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Perturbation expansion for the imaginary part of the elastic fermion-
-fermion amplitude in the vacuum channel for the high energy limit (LLA)
of the gauge field theory is calculated to the 9-th order in a. Technical
and numerical details of the calculations are discussed.

PACS numbers: 12.90.4+b, 13.85.Lg, 02.60.+y

1. Introduction

High energy limit of a spontaneously broken gauge field theory with
SU(N) gauge group has been studied by Lipatov and co-workers 1], and
then by Cheng and Lo [2] and others. Cheng and Lo have calculated four
perturbation terms (up to fifth order in «) for the imaginary part of the
elastic scattering amplitude for fermion-fermion process in this limit and
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guessed the general procedure for calculating higher terms. In the forth-
coming paper [4] the precise method (equivalent, as it appeared, to Cheng
and Lo formula) for calculating perturbation expansion is proposed and re-
sults of calculations performed until ninth order (in a) are presented and
used. It is the aim of the present paper to give some details of these calcu-
lations in a hope that they may be interesting for other people working in
the field.

The plan of the paper is as follows: in Section 2 we express coefficients
of the perturbation series through multiple integrals over two-dimensional
Euclidean momenta. We shortly summarize here a line of reasoning from
Ref. [3]. Next we show how some of these integrals look like — the full
list of integrals, up to 9-th order, is given in the Appendix. In Section 3
we describe manipulations that significantly reduce number of integrations
from the initial 2*(order of the term-1) and discuss problems with numerical
evaluation of the integrals. In Section 4 we discuss actual numerical com-
putations, algorithm used, and list values of some of the integrals. Finally
we discuss prospects for calculating even more perturbation terms.

2. Expressions

It can be concluded from [1], as it is shown in more detail in [2], that the
function FT(q2), a Mellin transform of the imaginary part of the fermion-
-fermion elastic scattering amplitude:

§+1ic0

Ng? dw ( s\”
T _ g T
ImM~(s,t) = (——2(27r)3) Bs / 5ri (30) F (D),
6—ioco
§* = —t, B = const (2.1)

is given, in a high energy limit, by the formula:
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Ng
T, 2 _ 1 2(2."-) 2 fw(—; )
F(@) = -t o /‘““(mn((q* B +1)’

(2.2)

where f,, satisfies some integral equation.
We have shown in [3] that one can write an integral equation directly
for FT and it has the solution:

Fl(q) = _.A;t—qf; + (1/»‘-2?1,—5?](;:) (2.3)
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(the first term in this formula is actually unnecessary in the vacuum channel)
IC{ is a linear operator acting in £L2(IR?), |¢) and |#) are some vectors in

2

R == (56357) /o

In [3] an effort was made to calculate (2.3) numerically. In this paper
we show how one can calculate many orders of the perturbation expansion
of MT=% OQne way of taking advantage of this medium order expansion
will be presented in [4].

We are interested in oo at high energy limit, therefore we consider
g = 0 (forward scattering) and T = 0 (vacuum channel). Neglecting sub-
and superscript at K and using a = Ng?/(2x)%/2 as an expansion param-
eter, we arrive at the general formula for n-th perturbation term for the
imaginary part of the forward vacuum channel amplitude in the LLA ap-
proximation for spontaneously broken gauge field theory with SU(N) group:

- log{
_ panta(plKn 1) 8 ()

bo(s) =Ca™™" e ir (-1 (2.4)
K is an integral operator with a kernel:

N A 4
oD = e+ T o e

where: A = 2(N2% 4+ 1)/N?; C is a constant immaterial here and

alk2) = (k2 d’q
()=t +1)/(qz+1)((d‘—5)2+1)

~ 2a(k)6(F - k),  (2.5)

k2 +1 k+VE?+4
=4 + log( + t ) . (2.6)
kvk? + 4 2
K acts in £L2(IR?) and |¢) is a vector from this space:
1
(Fl6) = g - (27)

Now, when we calculate powers of K, the second and the third term
in (2.5) give rise to non trivial integrals of higher and higher multiplic-
ity (they correspond to what Cheng and Lo call “nonseparable diagrams”
— we think that their diagramatical technique is of no great use because
not all diagrams, one can draw, actually appear in the expansion), while
the first term and its operator product with the remaining two, lead to
products of integrals that has already appeared in lower orders (“separable
diagrams” of Cheng and Lo). This way in each order we have, in principle,
2"~ new integrals. However, many of them are equivalent, so that the
number of new integrals appearing each time we calculate the next order
is actually smaller. Using symbols Cj,...,C43 for the integrals we have

(p: = (pIK*|p)/(27) /7):
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A
P1=—5+2cla

A2
p2 = — — 2AC; +4C,,

4
A3 3 2 2
ps = == = 5ACy - 24C7 - 44C; + 8(Cs - Ca),
4
Ps = :i4—6- - A301 + 3‘420? + 3.4202 - SACICZ
—8A(C3 — C4) +4Cs — 4Cs + C7,
5
ps = — 35+ 2A*Cy ~ 34°CE + 24°C}

~24%C; - 8AC2 + 124%2C:C; + 6A%(C3 - Cy)
—16AC1(C3 — C4) — A(4Cs — 4C6 + C7) + 8C3
— 8Cy — 4Cy0 + 4C11 + 2C12 — Cis,

AG

3 5
Pe = -6—4-— - §A501 + —2'A4C;" + —2-;4402 — 4A3013

—1243C;C; — 443(C3 — C4) + 1242C2C; + 124%CE
+ 24A201(C3 - C4) + %A2(405 - 4C¢ + C7)

- 32A02(C3 - C4) - 2.403(405 —4Cs + C7)
~ A(8Cs ~ 8Cy — 4Cy9 + 4C11 + 2C12 — C13)
4+ 16C14 — 16C15 — 16C16 + 8C17 + 8C18
+ 4C19 — 4C20 + 4C21 — 4C22 + Ca3,

AT 7

15 3
pr=-To2t 3—2A°c, - —8—A501 - ZA""C; +54%C,

+ gA"(cs — C4) + 104%C,C, — 243CF — 1243C2 - 2443C3C,
3
- 24A3C1(C3 - Cy4) - -'A2—(4C5 -4Cs +C7) + 24A201(C3 — C4)

3
+ ZAz(SCs — 8Cy — 4C10 + 4C11 + 2C12 — C13)

+48A4%C,(C3 — C4) + 24A4%C1C2 + 34%C1(4C5 — 4Cq + Cr)
— 324(C3 — C4)? — 4AC,(4Cs — 4C6 + Cq)

- 2AC](803 - 809 - 4010 + 4011 + 2012 - 01.3)

- A(16014 - 16015 - 16016 + 8017 + 8C18 + 4019

—4Ca9 + 4C21 — 4C22 + C23) + 32C24 — 32C25
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~ 32C2¢ — 16C27 + 16C28 + 16C29 + 16C30 + 16C3;
+ 8C32 + 8C33 — 8C34 — 4C35 — 8C36 — 8C37

—8C38 + 4C39 + 2C40 + 4C41 — 4C43 — Cy3. (2.8)
Using notation Q; .1 = (¢i+gqx+---+ q1)* + 1 we can write integrals Cp,
as:
1 d>qd’g,
Cy = // R 2.9
17 22 Q1Q1,2Q2 (29)
1 d?q1d*g2d%gs
Y 210
27 43 Q1Q1,2Q2,3Q3’ (2.10)
d2 d2 d2 d2
03:_1_4_//// 01d79:d7g3d7as (2.11)
4r @1Q1,2Q2,3Q3,4Q4
2 01 d2a0 d2 gad?
oot I Sirtatute.
8w @1Q1,3Q2Q2,3Q4Q3,4
The remaining integrals can be found in the Appendix.
3. Integrals
The two extreme cases in the n-th order are:
a)
_1-/ / dq1d’gyd?qs - - - d¢n (3.1)
LA Q1Q1,2Q2,3 - Qn-1,nQn’ '
b)
..1__/ / Q2 3d%q1d%qz - --d%¢qn (3.2)
Lahs QlQl,nQ2Q2,n’"Qn—lQn—l,n ' )
Now it is very useful to define a function:
1 d*q1d%qz - --d’gn—1
=——_[... . 3.3
#nlan) (2m)n—1 / / Q1Q1,2Q23 " Qn-1,n (3:3)
The first of the integrals above is just 2™¢,,+1(0) while the second one is:
2" /(q” +1)" 293 7 (g)gdg (3.4)
because: 2
g
— = (27)p2(qn) - (3.5)

QiQin
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It can also be observed that a(k?) = 27 (k% + 1)p2(k).
It can now be shown that ¢, can be expressed as a single integral only.
In fact, through a simple change of variables, we can show that:

dZQn 1
pn(gn) = (27r)n~ / /Qle Qn 1Q12,...,n—1,n

d?qy...d%qn_1d%q
- ... (P + @+t Gt + Tt
(27r)"‘1/ /Qle “Qn-1Qq (@ + It T T4

where Q4 = (g% + 1). Using the Fourier representation for § we have:

d?qy...d%qn_1d%q ,
n d’z
#n(an) (2w)n+1/ / 0102 0ui )
exp(E(@1+ @+ +dn+ )

=(.2_7}_)1_?;ﬁ/d2zexp(ffn)( (E;fzgg%dzq)n

But
2
/exp(izp cos¥)dd = 2nJo(zp) and (exzp(-:?)dz = 2rnKo(z).
0
Therefore finally:
on(@) = [ K§(2)a(ae)ad, (3.6

where J; and K are Bessel and modified Bessel functions.

As we have seen above, for n = 2 the integral can be expressed as an
elementary function. For n = 3 there exists also another formula, much
more convenient for numerical integration, as it has a positive function as
an integrand:

- 2(p)pdp g7
#ald) V(P + ¢ +1)2 - 4p?¢? (37)

For higher n’s we have found nothing better than (3.6). Anyway the for-
mula (3.6) for ¢, expresses it through a single integral and, with some mi-
nor modifications described below, appeared useful for further calculations.
Using the formulae for ¢, we can express all Cy,’s, except for n = 31,32
and 33, as, at most, double integrals. The remaining three can be expressed
as triple integrals, but with completely positive integrands.
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We give some examples:

Cas = 2° / (P? + 1)e2(p)es(p)es(p)pdp (3.8)
0

(P® + 1)20%(p)pa(p)pdp,  (3-9)

Cag = 2° / (¢ + 1)¢3(a)adg
s(p»q)

where

s(pq) = \/(P2 +¢2 +1)% — 4p?¢®. (3.10)

The triple integrals are:

s(p,v) J s(g,v)

S 7’( T 02 + Ved(plpdp T (2 + 1)<P2(9)<P3(q)qdq) o (.10)

0

Csy =2° / @+ Des(@les(alads (P? + 1)p2(p)ps(p)pdp, (3.12)

s(p,9)
0o \o
o8 7T °c(uz + 1)é(u)udu w(vz + 1)p2(v)vdv \ pgdpdg
o =2 [ ( S(u,) (0 9) ) )
00 \o 0
(3.13)

We remind that 3 is defined through a single integral see (3.7).

4. Numerical calculations

Although we have expressed all C},’s through, at most, triple integrals,
finding their numerical values is not as easy as it seems. The reason is that
we need them with higher and higher precision. This fact can easily be
understood when we look at an example from 8-th order: C,4 is 114,874.48
and it enters p7 with a coefficient 32, but the final value of p; is 4796.
Thereft;re we aimed at achieving relative accuracy of C,’s to be at least
5.107".

To obtain this we used automatic integration routine INTX of Bartnik,
Gérski and Pindor [5] — iteratively for double and triple integrals (i.e.
we used two or three copies of the routine with different names: INTY
and INTZ). Unfortunately, for some of the integrals this was not enough,
because, as it can be seen from (3.6), calculation of ¢,(¢) can be very time
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consuming for large g (we have then many oscillations of the integrand even
for small z where they are not yet damped by Ko(z)). We have found a
formula for ¢,, that is much faster convergent for large ¢, by integrating
zK(z)Jo(gz) twice by parts. This way we obtained:

=3 [ ()12 + o)
+2K0(-;-)K1(-;—)}(§J1(z)— Jo(z))dz. (4.1)

Although the routine INTX proved earlier to be very stable and reli-
able {5] we have taken special provisions to make sure that the values we
obtained are trustworthy. We calculated, namely, C,’s for different rela-
tive accuracies required and checked that in fact differences of results layed
within errors estimated by the routine. When it was possible (with respect
to the computer time required) we calculated some C),’s with even higher
precision, and again checked that, in fact, the relative difference was smaller
than 10~7. Table I illustrates this procedure.

TABLE I
Integral acc. required value acc. estimated
Car 10-5 169, 403.310 0.9-10°5
10-° 169, 403.600 0.4-10-8
10-7 169, 403.676 0.4-10-7
10~8 169, 403.678 0.9.10"8
Cag 10-4 238, 760.170 0.7-10"4
10-3 238, 760.380 0.9.10-5
10-8 238, 760.260 0.4-10"8
107 238, 760.250 0.7-10"7
Cso 105 477, 520.280 0.1-10°5
10-¢ 477,520.030 0.4-10%
10-7 477,520.010 0.6-10-7
108 477,520.012 0.4-10%

5. Conclusions

We have shown that using some tricks it was possible to reduce multi-
plicity of integrals appearing in the “degenerate field theory” (replacing the
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standard field theory in the high energy limit) so much that we were able

to calculate perturbation terms up to ninth order. The question arises how

far can one go this way. Obstacles are of two types:

1° multiplicity of integrals will grow obviously above three for an order of
perturbation high enough;

2° values of integrals grow much faster than values of subsequent pertur-
bation terms, therefore higher and higher precision of numerical inte-
gration will be needed.

Therefore we think that without some new concept on how to reduce
multiplicity of the integrals even more, or how to represent ¢,,’s by integrals
with completely positive integrands, chances to calculate more perturbation
terms without an unreasonable computation effort, seem small.

Appendix

c _ —1_/ / dqu...dzqs
> T xS Q101,2Q2,3Q3,4Q4,5Qs

G = ;1?/ / QIQlfad:glz,.s.éj;q:,fl@&ff
Cr = :_5/”./Q1Q1,4g§222q:Q.3:323(,145Q5Q5,4
Cs :;13/‘“/QlQl,zgz,q::Q;::gZ:Qs,ﬁQﬁ
G = / / QIQI,3523;:ilé;éi2,zzs,sqs,s

Com L [ [ o Qe
76 Q1Q1,2Q2,3Q4Q3,4Q5Q5,6Cs,3

1 Q2d?qy ...d%g
Cu = 76 / /Q]Q1,6Q2Q2,6Q3Q3,6Q4Q4,5Q5,6

1 [ . Q3Qsd%q; ...d%ge
Crz = %6 / / Q101,3Q020Q2,3Q035Q4Q4,5Q60Q5,6

_ 1 [ Q3d%q; ...d%gs
C13=w / / Q1Q1,6Q202,6Q303,604Q4,6Q505,6

c _l_/ / d®qy...d%q;
W Q1Q1,2Q2,3---Q6,7Q7




768

J. Kra$kiewicz, M. PINDOR

Crs = / / Q1 qugfcglsczsjc;:,sczs,sos,v
sz_/ / 2101 202?&2513,‘40(1,:55,7@6Qw
on=r7 [ -/ QlQl,7QzQ2,i‘g:Z)3,7g4g4,5Qs,st,'l
Cro = 7 / / QlQl,3ng§§5i2,3224ai7955625,606,7
Co = %/ / Q1Q1.2Qz.7gz(g:;@4,¢:6§:@5,7Q6Q6,7
€20 = 5/ / QlQl,7Q2szziqu;ﬂQqu:ﬂQSQS,6Q6.7
On = %/ / Q1Q1,3Q33222;?:3224,5gsqés,stQv,s
C22 = ,1—7/ / Q1Q1.4Q2Qf:gzcgzzQ4,C:Qq:Qs,stQs,7
O[] gty

Ca =35 / /Q1Q1 2Q2 3 287 8Qs

Cas = —/ / Q:Qs, stQ:d:ZzlaQicgis Qs

O =15 / / Q1Q1,sQzQzQ,ssgzzs]Q4Qi,:B5,6Q6.7Q7,8
Car = ;18‘/ / QlQ1,stQz?ssg:ilQ‘:,aalezs,st,-:Qv,s
Cas = %/ / Q1Q1,sQzQz,féj;il,sQ:é?fst,6Q6,7Q7,8
C20 = 7;'1—8// Q1Ql,anQz,sQg;i;?AQngSQ5a6Q6"’Q7’8
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Ci3 =

Cay =

C3s =

Cs¢ =

Car =

Cig =

Cqo =

C41 =

Cy2 =

Ca3 =
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L// Q3Q8dqu-- d?qs
8 Q1Q1,3Q2Q2,3Q03,8Q4Q4,8Q5Q5,6Q6,707,8

i// Q3Qsd%q1...d%gs
78 Q1Q1,3Q20Q2,303,4Q4,5Q6Q6,5Q7Q7,80s,5

_1_// Q4Qsd?q1...d%¢s
w8 Q1Q1,4Q2Q2,3Q3,4Q4,8Q50538Q6Q6,7Q7,8

L// Q3Qsd%qr...d%gs
w8 Q1Q1,3Q20Q2,3Q03,4Q4,5Q0538Q6Q6,8Q7Q7,8

_1_// diqu-ndz%
w8 Q101,8Q2Q2,8Q03Q3,8Q04Q4,8Q5Q5,6Q6,7Q07,8

_1_// Qid%qy...d%gs
78 Q1Q1,8Q2Q2,8Q3Q3,8Q4Q4,5Q0580606,7Q7,8

_1_// QgQSdZQI---dZQS
w8 Q1Q1,5Q02Q2,5Q03Q3,4Q4,5Q5806Q6,807Q7,8

_1_/./ Q4Q§d2q1...d2q8
8 Q1Q1,4Q020Q2,3Q03,4Q4,8Q050Q53Q06Q6,8Q07Q7,8

L// QiQsdqu---dzqs
8 Q1Q1,4Q2Q2,4Q3Q3,4Q4,5Q05306Q6,8Q7Q7,8

_1_// Q§Q§d241~-~d2qg
w8 QlQl,4Q2Q2,4Q3Q3,4Q4,8Q5Q5,,sQ6Q6,3Q7Q7,s

L// Qgdiqu...dzqg
78 Q101,5Q2Q2,5Q303,5Q4Q4,5Q0580606,8Q7Q7,3

L// Q3Q5Qsd%qs - ..d%gs

78 Q10Q1,3Q20Q2,3Q03,5Q4Q4,5Q05,8Q6Q6,8Q7Q7,8
17 Qid%qy...d%g

,,s/ /Q1Q1,8Q2Q2,8°°'Q7Q7,8
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