, E) plane in the above mentioned figures exhibit very abrupt slope
changes (e.g. curves labelled 11, 12, 14 and 12, 11, 14 for 160, or 14, 14, 22
for 20Ne, or finally the 30, 18, 30 and 22, 22, 34 for 28Si) at some singular
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Fig. 3. Calculated energies and deformations of very high spin states of 28Si.
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points. These points correspond to the band terminations and the ex-
tensions beyond these points correspond to the new branch first found by
Arvieu and Troudet [19-21]. One can see that the Arvieu-Troudet branches
seldom approach the yrast line (the I™ = 107 state in 2Ne may be an ex-
ample of such an exception). Figure 3 shows the calculated deformations
(6, 7) of the yrast states up to very high angular momenta in 2%Si. In
this case low spin states correspond to the rotation of a disc-type ellipsoid
about an axis perpendicular to its symmetry axis, the 127 state is of a non-
collective character while for still higher spins triaxial and then strongly
elongated shapes are developed.

6. Conclusions

The rotating harmonic oscillator potential provides a very useful model
for the description of nuclear rotation. The eigenstates of the rotating har-
monic oscillator potential may be considered as the set of basic states that
define a zero-order approximation that could then be used as a starting
point for more realistic descriptions.

Alternatively, these states may offer a preliminary orientation in the
properties of a rotating nucleus. Despite the simplicity of the model all
qualitative features of the high spin states of light nuclei are well reproduced.
The advantage of the rotating harmonic oscillator model consists in the fact
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that it provides simple analytical solutions to the problem of many nucleons
rotating in a single particle potential.

The authors would like to express their gratitude to Dr Witold
Nazarewicz and Dr Ingemar Ragnarsson for many valuable discussions and
comimnents.

Appendix A

Section 3.2 contained a short description of the idea of the method
of plethysms. For the examples presented in that section it was sufficient
to perform a simple analysis of dimensions of representations appearing
in a decomposition of outer products of corresponding Young diagrams.
However, in general this technique is not sufficient to find all plethysms
needed to describe single particle configurations of nucleons occupying states
of the rotating harmonic oscillator potential. The following theorems are
necessary to fully solve this problem.

Theorem 1 (see Ref. [31])
For a given plethysm {A} x {x} = ) G axv{v} the following equality is
fulfilled:

> hede) = (}_jrl,m{x} ) (T hontn), Ay
v ’7

where 'y 5 occurs as the coefficient in the decomposition of the outer prod-
uct {a} = {8} = ¥ Fagr{A)

Let the term {a;+ 31, az+f2, ...} which is never zero in the product of
{a} and {8} be called the principal part of this product. Then the following
theorems hold

‘Theorem 2 (see Ref. [33])
The principal parts of the products of terms in the expansion of ({\} *
{w})({u}*{n}) appears as terms in the expansion of {A1+p1, A2+p2, .. .}*
{v} whenever x“x"7 = x*, where x*, x7 and x” are the characters of the
symmetric group of order n! corresponding to the partitions (w), (1), (v)
of n and (), (1) may be other partitions.
Theorem 3 (see Ref. [32])
Principal parts of the products of terms in the expansion of ({A}*{w})({A}*
{v}) appear as terms in the expansion of the plethysm {A} *
{wr + 1+, w2 +va, ...}

Table Al contains expansions of plethysms necessary to find all con-
figurations of nucleons occupying states of N = 2 shell of the anisotropic
harmonic oscillator in three dimensions.
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For a more complicated case of particles occupying states belonging to
some reducible representation of the type {r} + {p} Littlewood (Ref. [29])
proved the following identity

({=} + {p}) # {A} = D _ Tapal{x} * {a})({p} * {B}). (A2)

This identity was used in calculations which led to the results contained in
Table A2, which contains expansions of plethysms corresponding to up to 4
particles occupying N = 2 and N = 3 shells.

TABLE Al
41=12]
52 -
_—— N~ =
“ | Tdddd
pa 1 Q |
[7.1] I
(6.2] 11
- [6.1.1] 1
~= = [5.3] oo
T [5.2.1] 111
(6] I [4.4] 1 1
{5.1] 1 [4.3.1] 1 11
[4.2] 1 [4.2.2) [ B
[4.1.1] 1 [3.3.2) 1
[3.3] 1
[3.2,1] 1

[2.2,2] 1
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Table Al cont'd [4] = [2]

1]
[8.2]
[8.1.1]
[7.3]
[7.2.1]
[6.4]
[6.3.1]
[6.2,2]
[5.5]
[5.4.1]
[5.3.2]
[4.4.2]
[4,3.3]

{4.1}

— — — — —

{3,2}

{3.1.1.}
{2,2,1}

2.1.1)
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SRERRE

[10.2]
[10.1.1]
[9.3]
[9.2.1]
[8.4]
[8.3.1]
8.2,2]
[7.5]
[7.4.1]
[7.3.2]
[6.6]
[6,5.1]
[6.4.2]
[6,3.3]
[5.5.2]
[5.4.3]
[4.4.4]

N = N = =

W =— = NN

—_ N N = e

W N = = N e e

N = = N

— o N e

{2,1,1,1,1}
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Table Al cont’d [A] =[2]

[13.4,1]
[13.3,2]
[12.6]
[12,5.1]
[12.4.2]
[12,3.3]
[11,7]
[11,6.1]
[11,5.2]
[11,4,3]
[10,8]
[10,7.1]
[10.6.2]
[10.5.3]
[10,4,4]
[9.9]
9.8.1]
[9.7.2]
[9,6.3]
[9.5.4]
[8.8.2]
[8.7.3]
8.6.4]
[8.5.5]
[7.7.4]
[7.6.5]
[6.6.6]

{4,4,1}

{4,3,2}
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Table Al cont’d [A] =[2]

{4,4,2}
(4,4,1,1}
(4,3,3)
(4,3,2,1}
(4.3,1,1,1}
{4,2,2,2}
{4,2,2,1,1}
{(4,2,1,1,1,1}
(3,3.3,1}
(3,3,2,2}
£3.3,2,1,1}
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[11.,9]
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[10.5.5]
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Table Al cont’d [i] =[2]

{4,4,1,1,1)
(4,3,3.1}
(4,3,2,2)
{4,3,2,1,1}

{4,4,3}
{4,4,2,1}

[15.4,3]
[14,6,2]
[14,5,3]
[14,4,4]
[13.8,1]
[13,7,2]
[13.6,3]
[13,5.4]
[12,10]
[12,9,1]
[12,8,2]
[12,7,3]
[12,6.4]
[12,5.5]
[11,10,1]
[11,9.2]
[11,8,3]
[11,7,4]
[11,6,5]
[10,10,2]
[10,9.3]
[10.8,4]
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[9.9.4]
[9.8.5]
[9.7.6}
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[16.4.4)
[15,6.3]
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[14.,5.5]
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[12.9.3]
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[11.8,5]
[11,7.6]
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Table Al cont’d [4] = [3]

[6]

[5.1]
[4.2]
[3.3)

9]
[8.1]
[7.2]
[7.1.1]
[6.3]
[6.2.1]
[5.4]
[5.3.1]
[5.2.2]
[4.4.1]
[4.3.2]
[3.3.3]
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[10.2]
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Table Al cont’d [4] = [3]
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Table Al cont’d [4] =[3]

[16.2]
[16,1.1]
(15.3]
[15.2.1]
[14.4]
[14.3.1]
[14.2.2)
[13.5]
[13.4.1]
[13.3.2]
[12.6]
[12,5.1]
[12.4,2]
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Table Al cont’d [i] = [4]

(8] !

[7.1] !
[6.2] 1

[5.3] |
[4.4] 1

[12] 1

[11.1] I
[10.2] P
[10.1.1] 1
[9.3] 11l
9.2.1] !
[8.4] 12
[8.3.1] 1o
[8.2.2] i

[7.5] 1o
[7.4.1] I
[7.3.2) !
[6.6] i

[6.5.1] 1
[6.4.2] 1o
(6.3.3] 1
[5.5.2) |
[5.4.3] !

[4.4.4] !
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Table Al cont’d [4] = [4]
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TABLE A2
(21 +[3]) = {1} =[2]+[3]
(2] + (3]) * {2} = [4] + [2,2] + [6] + [4, 2] + [5] + [4,1] + 3, 2]
(21+Bh*{1,1}  =I[3,1]+[5,1]+[3,3] + [5] + [4,1] + 3, 2]
({2 + [3]) « {3} = [6]+[4,2] +[2,2,2] +[7] +[6,1] + 2[5, 2] +[4,3] +[4,2,1] +
[3,2,2] + [8] + [7,1] + 2[6,2] + [5,3] + [5,2,1] + [4,4] +
(4,3,1]+ [4,2,2] + [9] + [7, 2] + [6,3] + [5,2,2] + [4,4,1]
21+ 8 +{2,1} = [5,1]+[4,2]+(3,2, 1] +[8, 1]+[7, 2] +[6, 3] +[6, 2, 1] +[5, 4] +
(5,3,1]+[4, 3,2] + [7]) + 2[6, 1) + 3[5, 2] + [5, 1, 1] + 2[4, 3] +
2(4,2,1]+(3,3,1]+(3, 2, 2]+ [8] +2(7, 1] +3[6, 2] +[6, 1, 1] +

3[5, 3]+ 2[5,2, 1] + [4,4] + 2[4, 3,1] +[4,2,2] + [3,33,2

(21 +B) = {1,1,1} =[3,3]+[4,1,1]+([7,1,1}+[6,3] +[5,3,1] +[3,3,3] +[6, 1] +
(5,2] +[5,1,1] +[4,3] + [4,2,1] + [3,3,1] + [7, 1] + [6, 2] +
(6,1,1) +2[5,3] + [5,2,1] + [4,3,1] + [3,3,2]

([21+ [3]) = {4} = [8] +[6, 2] -+ [4, 4] + [4, 2, 2] + [12] + [10, 2] + [9, 3] + [8, 4] +
8,2,2] +[7,4,1] + [7,3,2] + [6, 6] + [6,4,2] + [4,4,4] +
(11]+ {10, 1]+ 2(9, 2] + 2[8, 3] + (8, 2, 1]+ 2[7, 4] +2[7, 3, 1] +
2[7,2,2]+[6, 5] + 2[6, 4, 1] + 2[6, 3, 2] + 2[5, 4, 2] + [4, 4, 3] +
(9] + [8, 1] + 2(7,2) + 2[6,3] + [6,2,1] + [5,4] + [5,3,1] +
2[5,2,2]+[4,4, 1] +[4,3, 2] + [10] + [9, 1] + 3(8, 2] + 2[7, 3] +
3(6,4]+2(7,2, 1)+3[6, 2,2]+2[6, 3, 1] +2[4,4, 2]+ 2[5, 4, 1]+
2[5, 3,2]

(@1+B)+{3,1}  =[7,1]+[6,2]+(5,3] +[5,2,1] +[4,2,2] + [4,3,1] + [11,1] +
[10,2] + 2[9,3] + [9,2,1] + [8,4] + 2[8,3,1] + [8,2,2] +
2[7,5]+2(7,4,1]+2[7, 3,2] + (6,5, 1] + 2[6, 4, 2] + [6, 3, 3] +
5,2, 2], +[5,4, 3)+[11]+2[10, 1] +4[9, 2]+ 5[8, 3] +48, 2, 1]+
5[7,4]+6[7,3, 1]+ 4[7, 2, 2] + 3[6, 5]+ 6[6, 4, 1] + 6[6, 3, 2] +
5[5, 4, 2]+2[4, 4, 3]+[9]+2[8, 1}+4[7, 2]+4[6, 3] +4[6, 2, 1]+
3(5,4] + 4[5, 3, 1] + 4[5, 2, 2] + 2[4, 4, 1] + 3[4, 3, 2] + [10] +
3(9, 1] + 5[8, 2] + 7[7,3] + 5[6, 4] + 6[7,2,1] + 3[6,2,2] +
(6,3,1]+3(4,4,2]+6[5,4,1)+7[5,3,2]+[9, 1, 1] +2[5, 5, 1]+
2[5,5,1) + (7,1, 1] + 2[8, 1, 1] + 3[5, 5] + 2[6, 2, 2] + 2[4, 4, 3]
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TABLE A2 (cont)

(21 +3) *{2,2}  =[6,2]+[4,4]+[4,2,2]+[5,2,1] +[10,2] +[9, 2, 1] + 2[8, 4] +
[8,3,1) + [8,2,2] + [7,4,1] + [7,3,2] + [6,6] + [6,5,1] +
2(6,4,2] + [5,4,3] + [10,1] + 2[9,2] + [9, 1,1} + 3[8,3] +
3(8,2, 1]+ 3(7, 4] +4[7,3,1) + 2[7, 2, 2] + 2[6, 5] + 4[6, 4, 1] +
4[6,3,2]+2(5,5,1] +3[5,4,2] +2[5,3, 3] + [4, 4, 3] + [8, 1] +
2[7,2] + [7,1,1] + 2[6, 3] + 3[6, 2, 1] + 2[5,4] + 3[5,3,1] +
2[5v 2) 2] + [4)41 1] + 2[41 3: 2] + 4[81 2] + [8, 1: 1] + 3[71 3] +
4(7,2,1]+5(6, 4]+5[6, 3, 1]+4[6, 2, 2] +4[5,3, 2]+ 4[5, 4, 1]+
3[4,4,2] + [4,3,3] + [10] +[9, 1]

(21+ B #{2,1,1} =[5,2,1]+[5,3] +[3,3,2] + [4,3,1) + [6,1,1] + [10,1,1] +
(9,3] + [9,2,1] + [8,4] + 2[8,3,1] + [7,5] + 27,4, 1] +
2[7,3,2]+2(6, 5, 1] +[6, 4, 2] + 2[6, 3, 3] + [5, 5, 2] + [5, 4, 3] +
10, 1] + 2[9, 2] + 2[9,1, 1] + 48, 3] + 4[8, 2, 1] + 4[7,4] +
7[7,3,1] + 2[7,2,2] + 2[6,5, 1] + 6[6,4, 1] + 6[6,3,2] +
3[5,5,1] + 4[5,4,2] + 4[5,3,3] + [4,4,3] + [8,1] + 2[7,2] +
2[7, 1,1} + 3(6, 3] + 4[6, 2, 1] + 2[5, 4] + 5[5, 3, 1] + 2[5, 2, 2] +
2(4,4,1]+3[4,3,2] + (3, 3,3] -+ 3(8, 2] + 3[8, 1, 1] + 6[7,3] +
6{7: 2» 1}+4{6x 4]'*‘9{6) 3: 1}"‘3{6’ 21 2}‘*'7(51 3: 2}+6[5s 4y 1}+
2[4,4,2] + 3[4, 3, 3] + 2[9, 1] + 3[5, 5]

(21 +(3]) * {1,1,1,1} = [4,3,1] + [8,3,1] + (7,4, 1] + [6, 6] + [6,4,2] + [6,3,3] +
[7,1,1] + [6,2,1] + 2[5,3,1] + [4,4,1] + [6,3] + [4,3,2] +
[3,3,3]+9, 1, 1] +[8,2, 1] +3[7, 3, 1]+ (8, 3] + (7, 4] +[6, 5] +
2[6, 4, 1] + 2[6, 3,2] + [5, 5, 1) + [5, 4, 2] + 2[5, 3, 3] + 8, 2] +
8,1,1] +[7, 3] + 2[7, 2, 1] + 2[6, 4] + 3[6,3,1] + [6,2,2] +
2[5,3,2] +2[5,4,1] +[4,4,2] + [4,3,3]
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