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The lattice in percolative simulations of nuclear fragmentation is
shown to have a notable effect on the final result from a nucleon clustering,
in the case when the total energy is constrained to be conserved.
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1. Introduction

The production of complex fragments in nuclear reactions, at intermedi-
ate and high energies, is a difficult and far-from-understood area of current
nuclear physics research. The possibility of the nuclei to exhibit critical be-
haviour in their multifragmentation after having been bombarded by high
energy protons, has received renewed interest after Purdue’s group paper
[1]. It was reported by Hirsch et al. that the mass distribution of light-
to-medium size fragments seems to obey nicely a power-law; do/dAp ~
Ag7, (7 = 2.6); where A is the mass of the fragments and 7 is the appar-
ent exponent.

Unfortunately the power-law type mass dependence of do/dAr can be
obtained using quite different assumptions {1-5]. This somewhat embar-
rassing situation has been attributed to the inclusive character of the ex-
perimental data (see Ref. [6] for the literature).

In particular, the simplest approach for nuclear fragmentation seems
to be given by the percolation theory, which is able to reproduce the main
features of the nuclear disassembly with a minimum of physical ingredients.
Several (dynamical [7] and non-dynamical [8]) percolation models have been
proposed to study nuclear fragmentation. As a matter of fact, the relevance
of percolation ideas in nuclear multifragmentation has been demonstrated by
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Campi [9] and Bauer [10] through cross relations among various moments
of the fragments size distribution and more recently by Ploszajczak and
Tucholski [11] who studied intermittency in the fragment distribution in
nuclear fragmentation and in the results from percolative simulations.

In percolation models, the nucleus is represented by a three-dimensional
structure lattice whose sites are occupied by nucleons. The corresponding
percolation theory investigates, the properties of subsets of connected sites
called clusters (fragments) as a function of either the probability W of a
site to be occupied, or of the probability ¢ of a bond to survive, during
nucleus excitation. The lattice size dl is always considered irrelevant by the
theory but in the case of energy distribution this is no longer true due to
dependence on the space coordinates through the Coulomb potential. As a
matter of fact, the inclusion on the lattice size of a linear expansion factor
has been shown to be essential in describing the experimental data of the
energy spectra of fragments [11, 12]. ,

Since the lattice size dl is considered as an ingredient of these percolation
models, whereas it actually is a physically determined quantity by previous
history of the system, it seems more reasonable to let the lattice size be
an independent parameter of the model. Then, one should examine the
dependence of the observables, like the mass distribution on this parameter.
This is the goal of this work.

We explain the details of this calculation in Sec. 2, in Sec. 3 the connec-
tion is made between the percolation model and thermodynamic quantities.
Results and discussions are addressed in Sec. 4.

2. The percolation approach

We assume the following picture for a collision between a very energetic
light projectile and a target nucleus: In first stage, the projectile and the
target merge into a compressed compound system of the volume Vp. In
this stage, the nuclear assembly gains a significant amount of excitation
energy and then a fraction of fast nucleons is ejected. The compressed
system expands until it reaches the breakup volume V;, and then becomes
unstable with respect to a breakup into several fragments. These fragments
may be very excited and then, they decay by evaporation or secondary
fragmentation processes into the final states.

Of course, the expansion process should be related to the dynamical
evolution of the initially hot and compressed nucleus [7]. However, for
simplicity, we will not consider the whole dynamical evolution of the system
from its initially compressed and heated-up stage,until the moment it splits
into fragments, but we will concentrate on this last disassembly stage, when
the expanding hot nuclear system reaches the breakup volume V4, o di3. As
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a matter of fact, we consider a sphere of expanding hot nuclear matter, with
the excitation energy per nucleon ¢*, the volume V}, and the definite charge,
Zy, and mass, Ay, numbers. This sphere will split into several fragments
(Zr, Ar) giving a certain partition of the system. In order to describe
the nuclear fragmentation process, such as pictured above, we adopt the
percolation plus evaporation calculation of Ref. [12], which we sutnmarize
in the following.

Let us consider a finite sphere containing Ay sites arranged on a simple
cubic lattice of size dl. A certain fraction of sites A = WA, is occupied
by nucleus, where W is the conceéntration probability, which can be related
to €* [5]. The subgroups formed by those next neighboring sites are the
primordial fragments (clusters) which are considered to be formed at normal
density ng = 0.153 fm™3. This means the lattice size dl provides us with
the breakup volume at the disassembly stage but not with the density of
each fragment.

There are two parameters in this model: the site concentration prob-
ability W and the lattice size dl. They are expected to contain the two
most essential elements of the fragmentation process, say, the locality of the
breaking process involved in the cluster formation and the short range of
the nuclear interaction.

We adopted the following Monte Carlo procedure in order to get a set
{N ag,zg} of clusters(=partition) of size Ar and charge Zp, from the initial
system with A¢ nucleons:

1) Allocate randomly A nucleons into A sites,

2) Look for clusters and collect them according to their size Ap,

3) Assign a charge g;¢ {0,1} to each nucleon randomly obeying conserva-
tion of the total charge: ) . ¢; = Zp (we have assumed also, for simplic-
ity, symmetric target Zo = Ap/2 and symmetric clusters Zp = Ar/2).
The clusters obtained by the percolation theory, in general, are very

dilute and ramified and are associated with excited and unstable fragments
[13] which one should permit to evaporate. Since such a percolation the-
ory description of nuclear fragmentation is based only on statistical and
geometrical ideas, in order to describe evaporation processes, additional
information like the temperature of the nuclear system is required. The
connection between thermodynamic quantities and percolative simulations
was firstly investigated by the Copenhagen group [14], but there, the lattice
size was not considered. They assumed that the breakup volume arises only
by ejecting nucleons from the target nucleus having normal nuclear matter
density ng. However, as we have already mentioned, the expansion factor
is essential in the description of energy spectra experimental data. In what
follows we describe a simple way to introduce the expansion factor in the
percolation model such that the total energy should be conserved.
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3. The energy conservation
We have adopted the procedure given in Ref. [3], for constraining all

the partition to obey the total energy conservation law. There, Bondorf et
al. wrote the total energy as:

322
Eiotal = 5 Ro + Z Nag,zeEap,2p
ApZp
— Eoground +e* EAF , (1)
Ap
where Eg87°""4 is the ground state energy and E g zp, the internal plus

translational energy of each fragment. The excitation energy per particle ¢*
may be related to the concentration probability W of the percolation model
by [5] W
» — L 3 - . 2
£ =y (2)

In Eq. (2), €3 is interpreted as the mean gain of excitation energy when
one nucleon is ejected from the system.

Next the thermal droplet model and the Wigner-Sitz approximation
[3] can be used to express the total energy of each fragment E4, 7, as a
function of the temperature T of the partition. Namely,
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where Wy, B9, €0, Tc and 4 have the usual meaning as in Re. [3]. x is
the factor of expansion and it is related to the initial volume Vp and to
the expanding volume W}, by, ¥}, = (1 + x)Vo. In terms of the percolative
parameters one gets ¥ = nodl® — 1. Eq. (3) yields when combined with
Eq. (1) and Eq. (2) the temperature T as a function of dl. In the following,
the results of our calculation are presented.
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4. Results and discussions

Let us first present the results from a Monte Carlo simulation of 2,000
runs, showing the differences between standard percolation (SP), percola-
tion + energy conservation (PEC) and percolation + evaporation (PEV).
The results for (M) and 7, at the “critical” probability are summarized in
Table I. The “critical” probabilities are 0.41, 0.4 and 0.39 for Ay = 57, 81
and 123, respectively.

TABLE I
SP PEC PEV
Ao | 57.0 810 1230 | 57.0 81.0 1230 | 57.0 81.0 123.0
T 1.9 17 15 | 1.9 18 20 | 21 26 26
(My| 1.5 1.5 25 1.5 15 1.7 | 24 30 3.8

It should be noted that inclusive experimental results yield r = 2.0 for
p+58Ni [15], 7 = 2.6 for both p+87Kr and for p+!35Xe [1] reactions. This
means that the PEV calculation gives a value of 7 close to the experimental
data. Also it seems that the “critical” exponents are more sensitive to
the energy conservation and the evaporation process in the case of bigger
systems.
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Fig. 1. The temperature T (left-hand scale) and the multiplicity of clusters M
(right-hand scale) are plotted against the lattice size dl for two different values of
the excitation parameter 5. The critical probability W was taken as 0.4,
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In Fig. 1 we plot the temperature T against dl for two different values
of the excitation parameter ¢g for a system with Ag = 81 nucleons. The
“critical” probability W is assumed to be equal 0.4 for this finite system of
particles [12] but may be different if another lattice structure is used [13 17).
It is clear that the temperature T increases with dl in both cases: €g =8
MeV (solid line) and &} = 7 MeV (dashed line). This is a consequence
of the conservation of total energy (Eq. (1)). As a matter of fact, Eioal
was taken the same in each configuration, so the temperature increases
with decreasing Coulomb energy. Similar behaviour is displayed by the
corresponding multiplicity M (scale on the right). The clusters at higher
temperature evaporate more particles before reaching their ground state.
The curves of T and M are shifted upward with increasing €.

Of course, dl seems to be no longer a free parameter since it is con-
nected with the breakup density. The values of di=1.88 fm—3 and 4.1 fm ™3
correspond, in a cubic lattice calculation, to n ~ ng and 0.1ng, respectively.
These two values are expected to provide brackets on the breakup density
(2, 3, 11, 16].

As we have already mentioned, it is usually assumed that the mass
distributions have no dl dependence. However, as it is shown in Fig. 2, this
is only true if one has not taken into account the energy conservation law.
The final mass distributions for W = 0.4 and two different values of the
lattice size, namely dl = 2.0 fm and dl = 4.0 fm are displayed in Fig. 2. We
may note that if dl is short, heavy fragments (Ar > 30) may be seen. On
the other hand if dl is large, there are only fragments with mass lower than
Ap = 30. This is again an effect of the temperature since it determines
not only the multiplicity of each partition but also the final mass of each
cluster. It was assumed that ¢j = 8 MeV. Also, the fragment mass five is
not depleted in the figure because simultaneous two-neutrons decay is not
included in our evaporation code.

The apparent exponent 7 is plotted as a function of dl for two different
values of ¢5 in Fig. 3. It is seen that the dependence of the apparent
exponent 7 on the excitation parameter €§ is a shift up (or down) of , but
no significant changes in its qualitative behaviour occur. It is interesting to
note that the energy conservation has different effects for different domains
of lattice size dl. Specifically, for large dl-values, 7 is bigger than in the
other two cases, but for intermediate dl-values, it is smaller becoming larger
again for small values of dl. This can be understood in the light of the
behaviour displayed by the mass distributions in the different ranges of dl
(cf. Fig. 2).

In Fig. 4 the average temperature T of the partition (Fig. 4(a)) and the
average total multiplicity M (Fig. 4(b)) are plotted against dl. Two new
situations are considered, 4p = 57 and Ay = 123, the results for 49 = 81
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Fig. 2. Yield of fragments by mass, from Ao = 81 and W = 0.4 for two different

values of dl; 2.0 fm (dotted line) and 4.0 fm (solid line). For more details see the
text.
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Fig. 3. The apparent exponent 7 in plotted against dl. The critical probability

and the initial mass number is the same as in Fig. 1. 7 is computed after the

evaporation process. Two different situations are considered, ¢5 = 8 MeV (solid
line) and ey = 7 MeV (dashed line).

are again presented for the sake of comparison. We can see that the curves
of the temperature exhibit substantially positive slopes. In particular the
systems of 81 and 123 sites determine higher T than the smaller system of
57. In this calculation the available initial excitation energy is taken almost
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the same irrespective of Ay, since the energy needed for cracking becomes
smaller with increasing mass, the net energy is larger with increasing mass.
Then, the breakup temperature T is smaller in little systems than in the.
bigger ones. The total multiplicity (Fig. 4(b)) depends strongly on the
initial mass number and only slightly on dl.
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Fig. 4. The temperature T (a) and the total multiplicity M (b) are plotted against
dl.

For completeness, the energy spectrum of 1?2C-fragments is shown in
Fig. 5, for two different values of dl, namely, dl = 2.0 fm (broken line)
and dl = 4.0 fm (dashed line). The results are also compared with the
experimental data of Ref. [1] (solid line). We can see that for increasing di
the curves are shifted as discussed in Ref. [12], and the parameter dl = 2.0
fm fits better the experimental data of *2C energy spectra than dl = 4.0
fm.
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Fig. 5. The energy spectrum of *C-fragments of Ref. [1] (solid line) is compared
with the prediction of this percolation approach. The broken line represents the
energy spectrum for dl = 2.0 fm and the dashed line, dl = 4.0 fm. The number of
runs is 3 000 (see also Ref. [12]).

We would like to warn the reader that our calculations involve several
simplifications which should be critically analyzed. In particular, one should
note that as our results hardly depend on the Coulomb energy of the par-
tition, and the relaxation of the condition of symmetric nuclei should make
the calculation more realistic. Also, we would like to stress that as £* (or
T) is expected to depend strongly on the concentration probability W. The
above results may be significantly changed if a different type of lattice (as
a fcc lattice [17]) is used. Work on these points is presently in progress.

Summarizing, we have simply investigated the dependence on the lattice
size of the main inclusive observables of nuclear multifragmentation, e.g.,
multiplicity of fragment, the apparent exponent and so on, in the framework
of a percolation plus evaporation model. The result of our calculations show
that such observables depend strongly on the lattice size dl.

We are gratefull to K.C. Chung and R. Donangelo for many valuable
suggestions. Thanks are also due to the Conselho Nacional de Desen-
volvimento Cientifico e Tecnolégico (CNPq) for support, and the Centro
Brasileiro de Pesquisas Fisicas for the kind hospitality.
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