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A two-component spinor form of the conventional electromagnetic La-
grangian density on real Minkowski space is used to obtain the second
“half” of Maxwell’'s equations from a variational principle. It is shown
that a somewhat modified form of the free part of this Lagrangian density
can also be employed to derive the explicit equations of motion that give
rise to the first “half” of the complete theory. The Penrose expression for
the electromagnetic energy-momentum tensor T%(z) is explicitly derived
by working out a suitable source-free defining relation. The result is that
the spinor components associated with T°°(z) and T%(z), k = 1,2,3,
are equal to the ordinary energy and linear-momentum densities of the
electromagnetic fields, respectively. A set of explicit kinematical integral
expressions for the theory is then exhibited.

PACS numbers: 03.50. De

1. Introduction

One of the most important features of the relativistic two-spinor ap-
proach to Maxwell’s theory [1-3] is the fact that all the electromagnetic
degrees of freedom are locally represented by a pair of symmetric two-index
spinor fields. Since this spinor formulation constitutes essentially the ulti-
mate spacetime description of the theory, it can actually be said that, even
at a classical level, the field equations describe the propagation of massless
fields carrying spin +1. All the information about the degrees of freedom
of the fields is thus carried at every spacetime point by the electromagnetic
bivector. Another noteworthy result arising in this framework is that the
usual Lorentz gauge condition can be explicitly stated as the vanishing of
skew symmetric parts of suitably contracted first derivatives of the elec-
tromagnetic potential. These statements entail a simplification of certain
identities coming directly from the defining expression for the bivector, and
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can indeed be established in terms of the symmetry property of the fields.
Likewise, the complete theory appears as a system of four complex (eight
real) first-order linear partial differential equations for each of the fields.
In respect of the real-spacetime approach [1, 2] the entire system of field
equations can be regarded as being formed by two (Hermitian) SL(2, C)-
-covariant “halves”. The first “half” normally arises from the combination
of the above referred identities with four field equations which actually con-
stitute the Bianchi identities of the theory. Roughly speaking, the second
“half” consists of statements involving appropriate derivatives of the fields
along with the sources.

In this paper, we are basically concerned with deriving the entire elec-
tromagnetic theory in real Minkowski space RM from two variational princi-
ples. Indeed the key idea upon which our basic prescription rests, is to look
upon the first “half” as a “complementary theory” which can be effectively
combined with the other part. Whereas the equations of motion yielding the
second “half” involve the two-spinor version of the standard full Maxwell
Lagrangian density, those giving rise to first “half” actually carry a slightly
modified form of the conventional source-free piece. In either case, the rel-
evant action is defined on a bounded submanifold of RM. Upon working
out the dynamical statements, we assume that arbitrary variations of the
potential vanish on the boundary of this submanifold. Both fields will be
taken to be continuous on the closure of the subset. It will be seen that
the wave equations for the fields and potential emerge as a consequence of
the two-spinor structure of the field equations. We shall see also that the
charge-conservation law arises naturally from the symmetry property of the
fields. Starting with a suitable two-spinor definition of the electromagnetic
energy-momentum tensor T*%(z), we carry out the actual derivation of Pen-
rose’s expression for the tensor [1] in a straightforward way. At this stage,
the main procedure consists in working out our defining expression instead
of translating the conventional (world) one into spinor terms. It will be
shown that those components of Penrose’s tensor which are associated with
T%(z) and T°%(z), k = 1,2,3, are equal to the elementary expressions
for the energy and linear-momentum densities carried by the fields, respec-
tively. We will particularly arrive at explicit covariant integral expressions
for the components of the electromagnetic energy-momentum four-vector
which are directly identified with the energy and linear momentum of the
fields.

Our paper is organized as follows. Section 2 deals with Maxwell’s equa-
tions, and is divided into four subsections. In subsection 2.1, we review
briefly some well known basic definitions. The first “half” appears at this
stage as a set of identities, not as a system of equations of motion. The varia-
tional principles are formulated in subsection 2.2. We present the equations
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of motion for the complete theory together with the charge integrals for the
sources in subsection 2.3. In subsection 2.4, the electromagnetic wave equa-
tions are derived. Section 3 is concerned with the energy-momentum tensor.
We have split it into three subsections. In subsection 3.1, we introduce the
explicit two-spinor defining expression for the tensor. In subsection 3.2, we
build up the energy expressions. The covariant kinematical expressions for
the theory are exhibited in subsection 3.3. Section 2 will also provide us
with a framework for elaborating Section 3. In Section 4, we make some
final remarks on the theory.

Both the unprimed and primed fields shall be considered herein as clas-
sical but will sometimes be referred to as left- and right-handed fields, re-
spectively. The two-spinor conventions and rules as given by Penrose [1]
will be adopted throughout this work. We shall use also the natural system
of units wherein ¢ = h = 1. Of course, the symmetry property of the fields
makes the ordering of the relevant upper and lower indices immaterial. Thus
we will not order these indices when performing the calculations.

2. Maxwell’s equations
2.1. The first “half” as identities

Let r be a connected open subset of RM. It is convenient to require
T to be also a bounded four-dimensional submanifold of RM whose closure
7 is compact. The reason for this requirement will become manifest later.
For the (covariant) electromagnetic bivector on 7, we have the defining
expression

Faarppi(2) = 2V 44 ®BBY(2), (2.1)

where S gp:(z) is the (real) electromagnetic potential, and V 44, denotes

the ordinary partial derivative operator 3/ oz A4, Using the local one-to-
-one correspondence between the set of all bivectors on 7 and the pairs of
conjugate symmetric spinors {¢p 4p(z), ¢ 4/p:(z)} we can write (see Ref. [4])

FAA:BBI(QZ) :5A'B'¢AB(Z)+5AB‘;A’B'(2)' (2.2)

The conjugate spinor fields entering into (2.2) are the so-called electromag-
netic spinors. They are here looked upon as dependent insofar as the (six)
degrees of freedom carried by the theory are described by either of them at

every 244" ¢ 1. Their symmetry yields

$4(z) = 0= A (2). (2.3)
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We can at once establish the relationships between the fields and the

potential by transvecting both (2.1) and (2.2) with eA'B' and ¢4B. This
procedure leads to

$4B(z) = V 4 1 88)(2), Swp(2) =V, 4 8hy(z).  (24)

The above identities take a simpler form in case we adopt the following
Lorentz—gauge relations

Va8 (@) =0, V. 8h0(x) =0. (2.5)

To see how this situation actually arises, we make use of the trivial relation
’ '
Vua®8 (2) = V 0 1%5)(2) + 3eapA(z), (2-6)

along with its complex conjugate, with A(z) = V.$°(z). Thus, the identi-
ties (2.4) turn out to be re-expressed as

$4B(z) = Vaa88 (), Sap(z)=Vaawdp(z), (2.7)
whence the condition A(z) = 0 can also be re-expressed as the statements
(2.3).

The first “half” of the entire theory consists of (2.7) together with the
field equations that arise from the simple straightforward computation

V[anc](m) = V[a,vbéc](‘c) = V[[avb]ﬁc](m) =0, (2.8)

where we have used the (local) commutativity of the V’s. These relations
evidently amount to the same thing as stating

Ve F.(2) =0, (2.9)
with *F,;(z) being the dual electromagnetic bivector which is defined by [1]

*FAA’BB'(:B) = ’l:[EAB(ZAIBI(KB) - 5A'B’¢AB(:B)] . (2.10)
We are thus led to , .
VABgh(z) = VAB 34,(2), (2.11)

which are the field equations referred to above. These are the Bianchi
identities of the theory. Obviously, they form a system of four complex
first-order linear partial differential equations on 7. It is of some importance
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to observe that these statements can be viewed as a consequence of the
relations (2.4). We will consider this point explicitly in Section 4.

2.2. Variational principles

We shall now build up the variational principles which yield the equa-
tions of motion for the entire theory. It will be convenient to carry out
initially the construction of the action for the second “half”. For simplic-
ity, we will omit here, as elsewhere, all the arguments of our Lagrangian
densities.

The two-spinor form of the conventional full electromagnetic Lagrangian
density is written out explicitly as

£ = -;; [648(2)8%B (2) + Barpi(2)84 B (2)] + 544 (2)8 4 a1 (2) - (212)

In this expression, the four-vector jAA'(z) is the (real) electromagnetic cur-
rent density which actually plays the role of a source for the fields and
potential. This fact will be brought about later when we carry out the ex-
plicit derivation of the wave equations (see subsection 2.4). It is obvious
that we can re-express (2.12) as

LY = Loee + Lint s (2.13)

where Ly, is the free part of L?J which carries the conjugate bilinear terms
involving the fields, and L;,; stands for the interacting part which appears
simply as the inner product of #,(z) with j*(z). Now, using (2.4), yields
the useful expression

1 A AgB)B'

+ Y qaBhn(@)(V B(A'QB')B(:::))] . (2.14)

L:free =

The formal action for the second “half” then reads

S[ch] = /1:5\‘,,01%, (2.15)
T
while the relevant dynamical statement is

§S[Lhy] = 6/£§\ftd“z =0, (2.16)

r
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where diz = zlreabcddza A dzb A dz€ A dz? is a four-volume element of 7
with e, 4.4 being the usual alternating tensor for the (covariant) standard
basis of RM.
To introduce our explicit Lagrangian density for the first “half”, it is
worthwhile to define
Liree = Lin + Lyn » (2.17)

where £y, and L}, denote, respectively, the left- and right-handed parts of
(2.14). These quantities can be clearly rewritten as

Ly = g};eACeBngAB(z)qSCD(z) s (2.18a)

and L e s )
Ly = 5;6‘4 CeB LG upi(2)boipi(2)- (2.18b)

Our modified Lagrangian density is chosen to be
Lhr =i(lm — L), (2.19)

the corresponding variational statement thus being

§S[Lh] =6 / Lidiz =0. (2.20)

We assume that all the quantities occurring in the above Lagrangian
densities are continuous on 7 whence both (2.13) and (2.19) are supposedly
smooth real SL(2,C)-scalar functions on 7. The §-variation involved in (2.16)
and (2.20) is here regarded as ordinary in the sense that it does not entail
any deformation of 7 at all. Moreover, when the variational statements
are effectively worked out, the current density is held fixed while arbitrary
variations of the potential are taken to vanish on the boundary 7 of 7.
When working out these statements, we will also assume that the (local)
é-variation commutes with the V-operators.

2.3. Fquations of motion and charge integrals

In what follows, we shall first see that the basic variational prescription
given before enables us to express the entire theory as equations of motion
carrying the Lagrangian densities (2.13) and (2.19). It will be particularly
shown how our prescription can become more feasible by carrying through
the procedure for deriving the second “half” of the field equations. Actu-
ally the procedure involving the first “half” appears to be essentially the
same as the one referred to above. For this reason, we will write down
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the corresponding equations of motion without working out explicitly the
statement (2.20). Thereafter, the charge integrals of the theory will be ex-
hibited. We will see that the two-spinor integral expressions arising here
are identical with those given by Penrose [6] when only electric charges are
allowed for. The relevant explicit calculations will not be carried out at
this stage. This is because we will consider similar situations later wherein
our calculational procedures can be carried through in a more transparent
manner (see subsection 3.2).

Expressions (2.12) and (2.13) together with (2.4) suggest writing out
(2.16) as

3L A L A
————V g1 40P 6§84,
/[3¢AB(Z)VA (923 (=) + ¢ api(z )VA(A' ()
a['int

t 3% ,0(2)
Of course, on account of the symmetry of the fields, we can drop the
symmetrization round brackets from (2.21) without any loss in generality.
Hence, integrating by parts the terms involving the (symmetrized) deriva-
tives of the variations of the potential, after some manipulations we obtain

8£n, 0Ly A ] 3
0= /[ 645 F 0P 5 () [d° 2 4 4
( ) 8¢A'B’(z) B ( ) AA

+/[VA'_6.£B}_+V§, 9L OLint ]6¢AA:(z)d4z,

MAA,(:B)]d“z =0. (2.21)

B 94 4p(z) 0darpi(z) 0% 4a(2)
(2.22)

where d3z 4 4+ is the spinor element of three-hypersurface area of 07 associ-
ated with d3z, = gl-geabcddz"f\dz"/\dzd. Consequently taking 64506'(2) =0
on Jr, yields the equations of motion

1 0Ly A OL:n OLine
R =0. 2.23
53645 P B ap(@) | Ban() (223
The explicit gauge-invariant field equations for the second “half” then read
VBA 4 (z) + VAB G4, (2) = 4rj A4 (2). (2.24)

More explicitly, we can express the statement (2.22) as

/ (47744’ (2) - VB4 (z) - VAZ 4 (2)]| 68 4 wr(2)a*=

r

n / [¢A3(z)5¢g'(z) + 5‘4'3'(:)6453,(2)] By =0, (2.25)
ot
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which evidently yields (2.24). By virtue of (2.4), Eqs (2.23) take the form

' ac aEr aﬁin
va “‘B, 4, ’;3 57 'E:v) =0. (2.26)
orutBe)] T o[Vau By Oas

Now, a procedure similar to that giving rise to (2.23) yields the invariant
equations of motion for the first “half”

8L oL
vA h g4, _ZTth g 2.27
B 8¢45(z) B'0¢aipi(z) (2.27)

which effectively reinstates the Bianchi identities (2.11). In a formal way,
we can rewrite (2.27) as

Vﬁ’ azlhB’ ~ V4, - =0. (2.28)
a[VBI(AQB)(:B)] 3[VB(A'¢B’)(2)]

We should emphasize that, as far as the use of (2.26) and (2.28) is concerned,
it seems to be appropriate to recall the source-free pieces given in (2.14).

The complete field theory on 7 consists of the statements that are ob-
tained by combining (2.11) with (2.24). We thus have the invariant field
equations

VBA 44 (2) = 2rj44 (z) = VAR §4,(2). (2-29)

In the absence of sources (j,(z) = 0) the propagation of the fields appears,
therefore, to be governed by the massless free-field equations for spin +1

VBA 4A(2) = 0= VAB' §4(2). (2.30)

We shall next derive some particularly simple two-spinor integral ex-
pressions for the total charge carried by j%(z). In this connection, we con-
sider a space-like hypersurface ¥ in RM, given by

Z={z*€7|f(z)=0 with (V*f(z))Vaf(z)>0}. (2.31)

In fact, it is not strictly necessary to assume here that 5 is the boundary of
7. Instead, the crucial point as regards our immediate purposes is to suppose
further that the scalar function f(z) and its first derivatives are continuous
on X, such that (2.31) can be thought of as defining a non-singular three-
dimensional submanifold of RM with a smooth (two-dimensional) boundary
80X C 7. The total charge of the sources can be expressed in terms of the
(covariant) derivative of the electromagnetic bivector by

Q[E] = %; / Vo F®(2)epeandz A dzd A dz™. (2.32)
X
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It is useful to observe that (2.24) can indeed be considered as the two-
-spinor version of the conventional field equations V,F*b(z) = 4xjb(2).
Now performing some integrations, and using the well-known world-tensor
duality relation

I“I"a.b(a:) = %eabchCd(z) ’ (233)
we arrive at the spacetime expression
1
Q= 4~ / *Foy(z)dz® A dz®, (2.34)
8x

which, when combined with (2.10), yields

QlZ] = ;-Im / 68 (2)dzf A dzB' . (2.35a)
8r

By using (2.2) we can also re-express (2.32) as

1
QL5) = —Im / VB4 44 (2)de$ A dz gor A d2l,
=

1 '
= 5—Re / VBAgA(2)d 2z 4 0 s (2.35b)
b

where the second equality is due to the Bianchi identities (2.11). It is of
some interest to mention that, in the case where also “magnetic” charges
are present, an explicit integral for the total “electromagnetic” charge can
be obtained by dropping the “Im” from (2.35a). In fact, this expression
was particularly used by Penrose [5] towards building up a twistorial charge
integral for the theory.

2.4 Wave equations

The electromagnetic theory, as formulated before, gives rise to a sys-
tem of ten (complex) wave equations on 7. Four of these equations involve
& 4 41(z) along with j 4 4/(2), and are deemed to be equivalent to the second
“half” of the theory. Actually, they constitute nothing else but the conven-
tional wave equation for the potential which can, in particular, take up the
Lorentz gauge condition. The other equations involve the fields together
with certain (suitably) contracted first derivatives of the current density.
It will be seen that the explicit charge-conservation statement turns out to
be an immediate consequence of the latter set of equations whenever the
symmetry property of the fields is effectively taken into account.
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Let us consider the first of Eqs (2.4). Operating on both sides with
Vé,, recalling the first of Eqs (2.29) and using the splitting

VéIVAA’ = VzAAlvcl)A + V[}EVIVAI]A = %eA'C’ O , (2.36)
we get
2V&i648(z) = O8pci(z) - VporA(z), (2.37)

where [] = V,V2, and A(z) is the same scalar function as that carried
by (2.6). Here we have used once again the commutativity of the V’s
which really implies that the symmetric part VfAA'Vcl) 4 Vanishes identi-
cally. Therefore, invoking (2.29), we are immediately led to

U 44r(z) = 4mjan(z) + Vaud(z), (2.38)

whence, in the absence of sources, $ 4 4/(z) satisfies the (inhomogeneous)
wave equation L1 & 4 4/(z) = V 4 41 A(2).

To derive the wave equations involving the fields, we adopt a procedure
similar to that yielding (2.38), but now making use of either of Eqs (2.29).
In the case of the left-handed field, say, we perform the calculation

VacVE*5(2) = (Jeop O+ 4o V5 )44 (=)
= 3¢cp 0945 (2)

=27V4 4 (2), (2.39)

which yields the gauge-invariant equations

D gap(z) = 47V 4,55 (2). (2.40)
Similarly, we obtain for the right-handed field
O@api(z) =47V 44 jhi(2)- (2.41)

One important consequence of the theory is the fact that it gives rise to
the conservation of charge. This result can be immediately seen by invoking
(2.3). We have, in effect,

O¢A(z) = O¢4(z) = 0 = 47V 4 4 j44'(2), (2.42)

which clearly involves the statement to which we have referred above. Obvi-
ously the divergencelessness of j%(z) is equivalent to either of the relations

VA’[Ajgl("’) =0, VA[A'jg'](z) =0, (2.43)
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whence Eqs (2.40) and (2.41) can be effectively rewritten as
D¢AB(Z) = 47TVAI(A].§)($), D&A:B:(z) = 47FVA(A1ng)(2) . (2.44)

The charge-conservation statement involved in (2.42) can also be estab-
lished as trivial identities carrying the following conjugate skew-symmetric
differential operators

+

-AB = VA'[AVg] = %SAB D, (2.456)
.A'B' = VA[A'Vg'] = %SA'B' D . (2.45b)
In effect, we have
- Al
.AB¢AB(2) = .AIB/¢A B (2) = 27(‘Vaja(23) =0. (246)

The operators (2.45) were actually introduced by Penrose [6] in connection
with the problem of establishing the conformal invariance of spinning mass-
less free systems on a general curved spacetime background. In the absence
of sources, Eqs (2.44) are thus reduced to

O¢ap(z)=0, O¢up(z)=0. (2.47)

Under this source-free circumstance each component of the fields appears
to satisfy the ordinary homogeneous wave equation. It is evident that this
result is equivalent to stating that the free fields satisfy Eqs (2.30).

3. The electromagnetic energy-momentum tensor

We are now in a position to carry out the explicit derivation of Pen-
rose’s expression for the electromagnetic energy-momentum tensor. As was
said before, the basic idea here is to start with a suitable two-spinor defin-
ing expression for the tensor instead of translating its conventional world
definition into two-spinor terms. Its usual symmetry and reality properties
are indeed taken up at the outset. Its trace-freeness will appear also as a
consequence of the symmetry of the fields. Additionally, we will see that
its divergence-freeness actually arises as an identity involving the massless
free-field equations (2.30). In order to write down the integral expressions
for the energy carried by the fields, it will be necessary to impose one further
requirement on the region 7. The reason for this is that one of the energy
integrals referred to above has to be taken over an appropriate subset of R3.
In accordance with the elementary expression [7], the energy density appears
to be positive-definite throughout r. The energy-momentum four-vector is
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given as an explicit covariant integral taken over ¥ (see (2.31) above). It is
observed that the two-spinor components associated with those of the linear
momentum of the fields lead to the electromagnetic Poynting vector. The
construction of the integrals for the angular momentum of the fields will be
carried out in a straightforward way by using the two-spinor expression for

Top(z)-
8.1 Penrose’s expression
Our explicit starting relation at some 244’ ¢ 1 is written as
TaaBB/(2) =€ ABE 4'B' Liree

a‘cﬁ'ee
VBE'$qci(2)]

- 2V[AA’¢CC’](2)6[ (3.1)

On the basis of (2.1), we can evidently re-express the above relation as
follows

Taapp(z) =€ABEA'B' Liree
aﬁfree
O[VEB'$cci(z)]
(3.2)

— [5A’C'¢Ac(z) + EAC‘EA’C'(:C)]

The derivative piece can be worked out by using (2.14). We have, in effect

aL:free _ 1 c',c c ¢’
3[VBB'¢CC,(:B)] = E[eB' ¢p(z) +eB ¢B'(z)] . (3.3)

Now, inserting (3.3) into (3.2) and invoking (2.17) along with (2.18), we
obtain

TAAIBBI(QB) :-‘% [2¢AB(2)$AIBI‘(Z)
~earpdac(z)df(z) - €AB¢_5A'C'(7~‘)¢—3§:]

+ gocae w s [$00(2)6°P(2) + forpi (2)87 P (2)]
(3.4)

Consequently, the relation

eaBdcD(2)$°0(2) = 2604(2)85)(2) = 264c(2)$5(2),  (3.5)
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together with its complex conjugate, yields after a short calculation

Tpapp(z) = 51;¢AB(3)$A'B'(2) . (3.6)

This constitutes the (gauge invariant) Penrose version of Tyy(z). It
should be noticed that the relation (3.5) is equivalent to the statement
¢C(A(:c)¢g)(:c) =0.

One feature of the expression (3.6) is indeed that T,3(z) is both sym-
metric and trace-free. This fact actually arises as an immediate consequence
of (2.3). It is worth remarking explicitly that these properties can also be
seen as trivial identities coming directly from (3.4). Moreover, the field
equations (2.24) yield

' N Ll -
VAT wppi(2) = ip(2)ban(z) + i (z)darp(2), (3.7)
whence, for an arbitrary (Hermitian) ¢B B' ¢ 7, we have

¢BB'VAA'T, i ppi(z) = 2Re [¢BB jA (2)paB(2)] - (3.8)

It becomes evident that, taking j*(z) = 0 on 7, Eq. (3.7) yields the diver-
gence statement

VAA,TAAIBBI(:B) =0 ) (39)
which seems to agree with the fact that our defining expression for T,;(z)
does not involve the sources.

There is a positive—definiteness statement [1] which appears to be es-
sentially due to the reality of the structure (3.6). The statement is that,
for any two feature oriented time-like vectors U%(z) and V®(z) on , the
inequality

Top(2)U%(2)VP(2) > 0 (3.10)
holds throughout 7. To see this, we use the canonical two-spinor decom-
positions pA(z)ﬁAI(:c), VA(:c)DAI(a:) of two arbitrary future oriented null
vectors, recalling that each of U%(z) and V*(z) can be uniquely expressed
in terms of a linear combination of the type

Y A4 (2) = aph(2)i? () + bl (2)54 (), (3.11)

where a and b belong both to the set Rt of positive real numbers. After
short computation, we thus obtain the positive-definite invariant

Toy(2)U*(2) V(=)
1

~or [a|¢AB(z)’\A(z)nB(z)|2 + ,3[¢AB(:B)}\A(:¢:)(‘B(3)|2

+71648(2)7A (2P () + bloan(2)A(2)C P (2)] > 0, (3.12)
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provided that a, 3, v and § belong all to R*. Of course, the validity of the
relation involved in (3.12) can be extended to the whole of RM if a suitable
analyticity condition is inposed on all the quantities involved.

3.2 Electromagnetic energy expressions

Before introducing the explicit integrals for the energy of the fields,
we shall carry out the computation of the two-spinor expression associated
with T°%(z). The latter quantity appears to be identical with the density of
energy carried by the fields. We will make explicit use of the spin matrices
that establish the correspondence between the standard Minkowski tetrads
and the canonical spin bases (see Ref. [1]). The afA'-pattern of these
particular matrices is given by

@ =2 1. @)=

1
7
=] % 5] @ -—

V2 l-i 0 [(1) —01] (3.13)
The energy density of the fields is defined on 7 by
T°(2) = Too(2) = 0 * o3’ Tawpp(2)
= %U#AIU(?BI¢AB(’3)$A'B'(2)- (3.14)
Using (064‘4') as given in (3.13), we readily obtain the expression
Tuo(e) = o [1900() + 160 ()P + 2oa(2)F],  (315)

which clearly is positive-definite on 7. To see that (3.15) is identical with
the elementary expression for the electromagnetic energy density, it is con-
venient to assume that 7 = T x V, with T and V being, respectively, a
(one-dimensional) subspace of R and a (bounded) three-dimensional sub-
manifold of R3. At this stage, the closure of V is still taken to be compact
so as to make it correspond to a suitable volume in R?® with a smooth (two-
surface) boundary V. We can then achieve at once the relevant relation

by using the Penrose complexified three-vector (with z° = t)
C(t,z) = E(t,z) — iB(t,z), teT, z€V, (3.16)

where E(t,z) and B(t,z) are the electric and magnetic fields, respectively
[1]. It should be observed that, as regards the use of (3.16), the components
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entering into RM = R x R3 have to be disconnected in such a way that
the R3-component now carries the usual metric signature (+ + +) instead
of (— — —). The explicit relationships between the (three) independent
components of ¢ 4p(z) and those of C(t, z), are thus provided by

poo(z) = 3[Ci(t, ) —iCa(t, )]
$o1(z) = —1Cs(t,z) = b10(2) . (3.17)
$11(z) = —3[C1(t, ) + iCa(t, z)]

Now, combining (3.16) with (3.17) and recalling (3.15), we arrive at the
elementary energy-density expression

Too(t, =) = SLW,[Ez(t, z) + B%(t,z)] . (3.18)

Hence the electromagnetic energy on T, stored in V, is given by

1
£t) = 1z [ 1ol + ona(e) + 2 (@) )Pz, (319)
v
which involves the three-volume form on V (see also Eq. (3.27) below)

d*z = dz' Adz? N d2®. (3.20)

We must mention that the complex conjugate of the three-vector (3.16) was
also used by Barut [8] to show in a particular way that the Maxwell fields
can be viewed as being “composed” of neutrino fields.

Clearly, the energy integral (3.19) is not covariant. To write down
a manifestly covariant expression, we have to suppose that ¥ C T (see
(2.31)). The relevant integral for the electromagnetic energy is thus given
by the functional

£15] = o / BB o (2)bh(2)d 2 anr (3.21)
X

where d3z 4 4/ is a spinor element of three-hypersurface area of X (see also
(2-22)). The components occurring in the integrand of (3.21) can be written
out explicitly, to yield the expression

£ = \/— {[|¢01 W2+ |¢11(2)|?] d*zgqr

E
+ [[goo(2)? + |do1(z)|*] d>z 110

~ 2Re [(do0(2)dor21(2) + $oa(2)Buw (2) P20r] | (3:22)
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which accordingly is reduced to (3.19) when we take ¥ 2 V as 2% = const.
To establish this, we carry out the explicit computation

1 ' -l
E[X] =Tom o F ¢g(z)¢g,(z)eabcd0‘}‘glg,dzb A dz¢ A dz?
x

1 ) »
~ L [ B e o’ n s
Py

— ULA,d:co Adz? A ded + aiA,d:co A dz! A dzB

— 0% 41dz® A dz? A dz?), (3.23)
whence, on z° = constant, Eq. (3.21) turns out to be reduced to
E(t) = /Too(:c)d:cl A dz? A dz3. (3-24)
v

In particular, we will see in subsection 3.3 that the integral involved in the
expression (3.21) can be immediately identified with the time-component of
the energy-momentum four-vector of the theory.

3.3 Covariant kinematical integrals

The manifestly covariant expression for the electromagnetic energy-
momentum four-vector is written as

panlZ] = / $8(2)88.(2)d%2p 5 - (3.25)

Whereas the time-component py[ ] = o A'p, a[Z] = p°[¥] is immediately
seen to be identical with (3.21), the spatial components p*[X] = —pi[5],
are expressed as

1 —aln!
P15 = o [ et P @ @ enn.  (326)
x
Whenever X is “identified” with V (see (3.24) above), the covariance of the

integrand of (3.26) is lost. Under this circumstance, p*{¥] appear to be
given by

o) = [THe)d'=, (3.27)

v
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which is the conventional (non-covariant) defining expression for the linear
momentum carried by the fields (see, for instance, Ref. [8]).

We shall now proceed to the derivation of the two-spinor expressions
for the densities T0%(z). We have, in effect,

TE(z) = —2-1;054“"053,4;2(2)&?:(3)
) e .
= Zé"gB' [65(2)85 (=) + ¢P ()02 (=)],  (3.28)

such that, rearranging indices and making use of (3.13), we obtain
1 - -
Toa(2) = ~T3(2) = 5= Re { $01(2) [foror(2) + $rui(2)] } , (3.290)

Tos(z) = ~T2(2) = 5= Im {ora(2) [$11(2) ~ doo(2)] },  (3.29)
and

Tos(z) = -T5(z) = %Ud’oo(:’:)l2 — |p11(=)I?] . (3.29¢)

The expressions for Té‘(a&) as given explicitly above can indeed be looked

upon as the standard R3-components { P*(t, z)} of the elementary Poynting
three-vector

Pt,z) = Z%;E(t,z) x B(t, ). (3.30)

This statement can be readily established by replacing (3.17) into (3.29).
Accordingly, we have the following integrals for the electromagnetic power
crossing OV at some t € T

I(t) = | P*t,z)dS, = | ViP*(t,z)d%z, (3.31)
Jreme]

where dS} is an element of two-surface area of 9V at =.

To build up the covariant angular-momentum structures, we have to
make use of the explicit expression (3.25) together with the standard defin-
ing relation

Mgpp[P]=2 / z[AAITBBr]CC/(z)da:BCC' s (3.32)
x

where the square brackets denote skew-symmetrization over the index-pairs.
We thus have the formal integral

1
My pp(2] = / [earBrptaBec(z) + aBiiarpico(z))d®2CC, (3.33)
T
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with the conjugate angular-momentum densities being explicitly given by

1 gt
haBcc(z) = E;ZM'(A¢B)C(3)¢§'I (z) = waByccor(z), (3.34a)

and

_ 1 - _
pAoB:ccl(z) = -2~;2M(A1¢30)01(z)¢g(z) == y(AlBi)CC:(x) . (334b)

Evidently, the symmetry property of these u-densities can be stated as the
€-spinor trace relations

paco(2) = 0= Baco(2), (3.35)
which actually appear to be equivalent to the bivector property

1

My44 (2] =0. (3.36)

4. Concluding remarks

In respect of our derivation of the explicit expression (3.6), it should be
emphasized that the procedure adopted here was to work out an adequate
defining two-spinor expression for the electromagnetic energy-momentum
tensor rather than translating the standard classical definition into spinorial
terms. Thus, the conventional world-tensor expression

Toe(z) = %{-[i—ga&ch(z)FCd(z) - Fac(x)ch(z)gbd] s (4.1)
was not taken for granted from the beginning. Instead, this expression
actually arose at an intermediate stage of the calculations yielding the cor-
responding two-spinor formula. One remarkable feature of Penrose’s expres-
sion is that it does not depend upon whether we take effectively the Lorentz
gauge condition into account upon expressing the relevant Lagrangian den-
sity. If we had dropped the symmetrization round brackets from (2.14) we
would have, in effect, arrived at the same two-spinor expression for T,;(z).
Evidently, the same observation holds also for (2.23) and (2.27). Actually,
as (3.6) stands, the tensor appears to be particularly invariant under the
duality rotations

baB(z) — e Cpap(z), Sapl(z)r— e®dapi(z), (4.2)

with § € R. Hence, as regards the relevant computations, either of the
expressions (3.1) and (3.2) seems to be unambiguous, independently of
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whether the phase factor involved in the above transformations is held fixed.
The positiveness of the numerical factor entering explicitly into (3.6) ensures
the validity of the statement (3.12), which accordingly tells us that the ve-
locity of the energy flow carried by the Poynting vector cannot exceed the
velocity of light. When j*(z) = 0, the divergence-freeness property (3.9)
implies the conservation of the energy-momentum four-vector as given co-
variantly in (3.25). In this case, the relevant defining expression does not
depend upon the choice of (space-like) hypersurfaces, the corresponding
functional statement being [9]

)
EPAA'[E] =0 y (4.33)

which is indeed equivalent to

VA (4 ,48(2)parp(2)] = 0. (4.3b)

In a similar way, the divergencelessness of j,(z) amounts to stating

§
Q%] =0. (4.3¢)

That the relations (2.4) are equivalent to the Bianchi identities (2.11) can
be easily established by computing

2VAB,¢§(:C) = 2€BCVAB'VAI(A¢3')(E)
= VAB 4B(2) + VA B4R (2). (44)

The two-spinor electromagnetic Lagrangian densities used here afford us
one way of setting up the simplest form of Maxwell’s theory. In particular,
it is clearly seen that the sources for the fields appear to interact with the
potential, not with the fields. This feature might indeed be required from the
outset as a necessary condition for the theory to remain linear. According
to this fact, the linearity of the theory is particularly eéxhibited by the wave
equation involving @ 4 4/(z). In relation to Lg.. itself, we should notice that
it can be expressed as

Livee = 5= Va[#(2)V84(2) - 84(2)V,2°(2)]
8x

1 '
= Re{V4u (24 (2)675(2)]} (4.5)
In fact, the crucial point here is that the (real) vector

WA (2) = 84 (2)$48(2) + $.(2)¢% B (2) (4.6)
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is not gauge-invariant, but its divergence is. In effect, whenever &,(z) is
transformed into €,(z) + V,T(z), with T'(z) being a well-behaved scalar
function on 7, vector W, (z) undergoes the transformation

Wa(z) — Wa(2) + Fuy(2) VP (2), (4.7)

whence V,W?(z) remains invariant.

It should be observed that the assumption upon which the calculations
yielding (3.24) are based, destroys the covariance of the expression (3.21).
This seems to be due to the splitting of the region 7 C RM into disconnected
parts lying in R and R3, which also yields the elementary charge integral
J jolt, z)d*z. Finally, we must stress that the reason for the compactness

requirement imposed on 7 is the fact that our basic dynamical statements
have to be set upon a finite four-volume contained in RM.

I am deeply indebted to Professor Roger Penrose for introducing me
to the spinor approach to relativistic fields. My warmest thanks go to the
World Laboratory for supporting this work financially.
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