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The standard gauging procedure is extended to the (super)semigroups
consisting of a disjoint subgroup being the ordinary group of internal
symmetry and an ideal containing noninvertible transformations arising
in supersymmetric theories. The analogue of the conjugation is brought
in and used when deriving the nondiagonal gauge-like transformations
which are proper for the nondiagonal covariance proposed. The latter is
the origin of a new unavoidable field lying in the same representation as
the usual gauge field and giving rise to the effect like torsion. The operator
bilinear in these fields, which generalizes the covariant derivative in the
adjoined representation, is given. The possible form of the Lagrangian
and equation of motion is outlined.

PACS numbers: 02.20.+b, 11.15.-q, 11.30. Pb

1. Introduction

Many modern physical models are based on the gauge principle which
introduces field interactions by localizing symmetries of a theory. This pro-
cedure, called the gauging of a corresponding group, allows one to build
(internal) gauge theories of strong, weak and electromagnetic interactions
[1], where gauge transformations act on internal degrees of freedom, and
(external) gauge theories of gravity [2], where gauge transformations are
regarded as coordinate changes. Also the string theories can be identified
as a gauge theory of the conformal group in two dimensions [3]. When su-
persymmetry comes into play [4], groups are replaced by supergroups [5],
and all variables of the theory are given the same prefix without paying
attention to difficulties [6] and new key features arising. One of the latter is
the fact that uncommon noninvertible and degenerate transformations come
into existence. They form the ideal of the supersemigroup which is the result
of extending the supergroup formed by the invertible transformations and
restricted properly (see [5] for details). In evident cases the implied “super”
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will be omitted as a rule. The semigroup of superconformal transformations
playing an essential role in the superstring investigations was introduced in
[7], where explicit examples of noninvertible transformations were given.
In this paper we extend the gauging procedure to semigroups (for the
background of their algebraic and topological properties see [8]). Our rather
schematic account is simplified intentionally, and only the main points are
indicated. By employing [9] the geometric interpretation of the construc-
tions presented can be provided. For short we do not include fermionic vari-
ables and other immaterial complications, which do not change the principal
statement: it is natural and consistent from the algebraic viewpoint to make
“super” and “semi” generalizations of a physical theory, simultaneously.

2. Semiconjugation

To begin with we define objects which will be employed below. Let S
be a semigroup [8] with a disjoint subgroup G, which means that S = GUI
and GNI = ¢, where I is the idealof S, i.e. I={i€ S: is€ I, s € S}.
In physical language S can be treated as the semigroup of transformations
acting on fields defined in a superspace [4]. Invertible transformations lie in
the subgroup G which is some generally accepted Lie group, and noninvert-
ible ones are in the ideal I. The latter can contain the subsemigroup of the
nilpotent transformations [10] defined by N, = {n € I; n? = z}, where p is
a degree of nilpotency and z is the two-sided zero: zs = sz =z, s € S. As
it is well-known [5, 11] the basic mapping defined for groups is the conju-
gation Aglh] = ghg™!, where g,h € G. Now we introduce the nondiagonal
mapping

Bgg[h] =shg™', se€S, geG (1)

which can be named a “semiconjugation”. It is determined by two distinct
elements s and g and has the following properties: Bgglh] = Ag[h] and
Biglh] € I, i € I, so that the last noninvertible mapping is a new one, as
a matter of fact. Certainly, the relation (1) can be commonly interpreted
as the action of the direct product S x G by the left and right shifts [12],
but we will treat it as a unified mapping defined for any semigroup and
study its properties useful for applications, as seen below. So, there is the
dual semiconjugation §,g [b] = g~ 'hs which cannot be expressed through
the semiconjugation (1), since in general case the element s should not be
invertible (cf. Aglh] = g~ lhg = Ag-1[h]). Further the set of the elements
from (1) for h fixed can be called a semiconjugation class of h (cf. the double
conjugation class for groups [12]). Another useful object is a “nondiagonal
unit” eg; = sg~! (the dual one is &g = g~!s) having the properties ez =
€ = e, where e is the ordinary unit of S: es = se =5, s € 5, and ¢;5 €
I, &, € I It is seen that &g (esg) is the right (left) inverse element for
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g with respect to s, since s = g&;; = esgg, and they are connected by
means of the conjugation as follows: &z = Ag[esg] and e;g = Ag[ese]. An
intriguing property of the semiconjugation is to turn the ordinary unit into
the nondiagonal one:

Esg[e] = €5g, (2)
Bsg[e] = &g, (3)

while, for the conjugation, the unit is the fixed point: Agz[e] = e. Then the
multiplication table for the nondiagonal units takes the form

egrglsg = s's, (4)
Egrgesg = Agls's]. (5)

Furthermore, the elements s and g lie in the same left (right) “semicoset”
in case they form the fixed nondiagonal unit, i.e. e;; = h(&,; = h), and an
invariant subsemigroup H can be defined as the set of the elements satisfying
Bsglhl e Hforalh e HC S, s € S and g € G. Hereafter, we concentrate
our attention on the inner semiconjugation (1) for which h € S.
It is very uncommon that the semiconjugation (1) is not a homomor-
phism, since it does not preserve the multiplication

Bsg[h' h] = Bss[h'] Ag[h] . (6)
But the exciting relation
Bsg[h'] Bsg[h] = Bss [h' ® h] (7)

holds, where
h' ® h = h'g,gh (8)

is a “sg-product” used below. Consequently, the relations (1) and (7) can
be treated as the definition of a mapping more general than a homomor-
phism. Its kernel is ker Bsg = {h € S : Bgglh] = e5} and image
is ImBsg = {Bsg[h]: h € S}. When considering the set of the elements
Ysg = ImB,; with s and g fixed we observe that the multiplication in Y,
given by (7) is well-defined (since h' ® h € S, then Bss[h' ® h] € Ys¢) and
its associative holds true evidently, and so Ysg is the semigroup which can
be called a nondjagonal “sg-semigroup”. For an invertible s the ideal of
Yog is Isg = {Bsgli] : i € I}, while if s = i € I, then Y,; = I, that is
Yig does not contain any subgroup. For some y € Y,; one can define the
“sg-inverse” element y' € Yq¢ by y'y = esg, which requires their prototypes
to be mutually inverse in the sense of the sg-product h' @ h = e. For the
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dual semiconjugation it is also possible to define the dual “sg-semigroup” by
Yo = I.tnE,g and study it in the same fashion. It is worthwhile to observe
the connection between them in case of the nilpotent transformations s=n,
n? =3z, viz. yjy=132,y € Y, 7 € ?sg (there is_no dependence on the
prototypes), which means that all elements from Yy, are left divisors of
zero for those from Y.

3. Semicovariance and gauge fields

Now let us proceed to the action of the semigroup S on a matter field
&(z) defined in some superspace X, z, € X, p =1,...,d. Its dimension d
and the signature are immaterial in our context, also fermionic coordinates
are not marked out. In other words the elements of S are the transformations
of the algebra of the functions #(z) (see [13, 14] for more details). We imply
that the fields under consideration are realized in some way, but a definite
representation for S will not be used here (e.g. for the matrix representation
R the semiconjugation can give rise to the “semiadjoint” representation,
that is Bdsg[M] = sMg~1, M € R, nevertheless we will use the notion (1)
also for the action on fields). Thus we have

&' (z) =s18(z), s1€S8. (9)

By the conventional definition [9, 11] the covariant derivative D, is a first-
order differential operator acting on the field $(z) so that the result of
this action should transform as the field itself (9). We slightly change this
definition (the reason will be clear below) by requiring the “nondiagonal
covariance”

D, &' (z) =s;D,¥(z), s2€S8, (10)
where s; is not necessarily equal to sy. For such D, the following ansatz
D, = a(z)d, + gbu(z) (11)

is natural, where a(z) and b,(z) are some functions lying in the same
representation of S, and ¢ is the charge of b,(z) which is physically treated
as the gauge field (3, = 3/0z,). The operator D, (11) can be viewed as
the nondiagonal generalization of the ordinary covariant derivative [9].
From (9)—(11) we derive the system of equations

a'(z)s; = sza(z), (12)

gb,,(z)s1 + a'(z) - Bus1 = gsaby(z). (13)
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In case s; = sz = g € G this system can be solved as usual [1, 11]
a'(z) = Agla(=)], (14)
1
b(2) = A [bule) - Zala)- €] (15

where C, = g~'8,8. As a rule, a(z) = 1 (or the unit element of a chosen
representation), which is clear here from the fact that Ag[1] = 1, and so
the constant a(z) solves (14) and can be dropped out by normalizing (of
course, there are the rigorous explanations [9, 14]).

Then (15) becomes the standard gauge transformation and D‘;“ =1.0,
+¢ - bu(z). When trying to solve the system (12)~(13) out of group G we
clash with the fact that the elements from the ideal I are noninvertible
transformations. Although in the case s; = s; =i € I we put a(z) = 1
again, the Eq. (13) cannot be solved with respect to b),(z) in general, hence

“additional assumptions and an explicit shape of the transformations are
needed. Consequently, the only way to solve the system (12)-(13) out of
G is to employ the nondiagonal choice s; = g € G and s, = s € § (even
though the new case s; =i € I is interesting, the pure group choice s 2 =
g1,2 € G, g1 # g2, is also worthy of note). Then we obtain the nondiagonal
gauge transformations

a'(2) = Bugla(e)], (16)
b3(2) = Bug [bulx) — 2a()C] a7

where By, is the semiconjugation (1), which clears why it was brought in.
When comparing (14)-(15) with (16)—(17), at their face value, one may
conclude that only the formal substitution of Bs; for Ag has been made.
Nevertheless, this results in the intriguing fact that the introducing of a(z)
other then the commonly used unit element of the representation of S can-
not be kept off, since (2) is the case. Recall that a(z) is charged due to
(16) and it is not the conventional vierbein of the curved superspace [4]
(actually, the factor before the derivative in (11) can be written as a,,(z)
in general, but we confine ourselves to the diagonal case a,,(z) = a(z)d,,
for simplicity). Therefore, a(z) could be interpreted as an additional and
unavoidable field accompanying the usual gauge field b,(z) and lying in
the same representation of S, in case the “nondiagonal covariance” is under
consideration.

Further, to find an analogue of the field strength F,, one has to com-
mute the “nondiagonal derivatives” (11) in the standard way [1]

[Dp, D)) =qFu, + Ty, (18)
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where
F,, = a(z) (0,by(z) — Oubu(z)) + g[bu(z), bu(2)], (19)
Tyy = Tp0, —T,0, (20)
and
T, = D,a(z). (21)
Here _
D, = a(z)0, + qlbu(z), ] (22)

(evidently, a(z) and b,(z) do not commute), and T}, indicates an effect like
torsion {15]. However, a(z) is not invertible sometimes, and so the division
by it cannot be applied in expressing 9, through D, in (20), we imply this,
while for the invertible a(z) the standard torsion T = a(z)~!D,a(z) and
field strength FS), = F,, — T;'b,(z) + T;'b,(z) can be derived [9, 15]. The
relation between our F,, and T, is

—ﬁuTu - ﬁuTu = [ﬁ;n ﬁl/]a"(:l:)
= ¢[Fuy, a(z)] + Tpva(z), (23)
and the analogue of the Bianchi identity takes the form
D, F,, + permutations = T, b,(¢) + permutations, (24)

where the r.h.s. of Eq. (24) cannot be expressed usually through F,, for
the same reason. The special condition for a(z),

T, = D,a(z) =0, (25)

can be called a “torsionless gauge”. Using it and (17) we obtain a “pure
-gauge” in the following way

8ua(z) = [a(=), Cul, (26)
bu(z) = za(z)C, (27)

which results in [D,, D,] = 0.

The consideration of F), and T, variations under (16)-(17) requires
the analogue of the nondiagonal gauge covariance for quantities which are
bilinear in the fields. Thinking of (7) and (16) we name W a gauge “semi-
covariant” quantity iff it transforms under the nondiagonal gauge transfor-

mations as
W' = B [W®], (28)
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where the superscript ® means that all multiplications between the fields
inside W are replaced by (8) and 8§, — ,(&g). Observe that for W being
linear in the fields one has W® = W (see e.g. (16) and the semicovariance
of the operator (11): D), = Byg[D,]).

Proceeding to F,,, and T,, we see that they are not semicovariant
separately, since

F,, =By [Ff,, - -i—Q m,] (29)
and
T;w = BBS[TEV + Q;w] ’ (30)
where
Qu = ﬁ;?a(a:) -Cy - _D_?a(:c) -Cp. (31)

and T, acts on a matter field transformed as in (9). Nevertheless, the com-
bination (18) is semicovariant as usual. It is significant that the “derivative”
(22) of the semicovariant quantity (28) is not semicovariant in general

D,W' =B, [DW® + [W®, a(2)]®-C,] , (32)

(cf. (22)), where [A, B]® = A®B—-B®A is a “sg-comutator” (see (8)). The
condition of vanishing of the last term in (32), that is [W®, a(z)]® = 0,
is a significant constraint imposed on W. As, for instance, in case W =
a(z) this relation holds, hence T, = D a(z) is semicovariant as such, also
W = a™(z) satisfies it. In searching for the semicovariant differentiation of
a semicovariant unconstrained quantity we face the difficulty that there is
no such operator required which would be linear in the fields. However, we
can construct its generalization T)-,, which is semicovariant for any W and
bilinear in the fields as follows

f,;W =a(z)-0, (W . a(::)) + q(F,‘(z) -W-a(z)-a(z) - W-. F,L(:c)) , (33)

where the fact that the field a(z) has no space-time indices is crucial. Note
that in the “pure gauge” (26)—(27) one can derive the following connection

of D, with the standard covariant derivative
D,W = a(z)- D*W -a(z), (34)

which clarifies its notation. Consider some properties of _D—“. Its action on
a product of semicovariant objects is

D, (W-V)=D,W.-V +a(z)-W-D,V+DV[V,a(z)], (35)
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where W L
' D, =W-D, + D,W + [a(z), W], (36)
which should be compared with
D,(W-V)=D,W-V+W.-D,V + [a(z), W]. (37)
In particular, .
DLV =a(z)-D,V+T,-V (38)
and — _
D,(W -a(z))=D,W-a(z)+a(z)-W-T,. (39)

Now the analogue of the “torsionless gauge” (25) is
D,a(z)=0 (40)
which gives together with (27) the generalized “pure gauge”
Oua’(z) = [‘12(“’), Cul - (41)
Furthermore, the remarkable relation for Dis

D,a(z) = Dya’(2). (42)

It follows that the generalized “torsionless gauge” condition (40) and the
generalized “pure gauge” one (41) have the topologically disjoint solution
a?(z) = 0, which means that the field a(z) is nilpotent of second degree.
Such fields arise due to the existence of a set of nilpotent transformations
N, C I C S (see Section 2). The general properties of the semigroups
of nilpotent transformations are given in Refs [10, 16]. As to their repre-
sentations one can pay attention to the nilpotent algebras representations
[17] which are recently used in studying the non-compact supersymmet-
ric o-models [18]. Obviously, the nilpotent a(z) is noninvertible, and so
the standard torsion and field strength cannot be determined (see the text
following Eq. (22)), but our definitions (19) and (21) remain valid.

Further, since T, is semicovariant (see (32) and below), one can apply
the operator (33) to 1t and obtain

DT, - DT, = q[Fyu, a*(2)] + [Tyva(2), a(2)] - d[Uus, a(z)], (43)

where U}, = Tyb,(z) — Tyb,(z). The generalized analogue of the Bianchi
identity is (cf. (24))

ﬁﬂF,p + permutations = ¢[Fy,b,(z), a(z)]
+a(z)- Fu,0pa(z) + Tpuby(2) - a(z) + permutations. (44)
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It follows from (43) that the combination
1
L,, = F,a(z)+ -q—T,“,a(z) ~ Uy (45)

is semicovariant by construction. To obtain a Lorentz invariant object one
should square it

L=3%L?, (46)

which can be interpreted as the semicovariant analogue of the gauge fields
Lagrangian, after the use of some suitable representation and the nondiago-

nal version of a scalar product in it. Alternatively, one can treat E-#L pr =0
as the semicovariant “equation of motion” for the theory.

4. Conclusions

To summarize, the nondiagonal analogue of the conjugation, that is the
semiconjugation, is introduced and studied as a single whole. Certainly,
that could be interpreted as the nonsymmetrical action I x G (or G x G),
where G and I is the subgroup and the ideal of the semigroup S of gauge-
type transformations, respectively. Analogous invertible nonsymmetrical
actions were considered when studying, e.g., the Higgs field transforma-
tions in the topological supergravity [19], the principal chiral field trans-
formations in nonabelian superstrings, where the nonsymmetry results in
some new current-like objects [20], and the bicanonical transformations for
non-Hermitian quantum systems [21] (it is also worthwhile to note Refs
(22, 23]). In our case the nonsymmetrical action is called for the nondi-
agonal covariance (or semicovariance) to hold, which is a possible way for
inclusion of noninvertible gauge-like transformations into the theory. As a
result, a new field a(z) should be introduced together with the standard
gauge field b,(z). It belongs to the same representation as b,(z) and has
some properties of the vierbein [15], therefore methods of the theories with
a nonvanishing torsion {15, 24] or the dynamical one [25] could be used here.

Further possible applications of the above approach can be found in
various supersymmetric extensions of gauge theories.
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