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We present a new realisation of the Sp(2, R) algebra and show its
connections with a quantum anharmonic oscillator. This new realization
admits only one unitary irreducible representation, comprising states with
both even and odd parities. Coherent states for this realisation exhibit
squeesing, though weaker than the standard squeezed vacuum states.
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1. Introduction

The Sp(2, R) algebra contains three elements satisfying the following
commutation rules:

(K4, K_] = -2K,, (Ko, K+]= %K. (1)

It plays a crucial role in many areas of physics. It has been used to study
giant monopole resonances (breathing modes) in nuclei or in the context
of commutation rules—preserving canonical transformations of multiboson
systems [1]. It has been also pointed out [2,3] that so-called squeezed states
of quantum optics are in fact coherent states for this algebra in the sense
of Perelomov [4]. However, all these applications have been connected with
one specific realization of the operators (1), given by

where a!, a are creation and annihilation operators for the harmonic os-
cillator. It is interesting to note that the Casimir operator of the Sp(2, R)
algebra [4]

C=K}-YKiK_+K_Ki)=k(k-1) (3)

(823)
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admits two values of k in the realization (2), which both are positive:
k = 1/4 and k = 3/4. Consequently, there exist two unitary irreducible
representations of the algebra (2), each defined by one of the values of k,
and it is easy to show that the number states of the harmonic oscillator
|0), |1}, are the lowest-weight states [4] for the representations k = 1/4 and
k = 3/4, respectively. Since K4 change the number of excitations by 2, all
even parity states belong to the k = 1/4 representation, while all odd parity
states to the k = 3/4 one [5].

In the present paper, we construct a new realization of the algebra
(1) and examine its coherent states. This paper is organized as follows:
In Section 2 we consider a quantum anharmonic oscillator and show its
connection with the new realization of the Sp(2, R) algebra, which we also
construct. In Section 3 we construct coherent states for the new realization
of the algebra, and in Section 4 we discuss squeezing properties of these
states. A short discussion is given in Section 5.

2. Anharmonic oscillator

Consider a quartic one-dimensional oscillator

1 mw? 2miw?y
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where the coefficient at z? has been chosen in a form simplifying further
calculations, and both w, x > 0. Upon introduction of standard creation

and annihilation operators al, a:

1 . [rw
z'::\/z__.(at-i-a), p=: -——2—(a1-—-a), (h=1) (5)

mw

the Hamiltonian (4) changes into

H=(w+x)(a'a+ 1) +x(a +a?)
+x [(@'a)? + Hat* +a*) + ala + ata?)] . (6)

If we now remove terms that do not conserve the number of excitations
(rotating-wave approximation), we obtain (up to an additive constant)

H = (w+ x)ata + x(a'a)?. (7)
Such approximation is valid if (x/w) < 1.
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A Hamiltonian similar to (7) has been expressed in terms of Sp(2, R)
generators (2) and its interaction with squeezed electromagnetic field has
been studied by Gerry {3]. Here we present another decomposition of (7).
Since any function of an operator commutes with this operator, (7) may be

also written as
H = x/(ata+ ) a'ay/(ata + }), (8)

where

A= —F. 9)
Note that the square roots in (8) are Hermitian and well defined. Note also
that A > 1 for all x > 0, and for physical reasons (small nonlinearity) we

expect rather large values of A.
Now we introduce new operators

Ky =4/(ata+ ) al,

K_ =ayf (ata+ 1),

Ko =ala+ 1(1+12). (10)

It

It is easy to check that the operators (10) satisfy the commutation rules (1)
and thus they constitute a new realization of the Sp(2, R) algebra, which
may be called a Holstein-Primakoff [6] realization. To see that the realiza-
tion (10) is fundamentally different from (2), let us compute the Casimir
operator (3). Using (10) and the standard commutation rules of a, at, we
get

C=31AN-1)=kk-1), (11)
from which we obtain
=3(1-2)<0 or k=3(1+X)2>1. (12)

Since only positive values of k are connected with unitary irreducible rep-
resentations of Sp(2, R) [4], we can see that for the realization (10) only
one such representation exists. For the ground state |0) of the harmonic
oscillator we have

Kol0) = 3(1+2)[0), and K_[0)=0, (13)
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and the state |0) is the lowest-weight state for this representation. Because
the new operators K4 change the number of excitations by 1, we can see
that the new representation comprises both even and odd parity states of
the harmonic oscillator.

The Hamiltonian (7) can be now expressed as

H = XK+K_. (14)

Note that although the generators (10) formally diverge as x — 0, the
Hamiltonian (14) remains finite.

3. Coherent states

Coherent states for higher algebras can be defined .in two ways: as
eigenstates of the generalized annihilation operator (K_ in our case), or,
as proposed by Perelomov [4], through the action of a generalized Glauber
operator on the lowest-weight state of a representation:

D(2)|0) = exp(zK4 — 2K_)|0) . (15)

These two approaches give the same results for the harmonic oscillator only.

Coherent states for the Sp(2, R) algebra defined as eigenstates of K _
have been examined by Barut and Girardello {7] for a “general” case, that
is to say, without specifying the form of the generators (1). However, as
Perelomov’s approach proved to be very useful in many areas of physics, we
concentrate here on the states (15). These states, with K4 defined by (2),
have been discussed by Gerry in his numerous papers (see e.g. [3,5]). Since
formal properties of the states (15) result from algebraic properties of (1),
and not from a specific form of the generators, we leave out the calculations
and only quote results for the generators (10).

A parameterization z = (8/2) exp(—i¢) is conventionally used. Another
complex number § is usually introduced, { = tanh(68/2)exp(—i¢). Thus
the states (15), though formally covering the entire complex plane z (the
operator D(z) is unitary), are confined to the unit Siegel disk [4] if described
in terms of §.

From the commutation rules (1) and the Baker-Hausdorff formula we
get

D(z) = exp(¢K + ) exp(In(1 ~ [¢[*) Ko) exp(—K-). (16)

Thus the coherent states

|€) = D(z)10) = (1 - [€]*)* exp(EK4) [0) , (17)
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where k labels the representation. Using (10), after some algebra we finally
get

0= @-lgion s T e, s
n=0

where |n) are number states of the harmonic oscillator. We can see that the
states (18) are built up of both even and odd parity states, contrary to the
standard squeezed vacuum states (2,3].

The states (15) are also over-complete, i.e. they are nonorthogonal but
constitute a resolution of identity. Details, which do not depend on a specific
realization of the generators, may be found in [5].

4. Squeezing properties of the coherent states

Consider two Hermitian operators

Xlz%(a-i-at), Xg:il-;(a—af). (19)

They do not commute, and as it is known from textbooks, their variances

Vi = (X.%) - (Xi)? (20)
must satisfy the inequality

e > &. (21)

The variances (20) are calculated in a given quantum state. For the vacuum
[0) we get V] vac = V2,vac = %. If either of the variances is less than its
vacuum value (while the other one is enhanced in order to satisfy (21)), the
corresponding quantum state is called a squeezed state. It is now well known
(2,3] that coherent states for the realization (2) of the Sp(2, R) algebra
are squeezed, unless a specific choice of phase ¢ is made; they are even
nicknamed squeezed vacuum states.
For the states (18) we obtain

Vi=3+3n—- 1B+ 3(4- B)cos2¢, (22a)
Va=31+3n-1B- }(4A- B)cos2¢, (22b)
where
2
i=(ala) = (1+2) €] (23)
n aa ’
(a'2) 1- g’
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and

= I (1 - JePy Z ) VeI E T e

(24a)
=l |- 1e )‘“ZP Lo it Javien €| .

As one can see, the degree of squeezing is fully determined by the aver-
age number of photons in the state 77, and by the phase ¢. In particular, for
¢ = 7 /4, no squeezing occurs. For simplicity, we put ¢ = 0, so the variance
V> takes values smaller than V2 yac, and squeezing is maximal.
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Fig. 1. In V; as a function of # = (a! a) for various values of A and ¢ = 0. Line a

corresponds to A = 1000, b to A = 100, c to A = 10, and d to A = 1. The dashed
line corresponds to a squeezed vacuum state (cf. (25)).

Fig. 1 shows numerical results for a logarithm of V2 as a function of
7 for various values of A. In addition, V2 for squeezed vacuum states, as
calculated by Gerry [3],

Vasqvae = 3(A+3) = 3VA(R +1), (25)

is shown. Apparently the greater the average number of photons, the greater
the squeezing, although it is always smaller.than squeezing for a squeezed
vacuum state with the same average number of photons. The states (18) also
remain, to a good numerical approximation, minimum uncertainty states
(i.e. V1V2 = 1/16). However, for large values of A, corresponding to physi-
cally realistic nonlinearities in (7), squeezing is marginal.
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5. Discussion

We have constructed a Holstein-Primakoff realization of the Sp(2, R)
algebra, and shown how it naturally arises from considering the anhar-
monic oscillator (7). This new realization is fundamentally different from
the “standard” realization (2). Coherent states for the new realization ex-
hibit some interesting properties, including squeezing, which, however, is
weaker than squeezing displayed by coherent states of the “standard” real-
ization.

It is interesting to note that similar Holstein-Primakoff realizations of
the Sp(2, R) algebra have been already introduced in an auxiliary Fock
space for a multidimensional oscillator [8] and in a Hilbert space of analytic
functions [9]. Here we have presented a Holstein-Primakoff realization in a
“real” physical space for the first time. However, the problem of a possible
generation of quantum states (18) remains open.
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