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The structure and form of the dominant contribution of higher order
corrections for a hadronic process in the next-to-leading arder with respect
to the running coupling a, are shown explicitly. We demonstrate that
this coniribution comes from the soft and/or collinear configuration of
the particles in the final or initial state. We give the origin of various
terms of this contribution and a prescription to derive them. -

PACS numbers: 11.15. Bt

1. Introduction

In perturbative QCD, higher order corrections (HOC) have been calcu-
lated for many processes. In particular when the Born term is of order a, or
higher, the calculations are very involved and the expressions very compli-
cated. Yet, almost invariably, the result is very simple; an overall inclusive
cross section differing from the Born term by a slowly varying factor [1]-[6].

This suggests that there is a relatively simple dominant part of the
HOC which, if identified, can perhaps be calculated easily [7]. If so, this
could be useful in various directions, as for example in determining approx-
imate HOC for QCD processes of the type a + b — ¢ + d and particularly
a-hd — c+d+e for which complete HOC are hitherto unknown (due to their
complexity), and in going beyond the next-to-leading order in a,. Moreover,
in supersymmetric theories where we are dealing with the standard particles
as well as their supersymmetric partners (that is many diagrams involved),
the complete calculation of the next-to-leading order is practically impossi-
ble. In addition, the recent complete calculation of the Russian group for
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the ratio R,+,- [8-10] shows that the next-to-leading order in a? is larger
than the one of order a,. This means that the perturbative serie expansion
diverge. This is a serious problem in QCD. Therefore, more tests of the
theory are needed and one has to find the simplest and fastest method to
determine at least the magnitude and the sign of the corrections.

If one considers for example the standard model of the electroweak
theory where massive particles such as the Higgs, Z and W bosons are
involved, the complete calculation of HOC will be very complicated and
difficult. Thus, it will be very interesting at least from the phenomenological
point of view, if one can know easily the magnitude and sign of HOC. This
may solve the outstanding problem of the Higgs particle in the sense that:
may be the HOC are comparable to the Born term but with opposite sign.
This means that the cross section is small, a fact which is compatible with
nowadays high energy experiments. This may save the Weinberg-Salam-
Glashow theory!

In Section 2 we show the structure of the deminant contribution of pro-
cesses involving structure and/or fragmentation functions. In Section 3 we
give physical as well as theoretical proofs of the dominant of the contri-
bution coming from the soft and/or collinear configuration of the particles
at the initial and/or the final state. In Section 4 we determine the origin
of each term and establish some rules. Finally, in Section 5 we give some
practical proofs of the dominance of such a contribution for some physical
processes where the exact HOC is known and draw our conclusions.

2..The structure of higher order corrections

Let us consider a hadronic process of the form
A+B—C+D, (2.1)
where A, B,C and D are hadrons. The cross section can be written as

=2 / / / / dzadzydecdzaFy (2, M)Fy (2, M)Dg(ze, M')
a b .

¥
c,d

3

XD (24, M'){"’—y‘lfo.s@ A i‘) + “315")1'0(1 + t—l:—'—‘) } (2.2)

where Fﬁ—’ F% (resp. D¢, D g_) are structure (resp. fragmentation) func-
<

tions; a, b, c,d are massless partons, fy the Born term and f the HOC.
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We introduce the following dimensionless variables

i @
v—1+;, w——£+§, (2.3)
so that
§+i+a=v(1l-w)i (2.4)

3, t and 1 are the usual Mandelstam variables at the partons subprocess.

Now, it follows from a number of explicit results [3-5], [12, 13] and will
also become clear in the next sections that the general structure of HOC is
as follows:

f= f(zc’ T4y Y, w) = fsing(zca T4, v, w) + f(zc’ T4, Y, w) ’ (2-5)

where

fring = [01+01m( )+clm(M2)+clm(M,2)]a(1_w)

forseam () + B () g o[ o

where u, M and M' are the renormalization, structure and fragmenta-
tion functions factorization points, respectively. Moreover, the distributions

and [lngl_—w)] are defined as follows:
+

1
(1-w)4 w

1
g(w) _ g(w) — g(1)
/"w(l—w)+ 0/"’ (1= w)

and

1 1
[a[B=2] o) = [ awlow) - o), (2.7)
0

1
0

where g(w) is some regular function.

The function f is smooth as w — 1 and in general, very complicated
(hundreds of terms); it is the most complicated part of HOC [2, 8, 9].
It receives contributions from hard and non-collinear gluon and/or quark
Bremsstrahlung. It should be added that in f the multitude of terms con-
tribute with almost random signs (some are positive, others negative). This
means that the resulting cancellations add to the suppression of f.
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It will be clear in Section 4 that each part of fiing(Ci, 51, etc.) is
gauge invariant and receives contributions from soft and/or collinear gluon
and/or quark Bremsstrahlung. Each term of fing is related to the infrared
or ultraviolet or mass and collinear singularities which are gauge invariant.

3. Proof of the dominance of f;,,

Let us state the following:
Theorem:

For processes involving structure and/or fragmentation functions the
part fsing dominates and as M (and/or M') increases for a fixed 3, the
relative contribution of the part f of HOC is suppressed more and more,
and the amount of suppression increases with the softness of the structure
and/or fragmentation functions.

Proof:

To simplify matter and keep our arguments transparent, let us deal
without fragmentation functions (for the general case see Appendix A).
Now, using the property of the heveaside theta function present in Eq. (2.2)
we obtain:

s+i+a>0, (3.1)

which implies immediately that:
ZoZps + Tot +zpu >0, (3:2)

where z, and z; are the momentum fraction of the initial partons a and b,
respectively. The s,¢ and u are the Mandelstam variables at the hadronic
level. By defining the variables

V=14t
s
and u
W =- (3.3)
t4+s
Eqs (3.1) and (3.2) give:
o, VW (3.4)

oS e — (V)

Now, the crucial observation is that Fg (za, M) behaves like (1 —z4)™; with
A = parton, n is quite large (n ~ 3 for u-quark n ~ 4 for d,n ~ 5 for
gluon). Notice also that the scale violations enhance n as M increases.
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The same for F (23, M). Thus in order to get a significant contribution

for the structure functions, z; should decrease and z, takes the minimum
value %. This corresponds to w — 1. Then referring to Fig. 1,
contributions arising from the region away from w = 1 are suppressed by
powers of (1 — z,) and/or (1 — z;). Now, the terms of f,ing of Eq. (2.5)
contribute at w = 1 or mainly at w ~ 1 (cross hatched region of Fig. 1).
However, the multitude of terms of f do not mainly contribute at w ~ 1
and they are suppressed. Now, if s increases (¢t and/or u kept fixed), V (or
W) decreases and, therefore, the boundary of the hatched region (Fig. 1)
moves towards z, = 1 and z;, = w and the whole region shrinks. Thus, the
suppression increases.

Fig. 1. Kinematic region of the z,, z; integration in Eq. (2.2). The boundary
corresponds to § +f + @& = 0 (or w = 1), the hatched region corresponds to
41414 >0 (or w< 1), and the cross-hatched region denotes the neighbourhood
of the boundary.

Moreover, as we know from phase space arguments that the 2-body
final state contribution dominates over that of the 3-body final state. In our
case, we are dealing with soft and/or collinear configuration of the partons
Bremsstrahlung. This is like having two particles at the final state. Thus,
the contribution coming from this configuration dominates.

4. How to get the dominant contribution?

The second term C; of Eq. (2.6) proportional to In (;’g) is the first term

of the expansion of the running coupling constant around the renormaliza-
tion point times the Born term:

a(s) = au(n) [1 B a;grl‘) 11N¢_-';‘ 2Ng In (;“%) +.. ] ) (4.1)

The origin of this logarithmic term comes from the renermalization i.e. the
subtraction of the ultraviolet divergences.
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Similarly, the terms C; and C, proportional to In (—L) gets their origin
from the factorization of the structure functions at the sca.le M. Thus, it is
easy to show that for the subprocess a + b — ¢ + d one can write:

C1+Cz = %{Zpia ®hcat D Pi® &f?,-_.cd] (42)
i j

and then obtain C; and Ca separately. Here the symbol ® means a convo-
lution product.

For the terms C 1 and Ca (proportional to In (—M%,-) which are the results
of the factorization of the fragmentation functions at scale M', one gets:

51 + 52 = %[Z&ﬁ"’id ® pci + Z&ﬁ-—bcg ®de] . (43)
i J

The quantities p;; (resp. &B’s) are the Altarelli-Parisi split functions (resp.
Born terms). Thus the expression of 51, 52, 51 and 52 can be obtained
easily from Eqs (4.2) and (4.3).

Now for the Bremsstrahlung contribution, the origin of the distribu-
. In(1-— . . .
tions (1 — w), (1T1w§§.' and [11(:1”12]_*_ defined in Eq. (2.7) is a factor like
(1 — w)~1~%¢ (a is some real number) [2]. Thus, one can write the most
general expression of the singular Bremsstrahlung contributions as:

A
A TR RO

The factor D¢ comes from the 3-body phase space (Appendix A). Using the
expansion (up to the O(e)):

(1-w)~1mae = -;1;5(1—w)+ ~ae[1£(-1-_‘7"’)]+ +0(e?) (4.5)

1
1-w)t 1

one gets:

A 1
Bremss —_——_—— — — — —_
fq o 6(1 — w) " [Aln D + B]é(1 — w)

sing
1 In(1 - w)
+ [AlnD + B(i—:—t—u—)__: — aA[—l':-—]+ + 0(6). (4.6)
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Now, if we assume that the virtual contribution for the subprocess ab — c¢d
is known one can write it as:

vm Fe
sing

[‘4' + !ii +C']6(1 - w). (4.7)

The factor F¢ comes from the 2-body phase space (Appendix A). After
straightforward simplifications we obtain:

fvnt [ é:_
[

(A'InF + B')
sing 2 + ——__5—'—"

+(A'h12F+B’h1F+C')]6(1—w). (4.8)

The Bloch-Nordsieck mechanism tells us that the infrared singularity has
to be cancelled, 1.e.:

A=ad'. (4.9)

Moreover, a consequence of the Slavnov-Taylor identities (or BRS invari-
ance) is that the ultraviolet singularity has to be cancelled. This means that
after subtracting the contribution coming from the mass singularity (enter-
ing the Altarelli-Parisi split function p;;) and proportional to the Dirac
distribution §(1 — w) we obtain:

—%(AlnD—}-B) ~Cy=—~(A'"InF + B") (4.10)

with _
B=-a(C;-B' -A'InF)- AlnD.

Now the remaining part is (—C/a) which is proportional to §(1 — w).
This means, it comes from a collinear and/or soft configuration. The con-
tribution from the latter can be calculated easily {2, 6]. It is important
to note that, if one wants to get a physical correction, one has to add the
functions F,; and/or D,, given in Appendix C [14] instead of the naive
choice F,, = D, = 0 [15] because it reduces the large correction terms of
kinematical origin, common to all processes involving gluons and should be
absorbed into the structure and fragmentation functions.

Now, if from the F,},’s and D,,’s functions we pick up just the terms

proportional to §(1 — w), (1—17’)— and [l—"(—l—w—)] . Thus, from Eqs (4.9),

(4.10) and the arguments given above, we can determine exactly the terms
C 1 Cz and C3.

Finally, from the above considerations one can get all the terms of
feing (see Eq. (2.6)) without doing a full calculation (hundreds of terms)
of the Bremsstrahlung contribution. Thus, in order to obtain the singular
contribution of a hadronic process of the form A + B — C + D (which
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dominates) and up to the next to leading order in a,, one can state the
following rules:
1. Calculate the Born term in d = 4 — 2¢ dimension.

2. Determine 61, 51, 6'1, C, and C, from Eqgs (4.1)-(4.2) and (4.3).
3. Write two and three bodies phase space in d dimension.
4. Calculate the virtual contribution and write it in the form:

Fe [A' B’

+— 4+ c’] §(1 - w).
5. Set the Bremsstrahlung contribution in the form:
D* [5 +B+ ec](1 —w)1-ee
13
where
A=ad
B=-a(C;-B' - A'InF)- AlD.

6. Calculate the Bremsstrahlung contribution coming from soft and/or
collinear contribution (easy calculation) i.e. proportional to the Born
term times 6(1 — w).

7. Write the singular part of F,; and D,; as:

smg sing o, ~ sing o -~ B
- [Z ® Oipsca T Z fJb ® Uaj-—»cd] ’
j

. 1 B )
D:'l:g = 5 [Z aab-—rid ® ds:ing Z ab-—»c] ® lng] ]
i
where F:ibng and d:";' € have the following form:

sin. hl —
foy® = 025,6(1 - w)+02b(.l.___1_w_):+nzb[_£_l"_)] '

&5t = wab(l—w)+ “’ab'('i—_'_)I +wab[__—'—] L

8. Determine C;, C2 and Cj.
Now, to give an idea how one can calculate easily the Bremsstrahlung
contribution coming from the soft and/or collinear configuration and pro-
portional to the Born term times §(1 — w), let us take as an example the
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process q§ — 7g. The Born (Fig. 2(a),(b),(c)) contribution |Mg|? (see
Fig. 2(d)) summed over spins and colors is of the form:

TIg(p1,P2
(M2 ~ BELP)
[(q - p2) ]
where Tg(p1,p2) is a- Born trace. Now, considering the interference term

of the Bremsstrahlung amplitudes M; and M, (unitary graph, Fig. 2(e)),
which gives a contribution to HOC, we have

T2(p1,p2, k)
MM} ~ 2
YT (o — k(g - p2)2 (k- p2)2(g—p2 + K)2’

where T3(p1,p2, k) is another trace.

—
— e e .____<
+ PO
{a) {(b) fe)
o P Pk __l__
} I~ G-p,ek
H q-p; s
LK) PR
——bl— ‘
{d) e}y | k-p,

Fig. 2. Unitary graphs contributing to higher order corrections amplitude.
We introduce Sudakov variables as:

k=apy +Pp2+1; pr-l=py-1=0; I=(0,ir)

so that:

(pr—k)?=-
and

(k- p2)? = —as.

Also, we obtain:

T2(p1,p2, k) ~ (1 — a — B)TB(P1,P2) -

The phase-space of the emitted gluon becomes:

[ G ssln 42— a - 7] / app=<s(p - 22=2) / daa™
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notice that for w — 1; § ~ 1 — w. Next, we consider the leading contri-
bution for a — 0 (i.e. k ~ Bp2), and we obtain

do dr 1k 2 +

~jdﬂﬁ"‘6(ﬂ v(l w) /daa «_Ta(p1, (1-B)pa)
0

afl(q ~ (1 - B)p2)*]?
-B

1
N/dﬁﬁ"l—e‘s(ﬂ vfl w))lMB(pl’(l"ﬁ)Pz)IZ/daa -
0

Notice that |Mg|? appears with argument p;, (1 — B)p2, as it is pertinent
to the emission of a gluon with k ~ Bp;, thus expressing a factorization
property. Now,

and for

one has:

d:;w ~ (1 j v)—e(l - w)-l-‘( - %)IMB(Z’I’ p2)|?

using Eq. (4.5) and the expression

(+* )"_1_51n(1 -) +0(e?)

1—-v

one gets for the expression proportional to §(1 — w
g
v
11n? T‘_’_‘;lMB(Pl, p2)%.

This shows clearly that this contribution is easily obtained.

5. Practical proofs and conclusion

Consider large transverse momenta pr direct photon production and in
particular the difference of inclusive cross section

do ,_ do
0=E;,3—P;(pp —-—»7X)-Ed—31;(pp — 71X) (5.1)
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9§ — 9
0 - Oy /S = 63Gev
O’BQO'HO"
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~
\\
10\ ~
_\
- \
AN
102} N
i ] = i 4
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Fig. 3. The ratio JE2=2H2L for the cross section difference of pp — X and
pp — vX versus Py at /s = 63 GeV and pseudo rapidity y = 0. Solid line —
results for the d-quark distribution (Duck—-Owens set 1). Dashed-dotted line —
results with a fictitious distribution of the form (1 — z)*, » = 20. Dashed line —

the same with n = 0.01.

dominated by the subprocess qg — vg.
Now, denoting by o,;ng the contribution to the inclusive cross section
o of the part fiizg and by oo that of the complete f, thus oo ~ gsing

corresponds to the contribution of f. Consider the ratio:
OHO — Osing
OBorn + OHO
Fig. 3 (solid line, denoted by n = nqcp(pt) (4]) shows that, considered as
function of the transverse momenta of the direct photon Py (here we take
M = pr) for fixed s, this ratio is small and decreases with pr. To test more

our ideas, we have carried the ratio (5.2) by writing the structure function
in the form:

(5.2)

Fy(2,pr) = Fy (2.p7) = (L= 2)"

for the fictitious values n = 20 (extremely soft distribution) and n = 0.01
(extremely hard). As expected, in the first case (dashed line in Fig. 3) the
ratio is significantly smaller than for n = nqcp(pr); in the second case
(long dashed line) it is significantly larger.
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Very similar results were obtained for the contribution of the subprocess
qg — 7q to the inclusive cross section pp — v+ X analyzed also in detail
(Fig. 4) [4]. The same holds also for the contribution of yq — ¥q to
vp — v (large pr) + X (Fig. 5). Finally, we got similar results for the
contribution of y4 — q§ to 49 — hadron (large pt) + X, involving the
fragmentation function ¢ — hadron.

99— ¥q
% -y /5 <63 Gev
% * Oho

10~
102~
A i 1

1
4 8 12 16
p'r ( GeV )

Fig. 4. The ratio ’1:.&':_’:;_‘:;. for the physical process pp — vX (contribution of
the subprocess qg — vq) versus Pr at f = 63 GeV and pseudo rapidity y = 0.
Solid line — results with a U-quark distribution (Duck-Owens set 1). Dashed and

dashed-dotted lines — the same as in Fig. 3.

Now, as another example, regarding supersymmetric QCD (SQCD),
complete HOC have been determined only for the Drell-Yan type subpro-
cesses [1]:

a§—7*—17;  §g—y"—1t17; (5.3)

and for the time reversed

7*—qq; e et —y*—aq, (54)
where §, § and 1 are the squark, photino and slepton, respectively. In
fact, Ref. [1] considers ultrahigh energies and very large transfers so that all
partons (including ) can be treated as massless.
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0S|

HO HO

0.2

0.05—

0.021-

¥q—-¥q \
0.01}- E_, =100 GeV

Y =0

0.002}-

p; (GeV)
Fig. 5. The ratio —22=7t2& for the physical process yp — vX contribution of the

+
subprocess yq — "’ynq versus Py at B\, = 100 GeV and pseudo rapidity y = 0.
Solid line — results with a U-quark distribution (Duck-Owens set 1). Dashed and

dashed-dotted lines — the same as in Fig. 3.

Since we are interested in processes involving structure (or fragmen-
tation) functions, we consider the two subprocesses (5.3). We denote by
Q the four-momentum of ¥* or 4* and introduce the usual scaling vari-
able 7 = Q2/s. Then the contribution of qq—-+1+1 to the inclusive cross
section of the physxcal process A + B—11 + i-+x (or of qq—>1+1 to
A+ B—1t +17 + X) can be written as:

i’_w/d”“d””F'x(za)Fa(zb){ ( T )

sz za 2a2b

+ a,(xqz)f(zazb)g(l B z:zb)}’ (55)

l

g =

where the term proportional to § 2
HOC.
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The form of f is very similar for the two processes (5.3) [1] and here we
present expressions only for the first. One can write:

f(T) = fsing('r) + .f-(T) s (5.6)

where

Fring(T) = —Cp{-—t’&(l ) 48— 4 s{_hil_:_‘{lh}

(1-7), 1-7
and
f(r)=Cr{3(1-7) -4+ (1-T1)In(1 - 7) -~ 4In(1 - 7)}. (5.7)
5x107"| q§ — ¥* VS =40 Tev: 39 — y*
T —
a -0’\ -
) L Joss a| /oo
2«07 | \ 3 4 %o \\
8 ' \ -10"! \
3 \
- %0~ % \
§ O +04y \ y Gyn-0s
x02} -5x1072
5«10 Sx10 Og ¢ 0o \
2x102} -2x1072
L u) 1 ] 1 L b) 1 -1 ] i
002 005 01 02 05 005 01 02 _ 05
<

Fig. 6. The ratio 7X2—7u=L a¢ /s = 40 TeV, using for the quark and Squark
distributions the simple form (1 — z)". (a) — the contribution of the subprocess
q§—7" to the physical process pp—I1*1~ + X solid line — results with n, = 3
and ng = 0.01. (b) — the contribution of the subprocess to §G—" to the physical
process pp—I1*1~ + X; solid line is the result with ng = 7. Dashed line is the
same as in (a).

As in the first example, we denote by oying the contribution of foing
to the inclusive cross section o, and by oo that of the complete f; thus
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OHO — Osing is the contribution of f. For our SQCD processes we present
results for both the ratios:
OHO — Osing, OHO — Osing
OHO ! OBorn + OHO

(5.8)

We consider the physical processes pp—11t1~ + X and pp — 111~ + X at
Vs = 40 TeV. For Fg and Fﬁ- , we use simple forms ~ (1 — z)™ and take

for the quark ny = 3 and for the Spuarks ng = 7; this is sufficient, since in
particular we are interested in ratios of cross sections. To determine a,(Q?)
we use six flavours and take the SQCD parameter A = 0.2 GeV.

Figs 6a,b present our results. We see that both ratios (5.8) are small,
in particular the second; for /7 > 0.05 they decrease with 7.

As for QCD, the explanation lies in the behaviour ~ (1 — z)™ of the
structure functions. The contributions to ogo arise by integrating in the
region 2,z > 7 with 24, 2 < 1. The terms fyin(7) give their contribution
at our mainly near the boundary z,2;, = 1, and they dominate the HOC.

We conclude that in order to determine the HOC coming from the
singular terms (which dominate), one has just to calculate the Born term
and the virtual diagrams contribution. In other words the Bremsstrahlung
contribution is easily obtained since its dominant part result from the soft
and/or collinear configuration of the particles at the initial or final state.

Thus, knowing the Born and virtual terms, one has just to follow the
rules given in Section 4 and get the final contribution. More details and
applications of the above prescription will be given in our next paper [16].

We are grateful to Professors M. Le Bellac and G. Clement for fruitful
discussions. We would like to thank Professors J.P. Provost and G. Valee
for the hospitality extended to us during the time we have spent at the
Laboratoire de Physique Theorique de Nice.

APPENDIX A

Let us consider the inclusive physical process A+ B——C + X (X means
anything). Here we are dealing with a case of two structure functions
and one fragmentation function. Denote by z,, z; the momentumn frac-
tion of the parton a (resp. b) inside the hadron A (resp. B and z. the
momentum fraction of the hadron C from the parton momentum c i.e.:
P, = z2,P,, P, = 3P, P. = }—:f-. Using the subprocess Mandelstam
variables (with massless partons) one gets:

§+f+ﬁ=z¢zbs+zat+§9—u, (A.1)

c
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where s, t and u are the Mandelstam variables at the hadronic level, defining
the variables v, w, V and W such as:

E,:—(l—v), 1—f-:-:—vw, E=—(1—V)a.ndE=VW
3 3 s s
we obtain:

s[zazp— 2za(l - V) - -:—EVW]

s+i+a= or
zazpv(l — w)

(A.2)

Then, using the property of theta function one gets:
zq > ?VW[z,, —(1-v)t.
[+

The minimum value of z, is obtained when the above equality holds. This

means that:
s+t+a=0

and Eq. (A.2) implies that w = 0 (i.e. soft and/or collinear configuration).
APPENDIX B

(B.1) 3-body phase space

Consider the subprocess a + b—c + d + e, and the momenta P;
P,, P, = P, Py = P,, Py = P; and P, = P.. Introduce the variables
Py = P4+ k and 33 = sz. Then, the 3-body phase space in d = 4 — 2¢

djmension is given by:
(ps)s = / mi—_;;dszddpad“mk&*(p%)&(pik - 5)
5d(?1 +P2 —Pp3s — P4k)ddkddp45+(k2)5+(P3)5d(P4k —pa— k)
the notation §1(z) means z > 0. Working in the rest system of the Py + k

we orient the vectors P;, P; and P; so that they lie in the plane of the d-th
and (d — 1)-th components of the momentum. Thus we have:

Py = @(1,...,c0502 sinfy, cosf,),

k= —JzL_;(l,...,COSGZ sinfy, — cosfz),



What is the Dominant Contribution in a Hadronic Process? 847

where the dots indicate “d-3" unspecified momentum which can be inte-
grated over. Defining: § = (P, + P;)%, i = (P1— P;)? and 4 = 55 — § — &
s0 we obtain:

-

S

11
(ps)s = m 47r b/dv/dwv(l-v) ‘(1-w) v
0

/ df, sin—2% 6, / df, sin1™2%¢ g, .
0

(B.2) 2-body phase space

Consider the subprocess ab—cd. Then, the virtual 2-body phase space
is given by:

-

S

1
(vo)e = Frmpii=) / dv o/ dwv=<(1 — v)~%5(1 — w).

APPENDIX C

For the physical convention of Ref. [14] we have:

f“(z)zzN“'{z[ 1-2 1-z ' 22N, ?_%]5(1_2)}’

fag(=) =‘;'["’2 +(1-2)% 111(1 — z) ,

ln(l—z)] _zlnz {5N;_‘n'2
+

fea(z) =Cy [1 i (1:: 2)’ In (1 ; z) - %] )
Faal?) Cf{(l +e) [ln(l— z )L - g(l -1z)+ - 11J:Z Inz+3+22

@+ Dya-n).
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~ In(1 — z) Inz [7N; x2 17
d“(a:)_2Nc{:c[ T ]++2z +[16N -{-?—-5— 5(1—2)},

dog(2) =3 [#% + (1~ 2)?] In [z2(1 - 2)]

— 2
dgq(z) :Cf{'L_”*A'Em_"_)—h1 [‘”2(1 - 3’)] - 2} )

In(1 - )} 21+22 3 1

dgq(2) :Cf{(1+z)2 [ l1-z 1-=z Inz - 2(1-z)

3 9 2x?
+ 5(1-" 2)— (5 - —5—)5(1 -—2:)} .
Now, for a subprocess ab—scd (a, b, ¢ and d are partons) we have:

Fap "'2-[2 fia ® azb—»cd + Z -f]b ® Ua]—-»cd]
Dab :% [ Z &ab—-»id ® dci + Z &ab-—mj ® dd]] ’
i J

B

where ¢ is the Born cross section.
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