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The classical X —Y model on a one-dimensional lattice is considered.
The X —Y model is investigated as a two-component classical spin. Dy-
namics of the system is determined by the Hamilton equations for the
spin field. By means of the zero curvature representation the integrability
in the kinematic sense was proved.

PACS numbers: 05.50.+q, 75.10.Hk

1. Introduction

We investigate the X — Y model as a two-component classical spin on
the one-dimensional chain [1, 2]. The spin vector is a two-dimensional vector
of a unit length. The Hamiltonian for the system including interaction up
to M-th coordination zone has the following form:

oo M .
H=- )" IJnSpeSiin

k=—con=1

o M
== 3 Y ua(sstia+ SIS (1)

k==—con=1

where J,, is the exchange integral for spins at k-th and k + n-th positions.
For each lattice point

(7)° + ($1)° =1. (2)
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Dynamics of the system is determined by the Hamilton equations of
motion. For each spin

St ={s;,H}, S{={si.H}, (3)

where { } is the Poisson bracket (PB). We assume the following structure
of the PB-s:

{57,857} = {s!,8¥} =0, {57,5¥}=Bibi; Vi,j. (4)

B; is a real number and in the general case B; depends on the lattice site.
In this approach we do not consider X —Y model as a certain restriction of
the Heisenberg model (e.g. [3, 4]). There is no particular case of the XY Z
model presented in the work [5].

Among physical systems the integrable systems have the special posi-
tion. In Section 3 we will prove that the X — Y model is integrable in the
kinematic sense.

2. Equations of motion

Substituting the Hamiltonian H given by formula (1) into Hamilton
equations (3) and taking into account the properties of the PB we derive

M
5': = -By Z Jn(sl!:—n + Sz+n) ’
n=1

M
S5V=Br Y Jn(Si—n+ Sisn)- (5)

n=1

We satisfy (2) constrain by the following ansatz:

Sk(t) = [cos fr(t), sin fi(t)], (6)

where fi(t) is a real function depending on time and on the integer variable
k labelling lattice points. Substituting (6) into (5) we finally obtain

M
fe=Br ), Jn(exP (#(fr—n = f2)) + exp ({(fatn — fk))) (M

n=1

Detailed description of the wave like solutions of the (7) equation are pre-
sented in papers [1] and [2]. In paper [2] we explained, that the chosen
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method for testing X — Y model dynamics is in accord with the Dirac
method for a constrained system (see [6]).

3. The zero curvature representation in the discrete one-dimensional case

Instead of the discrete nonlinear differential equation one can consider
the following pair of linear equations (see [4, 7, 8]):

Fry1 = Li(t, M) Fy,
Fy = V’k(t, ’\)Fk ’ (8)
where L, V}, are reversible matrix operators depending on k, ¢t and complex

parameter . The agreement condition of these equations (see Sylwester’s
Theorem) has the form

Li(ts A) + Li(t, \Va(t, A) = Viga (8, M) Li(t, A) = 0. (9
This condition arrises from the following observation:

Frpy = LiFy + LiFy, = Ly Fy + Ly Vi Fy,
and

Fk-}-l = Vk+1Fk+1 = Vk+1Lka . (10)

For the equation of motion (7) we have found the zero curvature rep-
resentation and thus we have proved, that the X — Y model is integrable
in the kinematic sense [4]. We present two independent representations for
equation (7).

- Ly = (exP%ifk) expc((j\éfk)) R . (‘Bk dlzf\)) .

¢(A) and d()) are arbitrary functions of parameter A (they are independent
of time and of k), ¢(A) # 0, d(A) # 0. The components a; and by of the
matrix V}, are given by the following recurrent formulas:

Q41 — G = iP(k) ’
c(A)bry1exp(ifi) — brexp(2ify) = d(A) — ap — 2iP(k),  (12)

where

def

M
P(k)'By 3 Jn(exp (i(fin = fi)) + exB (i(farn — 1))

n=1
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One can choose for instance ag = A. Then

k—1
for k>0 ak=/\+izP(j),
j=0

k
for k<0 ap=X—i Y P(j). (13)
j=-1

First we must calculate aj, elements, then b, (one can choose for instance
bo = 0). The agreement condition (9) has the form

(’; ’0") =0, (14)

where
. M
re=fk—Br Y Jn(eXP (i(fe—n = fr)) + exp ({(fi4n — fk))) ;
n=1
which is equivalent to the (7).

2. L - (expgifk) expe((—Az?fk)) V= (g(;c ’ll:) , (15

where ¢()) is an arbitrary function of A parameter. We calculate the ele-
ments g, hi and I from the following formulas:

Ike+1 — 9k = iP(k) )
lk+1 - lk = —iP(k) y
hit1exp(—ifi) — hiexp(ifi) = e(A)(Ik — gr+1) - (16)

We can choose for instance go = lp = A, hg = 0. The agreement condition
has the form
e 0y _ ,
(% )=, (17)

where

M
re=fo=Bi Y In(exp (i(feen = f2)) + exp (i(fisn — f))) -

n=1
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4. Conclusions

Dynamics of the X — Y model is determined by the Hamilton equations
for the spin field. For the equation of motion we have found examples of
zero curvature representation. Thus the X —Y model on a one-dimensional
lattice is integrable in the kinematic sense.

Basing on the found representations we will be able to try to examine
the X — Y model by applying the Inverse Scattering Method to it as it is
done e.g. for the Toda Lattice (see [4, 7, 9]), and thus to search for new
solutions of the equations of motion.

I am grateful to dr K. Sokalski for useful advices and critical comments.
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