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An explicit colored-graph description of the processes of mass-scat-
tering of Dirac fields in real Minkowski space is used to show how the
corresponding twistorial mass-scattering formulae can be entirely derived
from a set of simple rules for the graphs. A correspondence between
graphs and twistor diagrams is then suggested.
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1. Introduction

In an earlier work [1], null initial data (NID) techniques [2, 3] were used
to describe completely the null dynamics of classical Dirac fields in real
Minkowski space RM. The above referred work was based essentially upon
the fact that the Van der Waerden form of the source-free Dirac equation
[3] enables one to look upon the Dirac fields as the elements of an invariant
exact set of interacting spinor fields. In this NID framework, the mass
m = /2hp of the fields (27k being the usual Planck’s constant), plays
effectively the role of a coupling constant. Likewise, the Dirac fields are split
up into an infinite number of elementary contributions satisfying Dirac-like
equations on the interior V0+ of the future cone of an origin 0 of RM. These
elementary fields propagate for a while along null geodesics of RM, and
scatter off each other at points lying in V0+. Such interior points appear
to be appropriate vertices of certain forward null zigzags [1, 3] that start
at 0 and terminate at a fixed point of V0+. Moreover, they are indeed the
points at which the NID for the mass-scattering processes are specified.
Accordingly, the entire fields are explicitly recovered by four series of terms,
each of which being expressed by a finite integral taken over a space of null
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graphs that possess a suitable number of edges. The choice of the future null
cone C of 0 as the NID hypersurface for all the elementary fields led us to a
forma]ly simple set of scattering formulae. Each scattering integral was then
naturally associated with a (simple) connected colored graph. In addition,
this choice allowed us to carry out an explicit twistorial transcription of the
field integrals in a straightforward way [4]. One of the most striking features
of the resulting twistorial mass-scattering integrals is the fact that they
involve scaling invariant (SI) holomorphic structures defined on products
of subsets of Riemann spheres that represent appropriate vertices of null
graphs.

The present paper is mainly aimed at representing the Dirac fields in
terms of twistor diagrams. For the sake of completeness, the graphical
description of the scattering processes as given by Cardoso [1] is reviewed
(Section 2). We reinstate the twistorial scattering formulae by employing
a set of rules for the colored graphs (Section 3). Each twistorial scattering
integral turns out to be represented by a twistor diagram. A remarkable
feature of our diagrams 4s that some of the singularity lines join vertices
of the same type. Indeed, the associated twistor inner products used here
are somewhat different from the standard ones [5, 6]. This appears to be
directly related to the fact that all the twistors involved in any scattering
integral expression possess the same valence [4]. A correspondence between
the scattering graphs and twistor diagrams then arises, yielding a manifestly
diagrammatic representation of the entire fields (Section 4). Throughout
this work, the unprimed and primed fields will be called left-handed and
right-handed fields, respectively, but no attempt shall be made herein to
regard them as quantum fields.

There are two reasons for undertaking the present work. First, there
is the fact that it seems to be worthwhile to set up simple graphical rules
whereby the mass-scattering formulae may be entirely derived. Second,
there is hope that an explicit representation of the scattering integrals in
terms of twistor diagrams can eventually provide new insights into the the-
ory of twistors.

2. Mass-scattering graphs
A mass-scattering null zigzag (MSNZZ) is [1] a simple graph (N2 (N >
0) whose vertex-set

0 11 12 [ N+2 '
V(CNgz) = {244,244 244 TgAAy (2.1)

1 .
consists of N + 3 vertices such that nilaal g future-null-separated

from ZAAI, n=2012..., N+ 1. The starting-vertex g A4’ is effec-
tively identified with 0 and, therefore, z A4 ¢ Ct. All the (N +1) vertices
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2 3 N+2,4 N+1

zAA zAA & 2A4 belong to V;'. The vertex & 'A4’ i5 indeed the
point at which the scattering giving rise to an outgoing field of order N hap-
N4-2

pens, the end-vertex &4 appearing as the (fixed) point at which the
explicit evaluation of the elementary field is to be carried out. We shall see

shortly that the vertices belonging to V({n42) — {z A4 N+2} are the only
points that appear to be relevant to the construction of the whole integrand
of the scattering integral for the field. It is convenient to endow (N4, with
a forward spin-basis set (FSBS)

0414 —a = A 1424 — A — A
{{O 0 },{g ’? ] 0,0 ’ ‘1) ag 3 ey

{NJ‘A,”J“},{ o4 ‘A’}}. (2.2)

N+1 N+2

By definition this set consists of 2V + 4 pairs of conjugate spin bases, with
_ 1 -

the (real) null vectors 04 04’ and ﬂg_ A 5A’ pointing in future null di-
2 a1 P g

14
rections through ZA4' The elements of the pair {n_(;- , i o4 } are indeed
n
taken to be covariantly constant along the (null geodesic) generator vy,41 of

1 .
the future null cone C;} of z z A4 that passes through =z " A4 1 addition,
the conjugate spin-inner products at z z A4

n _ n _ - —_ AI

z=0%"0,, z=o0 n?HA/ (2.3)
are held fixed, the ones set up at 0 being useful only when we consider
explicit twistor structures for odd-order fields (see Section 3). The edge-set

of {42 is defined by

N2 } , (2.4)

123
E(CN-!-Z) = {1‘,1‘,1‘,...,

which consists of N + 2 edges, with i being a suitable (positive) affine

+1
parameter on 7,41 which actually connects the vertices z zAA ang "z A4,

To construct the scattering formulae in a concise way, we need ﬁrst to
define what is called [1] a mass-scattering graph (MSG). It is a (simple)
connected oriented colored graph on.42 [7, 8] whose (vertex-set) edge-set
is suitably associated with (V({n+2)) E({N+2).- In effect, we have the
correspondences

T 2744 T eV(onta), m=012,...,N+2, (2.5)
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and
n:l =, 'n’-l‘i-1 ,n;li-l € E(O’N+2) , (2.6)

. n n+1
where n runs over the same values as before. The vertices v and v~ are

1
connected by i1 , the latter vertex being “forwardly” separated from the
former (see (2.1)). This “forwardness” is actually what defines the orien-
tation of opy42. We restrict ourselves to considering here only zigzag-like

MSG’s. Both the starting-vertex (3) and the end-vertex (Nt-}— 2) of ont2
carry no color. Each of the N + 1 colored vertices carries either the color
white or the color black. For N > 0 any one of the N internal edges always
joins vertices carrying different colors, the allowable “forward” configura-
tions thus being <white-black> and <black-white>. Any (white) black
vertex can be thought of as representing particularly the scattering of a
(left-handed) right-handed elementary field. It will be seen that the MSG’s
carry all the information about the actual scattering processes. The exam-
ples of MSG’s are shown in Fig. 1.
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Fig. 1. Two MSG’s. The internal edges connect vertices bearing different colors.
Each white (black) vertex represents the mass scattering of a left- (right-) handed
elementary contribution. For either field of order N the graph carries N + 1 edges.
The number of white and black vertices in each case appears to be intimately
related to the order and handedness of the relevant outgoing field: (a) the outgoing
right-handed field of order 1; (b) the outgoing left-handed field of order 3.

It must be observed that, as far as the construction of any MSG is concerned,
what really appears to be of importance is the colored-vertex configuration
along with the number of edges. From now on we shall for simplicity delete
the v’s and a’s.

We now consider the N*®-scattering process. It takes the elementary

N
contributions { 1 A(z)’l)\cl A’(;c)} as the outgoing fields and, in each case,

is graphically described by a on42. To any order, the denominator of the
scattering datum entering into either field integral carries the product of N
affine parameters with N + 1 spin-inner products. The parameters involved
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correspond via (2.6) to the internal edges of the relevant E(on432), and are
therefore set as

APN={$',$‘,...,N1-'H}. (2.7)
Each spin-inner product carriers elements of the FSBS for (2. It is al-
ways defined at a vertex of V({i+2) which corresponds to a colored vertex
of V(on42). Furthermore, it appears to be barred or unbarred according to
whether the associated colored vertex is black or white. For odd-order con-
tributions, both MSG’s carry the same number of white and black vertices
which actually equals (N + 1)/2. In the case of even-order fields, the num-
ber of white (resp. black) vertices is equal to either (N/2)+1 or N/2 (resp.
N/2 or (N/2) + 1), depending upon whether we consider the left-handed
or the right-handed outgoing field. It follows that, for the left-handed field,

1 . . . .

the vertex v carries the color white or black according to whether N is
1

even or odd. It should be clear at this stage that, for I)S_ A'(z), these con-

. , . 1 -
figurations turn out to be reversed. In fact, the inner products z and z

are suitably carried by the #-NID on Cff which actually enter into the nu-
merators of the scattering data (see Ref. [1]). Such null data involve the
(real) conformal-invariant directional derivative operators that are carried
by the integrands of the Kirchoff-D’Adhemar-Penrose (KAP) expressions
for spinning massless free fields [3, 9]. Indeed these null-datum quantities
generate the scattering data for all the elementary contributions. We thus
have colored-vertex structures

Even-order left-handed o . g; i N (2.8a)
Odd-order left-handed  ¢593.-- ¢ V3" (2.8b)
. 2 4 N
Even-order right-handed eoceo---0o e (2.9a)
13 N+1
. 1 3 N
Odd-order right-handed oece---o e . (2.9b)
2 4 N+1

We must emphasize that the structures carrying the same number of ver-
tices can be built up from one another by applying a simple white-black
interchange rule.

The numerators of the integrands of the scattering integrals involve

. . N+2 -~ .
appropriately also the “outgoing” spinors { g As Ni ;4’} together with an

123...N+1
SI 3N + 2-differential form K defined on the abstract (compact)
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123...N+1
space K of MSNZZ’s whose edge-sets possess N + 2 edges [1]. In

the case of either field, this generalized scattering form actually appears
multiplied by the mass-factor (u/27)Y, and effectively carries the contri-
butions emanating from those RM-vertices which correspond to the colored
vertices of the relevant MSG. It now becomes evident that all the colored
vertices contribute also suitable differential forms to the integrand of the
field integral expressions, either MSG thus appearing to be associated with

a scattering integral. Each (colored) vertex 1]), with j running over the values
1,2,3,..., N contributes, in effect, an SI three-volume form which is set up

at the corresponding element 244’ of the vertex-set of some appropriate

MSNZZ. This form is given as the wedge-product between dr / # and é‘ ,
the latter factor defining an SI element of two-surface area provided by the
(space-like) intersection of appropriate null cones of suitable RM-vertices
(see (3.10) below). Its integration always bears the topology S! x $2. To

. . . N+1 . . .
either integral the pertinent vertex o contributes, in turn, a KAP-like

N+1 . . .
two-form set up at 21 A4 yhose integration effectively takes up the ade-

quate “outgoing” spinor.

We should observe that the above prescription still applies to the case
wherein N = 0. The corresponding process can be referred to as the “zeroth-
order process” which actually involves the massless free-field contributions.
In this case, both “scattering data” appear to be nothing else but the #-NID

1
on C'(';r , the relevant differential form accordingly being the KAP-form on K.

In accordance with the above rules, we have the SI scattering formulae

) 0 aa 1 123.2K+1
vale) = o A gngiy g K\ 2K piry (2.10)
123...2K 41 ( II "= )( II = )( Imr )
K n=1 m=12m =1
) 1. 123.2K41
, cx y 7{1/2+§R(‘I’M§"’) K
XA (z)= = o , (2.11)
2K 2n 2K+2 K 9m K _ 2K p+1
123...2K +1 (H Z)(H Z )(H 7')
m=1 n=12n+1 p=1
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for the even-order fields (with cx = (u/27)%K), and

, 1. 123..2K+2

2K+1 Cx 2K 43 7;’1/2+%CR(‘17 iz) K
vale) =5 / ° 4 Kﬁ-lzm Il_{I _ 21ﬁ+1q+1 ’
123..2K+2 ( z )( z )( T )
(2.12)
0 1 1 123...2K+2
- M.
AI( )_ / ;Al ”lrl/Z—-’lbL(o )z) A
2K+1 2K+3 K ont1y o K+1 _ 2K+1 449y
123...2K+2 (H § )( I =z )( II i )
n=1 m=12m g=1
(2.13)

‘2 . o o
. o/ . . \ . > >
v
7> >
Fig. 3. Graphical recovery of the right-handed element of the Dirac pair.

for the odd-order fields (with Cx = (u/27)2X+1). It must be observed
that the KAP-character of these integrals can be brought about by defining
(SI) field densities on future null cones of adequate vertices of appropri-
ate RM-graphs (see Ref. [1]). Roughly speaking, the crucial point here

N
is that a field of order N is evaluated at the (end-) vertex 274" of
some suitable V({;y+2) from a null-datum quantity specified at the ver-

tex Nz ‘A4’ € V({N+2) which is effectively null-separated from Niiaa'
In relation to this situation it is convenient to recall also that the vertex
appearing as explicit argument on the left-hand sides of the above integral
expressions has to be identified with end-vertices of MSNZZ’s carrying ap-
propriate vertex-edge structures. The graphical recovery of the entire Dirac
pair is shown in Figs 2 and 3.
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3. Twistorial formulae

Towards building up the twistorial formulae for MSNZZ’s we define the
set of conjugate null twistors for some (42

T({N+2) = WT((N+2) U ZT((N+2)» (3.1)
where
WT((N+2) = {v?fa,v%ra,..."ﬁ’?i} , (3.2a)
and
ZT({N+2) = { g”,.lz",...,Ngrf}, (3.2b)
with
Wa=(04,-i24475,), gﬂ = (igAA'E‘A”éA') =wPf, (3.3)

the elements of the pair {'3 A,i 4’} being involved in the definition of the

FSBS for {42, and z A4 ¢ V({n+2)- These twistors satisfy the (conju-

. . . n h}
gate) incidence relations at = 44

n n+1
ZPW,a=0=2"* W,, (3.4)
n+1 n

where n runs over the same values as in the definition (2.1). It is clear that
the twistors (3.3) are both associated with the null geodesic v,, whenever m

0
takes on the values 1,2,3,..., N+2. The twistors W4, g B actually play an

auxiliary role, and enter into the field integrals for odd-order contributions
[4] (see also (3.19) and (3.20) below). We now define a correspondence
between the associated edge-set E(on42) and each of the sets WT'({n42)—

(W a}, ZT((v42) — {2}, such that (see (2.5) and (2.6))

"t xe, (3.5)
n+1-

n41
where X°* stands for either W, or ZPZ. In Section 4 it will be shown that
n+1 n+1
this relationship, in particular, enables one to associate MSG’s with twistor

diagrams. We will see that the twistorial expressions arising here are closely
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related to the vertex-edge structure of oy 2. In general, it will be necessary
to assume that o2 represents a higher-order field.

There are two conjugate twistorial expressions for any element P of
(2.7). Each of their numerators carries one of the ordinary inner products
that involve the twistors “surrounding” the edge. Hence the label of the
edge is equal to the arithmetic mean of the labels of the twistors occurring in
either numerator. In fact, this result is what gives rise to a pair of conjugate

h
expressions for 7, and appears to be related to the structure of the colored
configurations involved. The denominator of either expression carries two of
the factors which are associated with the spin-inner products at the relevant

. h—1 h .
connected vertices z 44’ and z 44", These spin-inner products are always
defined at different vertices, one involving W,-twistors and the other, Z5-
-twistors. It follows that both denominators actually involve the twistors

h
W and Z B. In either case, one way of removing the conjugation ambiguity
h

is to introduce the two inner products that carry the twistors appearing in
the relevant numerator. This procedure implies, in effect, that the structure

h
of each denominator is automatically built up so as to make r bear the
appropriate spin-weight. We thus have the expressions

h—1
. Z* W
r=i At , (3.6)
<] A T
(128 Waws) (Inr 2 hfl)
and
z* W,
=1 *

= (~)— , (3.7)

h+41 :

I*BWo Wg)(Irr 2227
( 5) (I, 2277)
where the i-factors have been appropriately introduced to guarantee the

h
reality oh 7. Here, as elsewhere, I*# and I, denote the usual infinity
twistors (see, for instance, Ref. [6]).

For the product of two adjacent edges #, ki joining vertices of V({n42)
associated with colored vertices of V(on42) we can once again build up two
conjugate expressions. The numerator of either of these structures involves
one of the (totally skew-symmetric) e-twistor pieces which carry the twistors
of the same valence that “surround” and “contain” the edges. Clearly, there
are two allowable triples of RM-vertices which are connected by the edges
under consideration, the associated (internal) “forward” colored configu-
rations accordingly being <white-black-white> and <black-white-black>.
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Each denominator carries the twistor form of the conjugate spin-inner prod-

ucts at the appropriate middle vertex zAA together with the twistor form
of two suitable spin-inner products defined at the other vertices of the rel-
evant RM-configuration. In both cases the twistors involved in these inner
products bear the same valence as that borne by the twistors occurring in
the numerators, and are indeed always defined at different vertices. We thus
have

k-1 k k+1 k+2
eaﬁ‘yﬁ Wa Wﬁ W 7 W6

(10 Wow J) (128 W kv?Lf;) (oo z° kg;) (1 Wi 'Wf) ’
gt _ o
Eaprs kg: %ﬁ k.%: k{:
(-1) )
(1o 72.77) (120 We W) (10 27, 27) (0, 22 27)
(3.9)

where the factor (—1) is related to the reality of the involved edges, and the
e-twistors are in fact the usual alternating twistors for the standard frame
[6]- Actually the form of the inner products entering into the denomina-
tors of (3.8) and (3.9) appears to be intimately related to the color of the
vertices carried by the three-vertex graphical configurations. In the case of
a higher even-order (right-handed) left-handed field, in effect, any (white)
black vertex plays the role of a middle vertex, while any (black) white ver-
tex contributes a factor involving (Z#-twistors) W,-twistors. For a higher
odd-order field the above handedness-vertex prescription still works, but
the (uncolored) starting-vertex of the associated MSG now contributes an

. . . 1 2
appropriate inner product to the relevant expression for 7 r. Indeed, the

reason why the (external) edge * comes into play here is that in the lat-
ter case, each #-NI datum on C’{,* has to be adequately modified when the
explicit twistorial transcription of the corresponding scattering integral is
carried out [4]. What results from this modification is that, for either hand-
edness, the relevant vertex z AA' appears also as a “middle” vertex at every
stage of the evaluation of the RM-integral in question whence the number
of edges entering into the denominator of the pertinent scattering datum
turns out to be even. In particular, the inner product at 0 involves W,-
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or ZAB-twistors, depending upon whether the outgoing field is left-handed
or right-handed. Evidently, these considerations are also pertinent to the
colored-vertex structures involved in (3.6) and (3.7). In respect to the above
situation, it should be noticed that the relations (3.6)—(3.9) still hold for
h =1 = k. Particularly, we see that the conjugation of (3.6) and (3.7) can
now be eliminated once and for all.

J
We next consider the SI two-form of surface area § defined at
J
A4 ¢ o7 wanch (3.10)

where C7; is the backward null cone of 'z 44’ ¢ V({N+2), and C';-"_l

j—1
is the forward null cone of *z 44’ ¢ V({N+2), the label j running now
over the values 1,2,3,..., N + 1. Notice that the only relevant vertices of
V({n+2) here are the ones associated with the colored vertices of V(on42),

N ,
independently of whether the element of the pair {¢ A(z)’l)\(rA (z)}, with

which we are eventually dealing, is an even- or an odd-order field. In fact,
N+1 1
S enters appropriately into the KAP-form at NFlaa' opce again, two

con_]ugate expressions arise. The denominator of either expression involves

the twistor form of the two inner products-at z AA" whence no conjugation
ambiguity emerges at this stage. In each case, the numerator consists of the

wedge-product of two one-forms involving the twistor incident at z AA'

such a way that the resulting product is non-vanishing. The dxfferentlated
twistor possess the same valence in either case and, therefore, carry different
edge labels. Whenever the expression is read from left to right these twistors
appear in the “forward” order, contributing either a (—%)-factor or an i-
factor to the numerator according to whether they are W,- or Z8-twistors.
We are thus led to the SI conjugate forms

; z;‘dw,, A ZrdW
5 =(—i)—* : (3.11)

(198 We W’ﬁ) (I,,o 70 ff)

and
i+l J
W.dZ* AW, d Z¥
2 o "in
S=1 — . (3.12)

T (1=t W W) (1o Jz,f'ﬁ;)
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Each of the SI holomorphic expressions for the (3N + 2)-volume-form

123...N+1
on K involves twistors of the same valence. This result rests upon

the fact that, for one handedness, the spin inner product carrying spinors
bearing the other handedness “evaporate” when the intermediate steps of
the actual twistorial transcription of the Minkowskian pattern are effectively
worked out [4]. To build up the expression that involves W,-twistors, say,

we apply the following rules. The releva.nt (external) edges :]1 and Va? con-

N+2
tribute the projective one-forms I*¥ Wﬂd W,, and J°B Wad Wpg to the

numerator of the expression, respectively. Indeed the type of these contri-

butions is related to the fact that both the starting-vertex and end-vertex
123...N+1
of any element of K are held fixed when each scattering integral is

h
actually performed. Any internal edge a effectively contributes a three-form

h h h h h
AW = (1/30)e*PY WodWs A dW A dW s to the numerator, while each
colored vertex contributes an i-factor to the numerator and a squared inner-

product factor (I*¥ VI’/’# JI/-{-/,],)2 to the denominator regardless of whether its
color is white or black. Upon being read from the left to the right, the
twistors appear in the “forward” order. The rules for building up expres-
sion that involves ZB-twistors are similar to those given above, but each
colored vertex now particularly contributes a (—:)-factor to the numerator.
We thus have the conjugate forms

1 1 N+1 N+4+2 N42
oy TP Wadwan (4 aw ) a1 VWid W,
~ - N+1 i JH1\2 ’
i1 (1reih, %)
j=1
(3.13)
and
N+1
N Ip2°d2PA( A AZ) AL Z*d 27
123--’-C +1 AN+1 1 1 h=2 h N+2 N+2
£ =(-) NI - . (3.14)
1 (Lo 2° 2°)

j=1 Jj i+l

Of course, the twistors involved in the above expressions belong all to twistor
sets of suitable MSNZZ’s. It should be manifested that these forms are as-
sociated with two MGS’s whose vertex configurations can be constructed
from one another by applying the white-black interchange rule. Indeed,
it must be emphatically observed that the inner-product simplification to
which we referred before must be regarded in both cases as being essentially
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due to the involved colored-graph structures. In fact, the forms (3.13) and

N
(3.14) are appropriate for the cases wherein on 42 represents v 4(z) and
1
z)frA (z), respectively. The graphs describing the “zerot!'-order process” ev-

idently carry no internal edge at all whence, in this case, (3.13) and (3.14)
are reduced so as to involve in their numerators only the infinity-twistor
one-forms.

We are now in a position to carry out the construction of the twistorial
scattering integral formulae. As was previously seen (Section 2}, the num-
ber of affine parameters entering explicitly into either of the expressions
for the NID for the N*th-scattering process is equal to the order N of the
involved outgoing fields. It follows that, in the even-order case, we have
N/2 pairs of edges connecting colored vertices of each of associated MSG’s.
It has also been mentioned that, in the case of either odd-order field, the

relevant edge * comes about when we modify the appropriate #-NI datum
on C;' , thereby giving rise to a scattering datum involving explicitly an
even number of edges in its denominator. Therefore, in the latter case, we
have (N + 1)/2 pairs of edges occurring in either £(on42), but only N of
these edges actually connect colored vertices. The numerator of the inte-
grand of the scattering integral for any even-order left-handed elementary
field carries the holomorphic (homogeneous) twistor-datum one-form [4]

(1 W)’ #u(WaWa)

=(—1)(1#"&,‘&,,)26_@2_%L(v%fa,vffa)dﬁf,,, (3.15)
Wo

which represents the coupling of the appropriate #-NI datum on C;’ with

IoB I}/ad V%’p- The remaining parts of the structure of the numerator come
from (3.13) multiplied by the mass-factor (u/27)N with N = 2K,
K € NU {0}, N being the set of natural numbers. Each of the colored
vertices of the associated MSG contributes an inner-product factor of the

form (I*¥ vf/ " Jﬁf: )™ to the denominator, which is defined at the correspond-
ing vertex of some suitable MSNZZ. Here r assumes either the value 1 or
2, the value 2 holding only for the factor defined at the vertex at which the
scattering giving rise to the outgoing field happens. Hence the twistorial
scattering integral for the massless free elementary field (K = 0) carries
explicitly no such inner product at all. Any one of the K pairs of affine
parameters entering into the scattering datum for the field thus contributes
a factor of the type (3.8) to the denominator of the integrand. The pre-
scription for the odd-order left-handed fields is essentially the same as the
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previous one. In this case we have N = 2K 4 1, and each of the relevant

denominators then carries K + 1 alternating-twistor pieces. The holomor-

phic twistor-datum one-form coming now into play represents the coupling
a1 1

of the modified (right-handed) #-NI datum on Cj" with I*8 W ,d Wg. Itis

given explicitly by

(P ) (1 W ) Ko (W )

) (9 ) (b,
ow
’ (3.16)

where the two-variable twistor function involved bears automatically a suit-
able symmetry-homogeneity property.

As was observed earlier, the scattering graph for each right-handed field
can be obtained from the one for the corresponding left-handed field of the
same order by interchanging white and black vertices. As far as the integrals
are concerned, this amounts particularly to replacing W,- by Z8- twistors.
We thus have the SI formulae

2K CK 2K+2
' A(z) = ‘2; 0 A
128...2K+2
Iy
1 2 720 ,1 2 2K+1  h 2K+2 2K+2
(Prwaw.) gL(WaWa) A (T4 AW) AT W ,d W,
h=2
2K+1 2K+4+2\2, 2K n +1
(18" Wa W) (11 I#°W, W)
n=1
! (3.17)
X" 3K—2 p+1 p+2 p+3 ptdy )
H 5’“”\7 Wp, Wu W)\ W-r)
even p=
Al - EK — A
2’,5{ (z) = 27i f 2K b2
123...2K 42
g
(Ihz*z’)zxn(zﬁ,zﬁ) A (ZITIAZ) Al Z*d 2V
1 2 0 \T 72 h=2 h aK+2 2642
' (oo 2% 22) (B o 2v 2°)
P ok41 2K4+27 \pmp 77 a7
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‘ 1
2K-2 ’

( I ewar 2* 2° 2* 27)
even p=0 p+1 p+2 p+3 pt+4

X

(3.18)

and

Y alz) = ori

©123...2K+3
Iy,

JgR(VfIQ v%fa) A (2151 2AW) W W

(I 2K+2 2K+3) (2K+l n+1 )

2K+1 Ck f 2[{0_,_3

op W o Wﬁ H IpaWpWa

(> W v%fr) (1 W, Wa)2

X
( 2K g gq+1g+2 q+3) ’

(3.19)
H 5"”/}\1- Wp Wu W,\ W‘r

even q=0

Ya)=5% § o4
2K+1 2K+3

2K+3 2K+3

2(2%99) 0 (8, 29) nw 224, 2
K+

(I ﬁ2KZ+;"2K+3)2 2H111paZP A a)
27°)

(- 2*27) (%

2K :
( H Epvirr ze zv Z)‘ ZT)
even g=0 q g+14q¢+2q+3

(3.20)

At this stage, we have just been concerned with representing MGS’s
in terms of twistorial scattering integrals. Hence, we shall not consider
explicitly here the details of the definition of the contours over which these
integrals are taken (see Ref. [4]). However, we should bear in mind that
such contours must be effectively tied in with the diagrammatic equalities
that will be constructed in Section 4.

4. Diagrammatic equalities

In this section, we give the prescriptions whereby each MSG that enters
into the graphical expansions exhibited in Figs 2 and 3 may be expressed as
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a twistor diagram. A correspondence between MSG’s and twistor diagrams
is then automatically suggested. We shall make particular use of the twistor-
diagram conventions provided in Refs [5, 6]. The twistor expressions for the
spin-inner products appearing in the RM-field integrals, play here the role
of twistor inner products. This yields diagrammatic structures for massive
contributions in which some of the singularity lines connect twistor vertices
of the same type.

The basic idea is to replace each e-piece involved in the denomina-
tors of the integrands of the massive integrals by an independent twistor
integral of suitable auxiliary twistor. This procedure entails reducing the
singularity set for each of the W,- and ZA-integrations involved in the ex-
pressions (3.17)—(3.20), but leaves both the relevant contour structure and
the integration prescription unaffected. These modifications can be trivially
made, and we will not consider them explicitly here. It is worth remarking,
however, that such a reduction can actually be avoided by performing the
integrations one at a time.

Let us consider the left-handed massive elementary fields. We introduce
suitable auxiliary twistors A# and B 7, defined by

m m

! (a="Wa) (42 Wa) (a7 "W3) (4 "We)

= ) (4.1)

62m—12m 2m+12m+2’
BV WoWg Wy Ws

AB
m
! (5="We) (52 W) (57W) (5 W5)

= (-1) (4.2)

62m-—22m—l2m 2m+1?
BV Wo WgWy Ws

where the A-differential forms are formally the same as the projective ones
occurring in (3.14), and each integral is taken over a suitable $! x S! x §!-
contour (for further details, see Ref. [6]). The above integrals are represented
as auxiliary twistor vertices in Fig. 4.

In (4.1) and (4.2), the label m takes the values 1,2,3,..., K and
1,2,3,..., K + 1, respectively. It can trivially label the e-pieces entering
into the field integrals for even-order and odd-order fields. In both cases,
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2m Zm-1
w w
2m-1 ¢ 0 z.w 2m2 0 0 2m
w w
[)
of & ° o] B
2m+2 2me)
{a) {b)

Fig. 4. Standard twistor vertices representing the integrations od suitable auxiliary
twistors. These structures take up the alternating-twistor pieces that enter into
the integrands of the twistorial scattering integrals for left-handed fields: (a) an
auxiliary vertex for higher even-order contributions; (b) an auxiliary vertex for
odd-order contributions.

the suitability of A# and B# is that the twistors associated with the in-
m m

volved W-vertices behave as fixed twistors whenever the Sraluation of each
of the auxiliary vertices is explicitly carried out. It is of some interest to
observe that the numbers of black vertices involved in the respective MSG’s
are always equal to K and K + 1. Notice also that for (4.1), K € N, while
for (4.2), K € NU {0}. On the basis of the above prescription, we can set
up an equality involving the MSG associated with any left-handed massive
field and a twistor diagram. Some of these structures are shown in Fig. 5.

It is clear that the massless free contribution carries no e-piece. Hence, at
least in the first instance, the relevant diagrammatic equality is that shown
in Fig. 6. For simplicity the overall factors have been omitted here. In these
twistor diagrams, the loops represent the holomorphic twistor-datum one-
forms which are involved in the explicit twistorial scattering integrals. The
dashed and dotted lines starting at points of the loops indicate, respectively,

2
that these one-forms involve twistor derivatives of the type d/0 W, along

1
with twistor one-forms of the type d W ,. In each twistor diagram, the “out-

N+2 N+2 N+42
going” dashed line represents the (projective) one-form o Al*” wW,d w,

which clearly involves the “outgoing” spinor that enters into the definition
of some appropriate FSBS. In fact, the number carried by this line is related
to the spin of the fields through 2(| — 1/2| + 1). Furthermore, the double

N+1

line emanating from the W -twistor vertex of each massive diagram is as-
sociated with an integration over a contour [4] whose topology turns out to
be S? x S x §1, and not S! x $2. Indeed, this double line appears to satisfy
the “strong” four-lines rule, and seems to be related to the “simplicity” of
all poles occurring in the denominators of the integrands involved in (4.1)
and (4.2).

The corresponding twistor diagrams for the right-handed fields can be
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(c)

Fig. 5. Diagrammatic equalities involving MSG’s and twistor diagrams for some
left-handed contributions. For a field of order N the twistor diagram particu-
larly carries either N/2 or (N +1)/2 auxiliary (filled) twistor vertices according to
whether N is even or odd. These numbers of twistor vertices appear to be equal

2
to the numbers of black vertices of the respective MSG’s: (a) equality for ¥ 4(z);
3 4
(b) equality for ¥ 4(z); (c) equality for ¥ 4(z).

Fig. 6. Diagrammatic equality for the left-handed massless free contribution. The
absence of internal edges in the relevant MSG entails absence of auxiliary vertices
in the corresponding twistor diagram.

obtained from the previous ones as follows. First, we make the replacements
0 m 8
¥L— XR, Xp - %L, Wa—2Z",
m

m running over the same values as in (4.1) and (4.2). Second, we inter-
change white and black twistor vertices, keeping the same line structures.
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It is evident that this twistor-vertex interchange rule includes replacing the
m
elements of the pair {47, B} by suitable dual twistors X a,}f"'la, and ap-
m m

pears to be appropriate only for massive contributions. Two examples are
depicted in Fig. 7.

{a) / 3

{b)
Fig. 7. Diagrammatic equalities involving MSG’s and twistor diagrams for two
right-handed contributions. For a field of order N the twistor diagram particularly
carries either N/2 or (N + 1)/2 auxiliary (hollow) twistor vertices according as N is
even or odd. These numbers of twistor vertices appear to be equal to the numbers
of white vertices of the corresponding MSG’s: (a) equality for )fA'(:c); (b) equality

for )54“'(::).

5. Concluding remarks and outlook

We saw how the entire set of mass-scattering formulae can be derived
from a set of simple rules for the colored graphs that describe the scattering
processes. These rules enable us to write down the RM-scattering integral
for any elementary field and translate it immediately into twistorial term
without performing any explicit calculation. Thus, the MSG’s together with
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the relationship with (3.5) actually carry all the relevant information:-about
the processes. As regards this fact, it may well be said that the general pat-
tern of the structure of the twistor diagrams, associated with the graphical
expansions for the entire fields, became clear. However, it is believed that
alternative mass-scattering twistor diagrams can be actually drawn. In re-
lation to this belief, we can expect that the eventual modifications perhaps
involve introducing new definitions of the contours over which the twistorial
field integrals must be taken. We believe also that investigation along these
lines can provide significant twistorial results.

It is worth remarking explicitly that, whenever the integrals associated
with the auxiliary vertices are actually brought into the twistorial expres-
sions for the elementary fields, all the resulting integrals turn out to be in-
dependent of each other. Obviously, the integration of the auxiliary twistors
effectively brings the initial structures back again. In case the involved W,-
and ZP-integrals have to be performed first, the auxiliary twistors are held
fixed. Therefore, it seems to be worthwhile to construct explicit projec-
tive pictures describing these integration procedures. A detailed discussion
concerning this situation will not be entered into here, however.

I am very grateful to Professor Roger Penrose for providing me with the
techniques upon which the prescriptions given here are essentially based.
This work was supported financially by the World Laboratory.
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