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We construct and investigate an abelian gauge theory on the
SU(1,1)/U(1) coset base space. We determine the space of flat connections
and solutions of Maxwell equations. The relations to the two-dimensional
euclidean black hole are discussed. We study also the interactions of the
scalar field with the vacuum of considered model.
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1. Introduction

The coset models appear in physics in several contexts. They can pro-
vide, for instant, an elegant way of reducing a high-dimensional theory to
a lower-dimensional. If we allow a nontrivial dependence on the extra co-
ordinates and impose simultaneously the condition that some symmetry
transformation on these variables is equivalent to a gauge transformation
we obtain that although the model feels the existence of the extra dimen-
sions, its dynamics takes place only on the lower-dimensional manifold (see
[1] and references therein).

The other context is that of the SL(2,R)/U(1) gauged WZW models,
which have led to the conformal theory with a two-dimensional black hole in
the target space (see [2, 3] and references therein). This can be understood
as an effective theory of gravity coming from the coset valued string theory.
Similar effect arises also from examinations of the simplest example of the
classical mechanics models on this space [4].

The interesting point is to determine the possible relations between
both approaches, i.e. to construct a U(1) coset reduction of a gauge field
theory on this space. In this paper we shall investigate the simplest exam-
ple of the classical electrodynamics on the SU(1,1)/U(1) coset model. We
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shall determine the classical solutions and find the similarities between the
considered model and the effective field theory on a Riemannian manifold.

2. Preliminaries

First, let us introduce the notation. We choose the following paramet-
rization of SU(1,1):

e'?/1 + vo* v
( v* e T o0 ) € 5U(2), (1)
where ¢ is real and v can take values in the complex plane.

In this parametrization the Haar measure is just dpdv*dv and the basis
of the left invariant vector fields can be taken as follows:

L. = li(v*a,,. — 8, —id,) 2)

1 1
= 1‘P
L_=—e (2 ma + 1+ vv* 3) (3)

1 (1
L+=—\7_5e “’(2\/1_30_‘ \/1+vv3) (4)

Their satisfy the standard commutation relation and conjugation prop-
erties of the su(1,1) Lie algebra,

(L L= =il [L-,L)=~il_ [Ly,L]=ily,  (5)
Ly=L, LL=-L_. (6)

The Maurer—Cartan forms ¢t,c™, c?, dual to these vector fields, make
the basis of the cotangent bundle of SU(1,1).

Let us mention here that we choose SU(1,1) for convenience reasons,
however all our considerations could be easily reproduced in the case of
other isomorphic groups. For instance, to consider a SU(2) theory, we have
to substitute —% for ¥ in all formulas. In such case, however, the values of
v must be restricted to the disc || v [|< 1.

3. SU(1,1)/U(1) coset electrodynamics

We will consider now the gauge theory constructed on the SU(1,1)
space, which remains invariant under the following transformations,

9 — hgh, heU(1), (7
h= (ei; ".,;) e SU(1,1), (8)

0 e ¢



SU(1,1)/U(1) Coset Gauge Theory 793

which define the SU(1,1)/U(1) coset condition.

Let us take as the basic object, the algebra of functions, which remain
invariant under the transformations (7). The space of coset invariant differ-
ential forms is a module over this algebra, generated by forms obtained by
the external differentiation of elements of this algebra.

The gauge transformations must belong to the algebra, so they are of
the form U(v,v*) = e~ U(¥*") where U(v,v*) is a smooth, real function
on the complex plane C. The gauge potential is a one-form,

A =idc® +e WAt + A%, (9)

where & is a real field and A is a complex valued field on C. The curvature
two-form F = dA may be written in terms of A and &,

Fy_ = -% (00 (VIF 007 A") + 8, (VI F w7 A)) - &, (10)

Fip = —ie -w(f\/‘”—uwa $+ - (v6~—v3 +1)4 ) (11)

F_, =1e'?

(Emm - 5(0‘3,,- - 00, — 1).4‘) . (12)

8.1. Flat Connections

Before we construct the Yang—Mills functional we will analyse the vacua
of this model. Let us notice that due to the underlying three-dimensional
background of our coset space, we can construct a Chern-Simons action
functional, which describes the trivial dynamics of the field F, where the
flat connections are the only solutions of the equations of motion.

Because the gauge potential A is defined only up to a gauge transfor-
mation we can extend the possible class of potentials if we allow for the
existence of multi-valued potentials. The only restriction we have to im-
pose, is that the physical variables, like the curvature F, are smooth and
the difference between the multiple values is trivial, i.e., it is an exact form.
Such potential must have the following form,

A= Ap +id(xU), (13)

where x is the angular coordinate around an arbitrary point of the plane, Ap
is the regular (single-valued) flat connection and U is an arbitrary smooth
real function on C. In order to have the potential well-defined both U and
dU must vanish at the origin of the coordinate system. Otherwise, the whole
expression would be singular at this point.
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Now, the curvature F vanishes, and the multiple values of the potential
A differ by an exact form 2nwxidU.

This establishes the one-to-one correspondence between the space of
some gauge transformations U, which satisfy the restrictions mentioned
earlier, and the space of the multi-valued flat connections. The only task
left is to determine the moduli space of regular connections with vanishing
curvature.

Before we proceed with the investigation, we will find a convenient
gauge. For convenience we will use the spherical coordinates, v = re'X.
Let us notice that by an appropriate transformation the regular part of the
field ¢ can be chosen to be a function of the radius r. Indeed, any non-
constant periodical dependence on the angular variable x, could be gauged
out. However, if we take & = &(r), this cannot be trivial unless & = 0. For
simplicity, let us take A in a factorized form, 4 = eiXAr(r)ax(x).

If we assume so and impose the vanishing of the curvature, we obtain
the following conditions for the field A and €. First, from Eq. (10) we get,

V14128 (r) + idp(r)a}(x) = 0 (14)
which we can solve immediately,
B(r) = -%9 ay(x)=ao. (15)

We can assume safely that ag = 1, as we can incorporate it into A,.. If we
insert (15) into the condition for the vanishing of Fy _, Eq. (9), we end up
with the following equation for the real part of A,

Re ('\;—5% (r\/ 1+ 1'2,4,.(1'))’) = &q. (16)

The imaginary part of 4, is irrelevant, as in this case it is always trivial.
Since we are interested only in solutions that are not singular, this restricts
the possibility to the following,

1 1 5
= ———d7r.
V21412 0

Finally, let us notice that this solution is a direct remnant of the coset
background of the theory. It could be easily rewritten as A = —2i$od¢,
restricted to the coset space. The free parameter $3, which can take ar-
bitrary real values, labels the one-dimensional moduli space, $o = 0 is of
course the trivial flat connection.

The Yang-Mills action depends on the metric defined on the base space.
In our case we would confine our consideration to the simplest case of con-
stant metric, in its canonical form. For simplicity we chooseny_ =n_4 =1

A.(r) (17)
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with all other components vanishing except for 1,,, which we will denote by
1/e. It has a clear physical meaning as is closely connected with the size of
the space in the direction orthogonal to the coset space. If we take a closed
curve, which is invariant under the coset transformation (7), we obtain that
its length is as follows,

l = 4#“% (1 +vv*) (14 (1 - e)vv*). (18)

This extra dimension is space-like if 0 < ¢ < 1, in which case the length
is always real.

3.2. The Yang-M:lls Action

The Lagrange Yang-Mills function, which is the squared norm of the
curvature in the chosen metric, reads as follows,

L=—(2F}_ —4¢Fy,F_};), (19)
which, if we take into account that Fy; = F* , may be rewritten as,
L=-2(F}_—2¢Fy,F},). (20)

Thus, in the case of the euclidean metric, 0 < ¢ < 1, it does not have an
absolute minimum. The local minima are set by the Maxwell equations of
motion. If we introduce the one-form dual to F,

*F=Fy_c*+eF_,e~ —eFy,ct, (21)

the Maxwell equations, d*F = 0 together with the Bianchi identity dF = 0,
could be solved immediately. Since we have already established the first
cohomology of the coset differential algebra, we can take *F = df + 3,
where £ is a real function of v,v* and 3 belongs to the first cohomology
class. This solves the Maxwell equations, whereas the condition dF = 0
gives us d*df = 0, because d*f vanishes. The resulting equation is the
following,

d*df = — (eL2 + (L4L—+L_L4))€E=0. (22)

The expression (22) is the SU(1,1) Laplace operator in the chosen form of
the metric, which acts on a coset invariant scalar function. It could also be
interpreted as a Laplace operator on a two-dimensional curved space, with
the volume element modified by a dilaton field. The equation (22) may be
derived from the following two-dimensional Lagrangian,

L = /5e¥g°°0,£0¢, (23)
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where g, is a two-dimensional metric and ¥ is a dilaton field, which modifies
the measure. The dilaton can be determined exactly, whereas the metric is
defined only up to a Weyl scaling factor £2(v, v*). In the considered example
we have the metric,

_ 22 — £)yp*
g“=-ava( g (1 ﬂ%**), (2)
; z

modified by the dilaton:
¥=21In((1+v0*)(1+(1-¢e)v")). (25)

Let us notice that if we take ¢ — 0, we obtain the dilatonic field ¥
and the metric g corresponding exactly to the two-dimensional euclidean
black hole, after an appropriate choice of the Weyl factor. Therefore, in
this limit we can interpret the scalar free field theory in the black hole
background as a coset restriction of the U(1) gauge theory on SU(1,1). The
equivalence is not exact, as the Maxwell equations do not detect the wide
class of nontrivial flat connections, which exist in this case. The question
whether the dilaton field and the metrics in case of ¢ # 0 correspond to
some solutions of dilatonic gravity, as well as their physical interpretation,
we shall leave for future studies [5].

3.3. Free Field in the Background of U(1) Vacuum

Finally, we shall present an example of the charged scalar field theory
in the background of the nontrivial electromagnetic potential. We use the
solution (15-17), which we have calculated earlier, and our starting point is
the Lagrange function of the complex field B,

L = n°%La +i4,)B*(Ly - i43)B, (26)

where the metric 7 is exactly the one we have taken in the previous section
and we set the electric charge to be 1. Now, if the field B is coset invariant,
we can reduce the Lagrangian (26) to the following expression,

e 14172

1
ca=loB I (5= 1) - Ja+ 08P

1‘2
+(e- ) BB, D

where we have dropped the terms that are total derivatives. Let us notice
that the presence of the background field contributes only to the mass-like
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term of the effective Lagrangian. If 0 < € < 1, as assumed, the sign of this
term changes as r increases. For symmetric, x independent solutions, we
can discuss their asymptotic behaviour in two regions. In the neighborhood
of r = 0, B behaves like Bg(1 — ¢$2r?) but in the limit ¢ — 0, B has a
logarithmic singularity at » = 0, B ~ Inr. For large r, the solution, which
vanishes at infinity, behaves like r =, where a = 4/4(1 - )P +1-1.

This example shows a rather complicated pattern of the interaction
of the scalar field with the nontrivial flat gauge potential. The kinetic
terms can be again interpreted as originating in the same metric and dilaton
structure, such correspondence, however, cannot be easily maintained for
the additional interaction term, which completely changes the evolution of
the field. It would be interesting to determine, whether such procedure is
possible in general. Another attractive task would be the generalization of
the theory to the nonabelian case.

4. Conclusions

We have presented the basic ideas of the SU(1,1)/U(1) coset gauge the-
ory in its simplest possible example, with the abelian gauge group. The
theory, which effectively is set on the plane, shows features characteristic
to the two-dimensional physics. First, we can allow for the existence of
maultiple-valued gauge potentials. This leads to the Aharonov-Bohm type
effects, as the integral of A along a given curve depends not only on its start-
ing and ending point but on the number of times the curve has encircled the
zero of A. The effective equations derived from the Yang-Mills functional
give us the free scalar field theory set in the background of dilatonic gravity,
with the dilaton field depending on the underlying SU(1,1) metric and the
metric determined up to a Weyl scaling.

The coset construction of the theory leads to the presence of nontrivial
flat connections. They are not the absolute minima of Yang-Mills func-
tional, as the latter is unbounded from below. However, due the underlying
three-dimensional space, we can introduction the Chern-Simons functional,
which gives them as the only solutions. These potentials interact with the
charged fields on the coset space and although classically they cannot be
distinguished from the trivial one, such interaction leads to the known result
of the mass-like terms in the effective Lagrangians of the considered field.

Let us also mention here that in addition to the one-dimensional class
of regular flat connection, there exists a two-parameter family of singular
potentials, for which the curvature is proportional to the § function.

The SU(1,1)/U(1) coset abelian gauge theory shows many interesting
features, which we have only outlined in this paper. It seems that some
further investigations of its relation to the two- dimensional dilatonic gravity
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and the generalization to the non-abelian theories may throw more light on
both topies.
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