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Contributions to the Fermi matrix elemenis Mp of AJ =0, AT =1
beta decays arise mainly from the Coulomb and the specifically nuclear
charge-dependent effects, for which the short-range phenomenological po-
tential of Blin-Stoyle & Le Tourneux is used. Using jj-coupling shell
model with harmonic oscillator wavefunctions, it is found that in the re-
gion of interest, the fractional change in Mp is approximately equal but
opposite to the fractional change in the size parameter.

PACS numbers: 23.40.-s

1. Intraduction

In nuclear shell model calculations, the many-particle matrix element
for the particles outside a closed shell has first to be reduced to two-particle
matrix elements, normally by means of fractional parentage coefficients [1] or
sometimes by standard methods in which this reduction of the many-particle
matrix element could be written in a closed form [2]. Then the two-particle
matrix elements are usually calculated using the method of transformation
brackets [3], and single-particle wave functions are taken to be simple har-
monic type. The radial parts R, ¢(r) of the simple harmonic wave functions

are characterized by the so-called size parameter b = /h/mw, i.e.
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where LY, ., /72(:'2 J?) are the associated Laguerre polynomials. The value

of the size parameter adopted in the calculation is usually obtained by using
the relation

(%) = $R2. (@)

In this paper, we wish to investigate the changes in the values of the

Fermi muclear matrix elements of AJ = 0, AT = 1 beta-decays due to
changes in the values of the size parameter.

2. Calculation and results

The Fermi nuclear matrix elements MF is given by

Mg = (fIT:hll) ’ (3)

where T is the total isospin operator. This obviously leads to the selection
rule AJ = 0, AT = 0. Therefore, non-vanishing Mg for AJ = 0, AT = +1
transitions should be due to charge-dependent effects Vop given by Vop =
Ve + Vn where the Coulomb potential Vg is

%:§20+#U0“9) (4)
i<j

Tij

and where Vjy is the phenomenological charge-dependent potential by Blin-
-Stoyle and Le Tourneux [4]:

W= 3 Vo (7 + 77 (p+ 7o - 5)
i<j
+797 (g4 559 . 5D) ) exp (- ;) - (5)
The parameters p and r measure the deviation from charge symmetry while
¢ and s measure the deviation from charge independence. Vj is taken as
—51.9 MeV and the effective range f~1/2 = 1.73 fm.
Consider a f1 decay of a nucleus of spin J and isospin T + 1 into a

nucleus of spin J but isospin 7. According to the ordinary perturbation
theory,

[y =|IMT+1,T, +1)+'|JMT +2,T, + 1) +...,
|fY=|IMTT.) + o|JMT +1,T;) +.... (6)

Neglecting second- and higher-order terms in a, obtain

Mp(B*) = (fIT-li) = a/(T + T, + 2)(T — T- + 1), (M)




Variation of the Fermi Matriz Elements. .. 801

where the isospin impurity amplitude « is given by

_ _(UMTT|VeplIMT+1,T,) _ M ®)
a=- AE TAE’

Using jj-coupling nuclear shell model, it can be shown that the only con-
tributions to M come from nucleons within the unfilled shell. Therefore,

M=(*IMTT, 0= (5t)]> Vepl(i,i)|i* IMT +1, T.o = (s,1)) . (9)
i<j

Here j = 1...k refers to the k equivalent nucleons in the last unfilled shell;
s the seniority; ¢t the reduced isospin; o = (s,t) denotes the symplectic
representation. Using standard methods, for k¥ = 4 we obtain

TT, T+4+1,T, 1-4(A7 + Ary,)
M= T12,+;34,=Tz HTi2a1Taas T1Ti2e 1 Toss \/(1 —4A7) (1 — 44141)
X ((j2112 =0, Tyz = 1|Vep(1,2)|72 /12 = 0, Th2 = 1)
~ (i%2 = J, Tiz = Wep(1,2)li%12 = I, Tia = 1) ), (10)
where 1
AT = m(%T,z —é1y0) .

The general two-particle matrix elements {3] can be written as

Myz = (naly,naly, Au|VIni £y, nyls, Mp) = Y Colyp, (11)

where the C coefficients are independent of the size parameter b and the
Talmi integrals I, are defined by

oo
I, = ] /rzl’e""zVCDrzdr. (12)
27y

I’(P+

Here the radial distance r is expressed in units of b and because of the way
r is defined, the following transformations in the potential Vop should be
made:
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For the Coulomb potential

e? 2P +1p! B
I, = = =2, 14
P o ((2p+ 1)!!) b (14)
Eq. (11) becomes
1
Mz =73 CpBy. (15)
From Egs (7)-(10) and (15), we obtain '
§ME &b
MFC,’ = —? . (16)

Therefore a 10% increase in the value of the size parameter would then
decrease the value of the Fermi matrix element by the same amount.

For the Blin-Stoyle-Le Tourneux potential, no such simple relation is
possible and therefore detailed calculations have to be made. Consider the
Bt decay from the J = 2+, T = 1 ground state of #4Sc to the 1.16 MeV,
J =2+, T = 2 state of 44Ca. Using Eq. (10),

(f7/2J_2 T=1,T,=—1,0=(2,1)| W f7,,J=2,T=2,Ts=—1,0=(2,1))
E(T=2)=E(T=1)

=z‘/‘g’((f-?/2J12 = 0|V (r12) fZ /212 = 0)
— (73912 = 2IVu(r12)lf7 3012 = 2)) ; (17)

MM =—

where
AE =E(T =2)— E(T =1) = 4.56 MeV

and
V(r12) = Vo((p — 9) + (r — 8)31 - 32) exp (— Br3,) -

If we write M}-.IfI = (p — ¢)MN + (r — s)Mg, the values of My and Mg
are calculated as a function of b as shown in Fig. 1. It is noted that the
contributions of My and Mg are opposite in sign with major contributions
coming from Mgs.

Consider another decay with rather different configuration assignments,
namely, the B~ decay from the ground state J = 7/, T = 5/ of 4}Ar to
the J = 7" /5, T = 3/, state of 1K. In the jj coupling shell model, we can

assign the configuration (d3/22J =0,T=1,T, =-1) (f.?/2 J="/T=
3/, T, = —3/2) to *1 Ar and the configuration (d3/2 =0,T=1,T,=-1)

(f,?/zJ = ", T = Y5, T, = 1) to 41K. The small admixture of the
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Fig. 1. Variation of the Fermi matrix element My as a function of the size parameter
b for the B+ decay of **Sc. My and M are defined by MY = (p—q)Mn +(r—s)Ms
where p and r measure the deviation from charge symmetry and ¢ and s measure
the deviation from charge independence.

T = 5/, configuration (d;/'gJ =0,T=1T.=-1)(f}),7 ="/ T =
3/2, T, = —=1/) in 41K is responsible for its non-vanishing Mg. Fig. 2 gives

the results of the values of My and Mg as a function of 4. It is again
noted that the contributions of My and Mg are opposite in sign with major
contributions coming from Mg.

Around the value of b = 1.9 fm, the calculated results shown in Figs 1
and 2 could be approximated by

My + Ms = Ab+ C, (18)

where A and C are constants. If b increases by 10 percent, calculation shows
that for both cases,
§ (MN + Ms)
—_— x~ —(0.10. 19
My + Ms (19)

As the parameters [5] p and r of the Blin-Stoyle-Le Tourneux potential are
an order of magnitude smaller than ¢ and s and also as ¢ =~ s, Eq. (19)
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Fig. 2. Variation of the Fermi matrix element My as a function of the size parameter
bfor the B~ decay of ' Ar. My and Ms are defined by MY = (p—q)Mn+ (r—3s)Ms
where p and r measure the deviation from charge symmetry and g and s measure
the deviation from charge independence.

becomes N
S My &b
— &~ —-0.10x ——.
11.5 0.10 3 (20)

Combining Eqs (16) and (20), we obtain
§Mp _ 6ME + MY 6b

Mp — ME+MY T b

(21)

Therefore the fractional change in the value of My is approximately equal
to the negative of the fractional change in the value of the size parameter. It
is further noted [6] that Eq. (16) and (20) agree in general with the results
of explicit calculations on both the Coulomb and charge symmetry-breaking

potentials for the Fermi matrix elements of isospin-forbidden beta decays of
20F and ?4Na.
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