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We demonstrate in some detail, how an idea of leptons and quarks
composed of algebraic partons (defined by a sequence of Clifford algebras)
can justify the existence of three and only three families of these funda-
mental fermions. In this argument, the theory of relativity, the probability
interpretation of quantum mechanics and the Pauli exclusion principle, all
extended to the algebraic partons, play a crucial role. The Lorentz group
turns out to be realizable intrinsically in two different ways, the algebraic
partons corresponding to the new way. We describe also a semiempirical
mass spectral formula for charged leptons composed of algebraic partons.
With the use of experimental m, and m, it gives m, = 1783.47 MeV or
m, = 1776.80 MeV, the second option in excellent agreement with new
measurements of m,.

PACS numbers: 12.90. +b, 12.50. Ch, 14.40. Jj
1. Introduction

According to the general feeling, the most puzzling feature of today’s
particle physics is perhaps the phenomenon of three families of leptons:

ve vy vr(?) (charge 0)

e” uo T (charge —1) (1)
and quarks:

u c t(?) (charge  2/3)

d s b (charge —1/3) (2)

(933)
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differing apparently by nothing but their masses. Among them, the tauonic
neutrino v, and top quark ¢ are not yet observed directly, though indirect
evidence leaves practically no doubt as to their existence. In particular,
the recent CERN measurements of total decay width for Z° gauge boson
manifesting itself as a resonance at about 91 GeV of CM energy in the
process

+

ete™ — Z° — anything, (3)

have shown that the number of different neutrino versions lighter than
%mz ~ 46 GeV is just three. Moreover, this result has given us a strong
argument that the number of all lepton and quark families is equal to three.
In fact, (i) it is rather natural to imagine that (Dirac) neutrinos are very
light (or massless) and (ii) the numbers of different versions of neutrinos,
charged leptons, up quarks and down quarks are required to be equal in or-
der to ensure the internal consistency of the standard model of electroweak
and strong interactions (cancellation of the fatal chiral anomalies).

In this presentation, we are going to demonstrate in some detail that
there are three different, physically distinguished versions of the Dirac equa-
tion

(['-(p—94)-M]¢=0, (4)

where
{r#, rv} = 2¢**. (5)

Here, gI' - A symbolizes the standard-model coupling, identical for all three
versions, while the mass operator M may depend on the version. So, we shall
be tempted to connect these versions with the three experimental families
of leptons and quarks.

Our argument will express an idea of algebraic compositness of fun-
damental fermions that accepts an act of algebraic abstraction from the
familiar notion of spatial compositness (so useful, for instance, in the case
of pseudoscalar and vector mesons built up of quark-antiquark pairs moving
in the physical space).

2. An example of spatial compositness

For an illustration, let us consider the Duffin-Kemmer-Petiau equation
describing a particle with spin 0 @ 1. In the free case, it can be written in
the form

[3(11+72)- P - M]9(X) =0, (6)

where 74 and ¥4 are two sets of commuting Dirac matrices,

{7?&7{} = 2gM¥, [7?»7%]:0’ (7)



Clifford Algebras and Algebraic Compositeness... 935

so that
7{‘=7“®1,7£‘=1®7“0r1®7“0 (8)

with 9# and 1 being the usual Dirac 4 X 4 matrices and y#C = C~1y%C
= —vH#T, Here, ¢ = (%ayay) displays an algebraic structure expressed in
terms of two Dirac bispinor indices a; and a;.

In the case of pseudoscalar and vector mesons (then 74 = 1@y*C ), Eq.
(6) may be considered as a wave equation for the motion of meson centre of
mass, in the approximation where the meson internal structure is neglected.
In fact, Eq.(6) can be readily derived as a point-like limiting form of the
following two-body wave equation for a quark-antiquark pair [1]:

[v1- (3P +p) +72- (3P - p) —m1 — my — §(z)] $(X,2) =0, (9)

where (for simplicity) masses are assumed equal: m; = m3 (what, for
instance, is the case for a pair of a quark and an antiquark of the same
sort). Here, the internal interaction S(z) can be related to the more
familiar internal interaction I(z) appearing in the Bethe-Salpeter equation

(2]
{lr1-3P+p)—mi] [r2- (3P -p) - m2] - I(z)} $(X,z) =0. (10)
The relation is

1 1
+
1-(GP+p)—m1 72 (3P -p) —m2

S(@)(x2) = | [1@vx.2)

(11)
with I(z) being an integral operator acting in the internal four-dimensional
space,

I(2)$(X,z) = / &2’ I(z,2") (X, ). (12)

As it was shown many years ago by Jan Rzewuski and myself [3], the
Bethe-Salpeter equation (10) is equivalent in the case of equal times (% = 0,
X% = t) to the one-time two-body wave equation having the conventional
form of the state equation,

(i8-8 [71-(3P+5) +ma] 18 [13- (3P-5) +ma] -V (@ } (X, 2,8) = 0.

(13)
Here, V(Z) is an internal interaction deducible perturbatively step by step
from the Bethe-Salpeter interaction I(z), and is given by an integral oper-
ator acting in the internal three-dimensional space,

V(2) $(X,7,t) = / B2 V(E, )(X, 7, t). (14)
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In the case of an instantaneous interaction Eq. (13) becomes the familiar
Salpeter equation [4].

Thus, we can see that the one-body Duffin-Kemmer-Petiau equation
(6), where v}, 75] = 0 is assumed, may be derived via the two-body Bethe-
Salpeter equation (as its point-like limiting form) from the conventional
quantum field theory. So, in this case, the algebraic structure ¢ = (Ya,qa,)
coexists with the spatial structure and, therefore, one can speak of the
spatial compositness, a notion so familiar from the history of matter research.

3. An example of algebraic compositness

From the above argument it is readily seen that, if {7{‘ v T3 } = 0 were
assumed instead of [y;,v5] =0, Eq. (6) would not be derivable from the
conventional quantum field theory via a two-body wave equation (as its
point-like limiting form). The proof of this statement goes as follows. In

the new case, the counterpart of Eq. (6) (with the convenient coefficient
1/4/2 in place of 1/2) would read [5]

(250t +98) - P - M]w(x) =0, (15)

where
{+f,7]} = 2659, (16)

so that
=901, = ¥ @iySy* (17)

with 95 = iy%y19243. Such an equation might be considered as a point-like
limiting form of the two-body wave equation
[VZr - 3P +p) + V212 - (3P - p) — ma — my - 5(2)| ¥(X,2) = 0,
(18)
but the latter, in contrast to Eq. (9), could not be derived from the con-

ventional quantum field theory. This is a consequence of the fact that the
particle kinetic-energy operators in the Fock space

v (Fi-pi + m) (19)

all commute, if they are derived from the field kinetic-ehergy operator
[ E26H @1 5+ mta), (20)

so, in such a case, all 7{‘ must commute for different ¢ (at least, when
massive particles are considered; if a relativistic interaction with an external
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scalar field is introduced, also massless particles cannot escape from this
conclusion).

Thus, though Eq. (15) ( with Eq. (16)) may be investigated for some
hypothetical particles, it cannot be considered as a point-like limiting form
of a two-body wave equation following from the conventional field theory.
So, ¥ = (Yo, a,) displays an algebraic structure that, now, does not coexist
with any spatial structure (at any rate, in the framework of the conventional
quantum field theory [6]). This illustrates, therefore, the notion of algebraic
compositness. In Eq. (15) the Dirac bispinor indices a; and a2 describe
“algebraic partons”, agents of the idea of this compositness.

Let us observe that the logical relationship between the notions of spa-
tial compositness and algebraic compositness reminds (to some extent) the
logical relationship between the notions of orbital angular momentum and
spin. In fact, in these cases we have to do with similar acts of algebraic
abstraction from some notions of spatial character. '

It is interesting to note that due to the Clifford algebra (16) the matrices

=20 +13) (21)

appearing in Eq. (15) satisfy the Dirac algebra (5). This implies that Eq.
(15) has the form of the Dirac equation (4) (in the free case). Thus, the
hypothetical particles described by Eq. (15), when coupled to the magnetic
field, should display (magnetically “visible”) spin 1/2 though any of them
is a composite of two algebraic partons of spin 1/2. There exists, therefore,
another (magnetically “hidden”) spin 1/2. It is related to the matrices
(%) (74 —4) also fulfilling the Dirac algebra (5) and anticommuting
with the matrices I'*.

Note further that the matrices (21) may be represented in the conve-
nient form

rs=+4*@1, (22)
if the representation (17) is changed into
2= (1@1E1°@iv’y#) . (23)
So, Eq. (15) can be rewritten as
(Yory * P = bay gy M) ¥p,a,(X) =0, (24)

where the second Dirac bispinor index a3 is free. Such an equation is known
as the Dirac form [7] of the Kahler equation [8].
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4. A sequence of Dirac-type equations

As is not difficult to see, the Dirac algebra (5) admits the remarkable
sequence N = 1,2,3,... of representations

N
1
I* = 77 27;‘, (25)
=1

where the matrices 7{‘, i1=1,2,3,..., N, satisfy the sequence N = 1,2,3,...
of Clifford algebras
{vfs77} = 269" . (26)

With the matrices (25), Eq. (4) gives us a sequence N = 1,2,3,... of
Dirac-type equations [9]. Of course, for N =1 Eq. (4) (with the matrices
(25) inserted) is the usual Dirac equation, while for N = 2 it is equivalent
to the Dirac form of the Kéhler equation already discussed in Section 3 (in
the free case). For N = 3,4,5,... it provides us with new Dirac-type
equations.

Except for N =1 the representations (25) are reducible since they
may be realized in the convenient form

I'=+9"@1®---01 (27)
(N-1)times

with y# and 1 standing for the usual Dirac 4 X 4 matrices. It is so, because
for any N > 1 one can introduce, beside I'} = I'* given in Eq. (25), N -1
other Jacobi-type independent combinations F; R & 1’\‘,,

1 1
P:=“\/_§“(7f_7;) ,1’3“=%(‘r{‘+7£‘—27§‘) (28)

such that
{1“,!‘,1‘]."} = 28;;9 (29)

(in consequence of Eq. (26)). In particular, for N = 3 one may use the
representation

If=4*9101,If=7"0i°1*®1, I =1"8+°8+*. (30)

In the representation (27), the Dirac type equation (4) for any N can
be rewritten as

[7 : (P - gA) - M]alﬁl ¢B1a2---aN =0 ) (31)
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where Malﬁx = ba, ﬁxM Here, ¥ = (1/)0,10,2 o,N) carries N Dirac bispinor
indices a;, t = 1,2,..., N, of which only the first one is acted on by the
Dirac matrices y# and so is coupled to the particle’s momentum and to the
standard model gauge fields (among others, to the electromagnetic field).
The rest of them are free. Thus, only a; is “visible”, say, in the magnetic
field, while a3,...,ap are “hidden”. In consequence, a particle described
by Eq. (4) or (31) can display, say, in the magnetic field only a “visible”
spin 1/2, though it possesses also N — 1 hidden spins 1/2.

Our first crucial assumption we are going to make is that the physical
Lorentz group of the theory of relativity, if applied to the particle described
by Eq. (4) or (31) for any N, is generated both by the particle’s visible and
hidden degrees of freedoin. Then, the Lorentz group generators for any NV
have the form

JH = LM 4 = Z e, (32)
]~1

where LFY = zH p¥ — z¥ p# and

¥l ¥ali
p _ 3 pp pr] I forp=0,v=1
3 —2[F F’]_{e“"‘)l’]'-" for pu=k,v=1 (33)

with (1/2)f,- = (1/2) (Z’Jm) being the spin 1/2 related to the Dirac bispinor
index a;. Note that X7* commute for different j (though I"Jf‘ do not). The

same is true for the chiralities F5 = 1’;’1"]11’]21’]3 , and 1‘J,5 commute also

with all Z.”j . In the chiral representation (where v° is diagonal), the Dirac
bispinor indices a; = 1,2,3,4, ¢ = 1,2,..., N, of 3 are defined by four
pairs of eigenvalues +1 of £} and I'?

It is not difficult to see that the Lorentz group generators (32) can be
rewritten for any N as

N
J = L#¥ + = Z 0"“’ N (32!)
]——]
where :
. . o
w L ] [ foru=0w =l ,
o 2[7]’7]] EIclma;n fory_—.k,u:_-l (33)

with 7;-" satisfying the Clifford algebra (26) and so anticommuting for dif-
ferent 5. Note that for 7;.' commuting for different j (as they appear in
the conventional problem of N Dirac particles) the Lorentz-group intrinsic
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generators have the identical form (33’). Thus, the Lorentz group, though
it turns out to be realizable intrinsically in two different ways, does not
distinguish by itself between these ways. In contrast, the Poincaré group

does (for N > 1 ). In fact, the intrinsic generators for translations, having
in the commuting case the form 1 E;V___l 75 (1 = 73) with 42 = i,
get for N > 1 no counterparts in the anticommuting case, because then
their formal counterparts, instead of commuting, anticommute for different
p=0,1,2,3.

Due to our crucial assumption, the form ¥ I'?I'f'4 is no relativistic
covariant for N > 1, though Eq. (4) with I'* = I'f' implies that always

Oty =0 (34)

(in fact, it is a component of a more complicated relativistic covariant, name-
ly, the component g3 = ... = un = 0 of the tensor (—1)N(N-1)/24+ 09
. T}L{Ary? ... iV ¢). In contrast, the form ¢+ IVIY ... I} I{y is a
relativistic vector for any N, but Eq. (4) with I'* = I'{" shows that

T riry .. .r{riy =0 (35)

only for N odd. Thus, the interplay of the theory of relativity and the
probability interpretation of quantum mechanics requires that (i) only the
odd terms

N = 1,3,5,... (36)

should be present in the sequence of the Dirac-type equation (4) (if these
are considered as wave equations), and (i) the probability current should
have the form

i* = an ¢TI . TRT{ Y. (37)

Here, np is a phase factor making the matrix of hidden internal parity
Phidden = 77NI’20FIQ/ (38)

Hermitian. Since due to Eq. (35) Ppjdden is a constant of motion, one can
consistently impose on the wave function ¢ in the wave equation (4) the
constraint

Phigden ¥ = ¥ (39)

in order to guarantee the probability density to be positive :

70 = gnot Y ... Iy > 0. (40)
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5. Hidden exclusion principle

The form of the Dirac-type equation (4) with I'* = I'}’ distinguishes the
visible bispinor index a; from N — 1 hidden bispinor indices az,...,an. As
to the latter indices, appearing in this scheme on the equal footing, we will
make our second cructial assumption that they represent physically nondis-
tinguishable degrees of freedom obeying the Fermi statistics along with the
Pauli exclusion principle. Then, the wave functions ¢ = (1/)010,2,"(, N) in
the sequence (36) of the Dirac-type wave equations (4) or (31) should be
completely antisymmetric with respect to the hidden indices as...apn .
This implies that the sequence (36) must terminate at N = 5,

N =1,3,5, (41)

leaving us with three and only three terms (41) in the sequence of the Dirac-
type wave equations (4) or (31).
In the case of N = 5 our exclusion principle requires that

5
¢a1a2a3a4a5 = 5a2a3a4a5¢g1) . (42)

Thus, in this case there are 4! = 24 equivalent nonzero components (carrying

the index a;), all equal (up to the sign) to one Dirac function ¢¢(,51) . This
reduces the Dirac-type equation (4) or (31) to the usual Dirac equation.
Here, of course, spin is 1/2 and it is provided by the visible spin, while four
hidden spins sum up to zero.

The case of N = 3 is more complicated since then one should consider
five candidates for relativistic covariants, viz.

Poy = (C—])azaa Yarazas Say = (C~175)a2a3 Vayazasr  (43)

ag, = (0-17“)0.,% Yayarasyr Vb = (0”1757")”03 Yayazas » (44)

thy = (CT'° 5 [7%,7") ayerg Yarazcss - (45)

Here, C denotes the usual charge conjugation matrix that in the chiral
representation (where v° = diag(1,1, -1, —1) ) may be written as

0 —1

C= =Cc™1. (46)

(=2 DI e o

i 0
t 0
0 0
Making use of Eq. (30), one can write the hidden internal parity (38) in the

form
Piiaaen = i35 =10 1° ®1°, (47)
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where in the chiral representation

0 010
o_[0 0 0 1
T=110 0 o0 (48)
0100

Then, the constraint (39) implies that

Yoy11 = ¥ay33;  Yoy22 = Yoyaas  Yoy12 = Va3, Yay21 = Yay4d3,

Yoy13 = Yoy31,  Voy2d4 = Yoya2, Yoy14 = Yoy32,  Poya1 = Yay23-
(49)

Thus, the constraint (39) and our exclusion principle (requiring that $¥a; ayas
= —%a,azay ) leads to the conclusion that from all components Yo,azaz only

Y112 = —Yay21 = Yoy34 = Py 43 = 1/)&31) (50)
and
Ya 14 = —Ya141 = Ya;32 = —YPa,23 (51)
may be nonzero. Then, after a simple calculation,
Pa1 = 0) 3&1 = —4i'¢'a112 ) (52)
_ _ ) —4itpa 14 forp=10
ab, =0, vgl_{o ay for u—1,2,3" (53)
thy =0. (54)

But, the theory of relativity applied to the vector v&, given in Eq. (53)
requires that vgl = 0 since v5, = 0 for ¢ = 1,2,3. Hence, Yay14 = 0.
In this way, we can see that all components ¥q,a,q, must vanish except
those in Eq. (50). So, in this case there are 4 equivalent nozero components
(carrying the index aj ), all equal (up to the sign) to the Dirac function

1/).(;3). This reduces the Dirac-type equation (4) or (31) to the usual Dirac
equation. Here, spin is evidently 1/2 and it is given by the visible spin, two
hidden spins being summed up to zero.

Concluding Sections 4 and 5, we can say that in each of the three allowed
cases N = 1,3,5 there exists one and only one Dirac particle (for any given
color and up/down weak flavor described by the standard model). So, it is
very natural to connect these three versions of the Dirac particle with the
three experimental families of leptons and quarks.

This happy existence of three and only three versions of the Dirac parti-
cle is a consequence of an interplay of the theory of relativity, the probability
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interpretation of quantum mechanics and the Pauli exclusion principle, all
extended to the particle’s hidden degrees of freedom. These appear neces-
sarily in the Dirac-type equation (4) for any N > 1, when the representation
(25) implied by the Clifford algebra (26) is inserted.

Since for the wave functions with N = 1,3,5 the number of equiv-
alent nonzero components (carrying the visible bispinor index) is 1,4, 24,
respectively, the following overall wave function comprising three sectors
N =1,3,5 (or three fundamental fermion families) may be constructed:

(1) ¢(1)
1
o= | i | =5 @ | (55)
V29 \/—‘11,(5) 1/,(5)

Here, the sector-weighting (or fmrﬁly-weighting) matrix

= — 0 (56)
V29 0 V24
is introduced.

6. A form of mass matrix and masses for charged leptons

The three-family wave function (55) leads to the following form of the
mass matrix for any triple of fundamental fermions listed in one line in Eqs.
(1) and (2):

M=php. (57)
Here, h denotes a Higgs coupling strength matrix, while j is given as in
Eq. (56). So, a priori, there are four different matrices (57) correspond-
ing to triples of neutrinos, charged leptons, up quarks and down quarks,
respectively.

At present, among all 12 fundamental-fermion masses, the masses m,,
m,, m, of charged leptons e, u~, 77 are the best known. On the base of
some numerical experience, we can propose the following phenomenological
ansatz (in two options) for the matrix h in the case of charged leptons :

(A 0 0
h=| 0 m® o (58)
0 o0 a®

with

2
RV = M, (N2 - 1—1-3\%,-2?—) , (59)
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where N = 1,3,5 . Here, My > 0 and ¢ denote two real constants in-
dependent of N. Then, the eigenvalues of the mass matrix (57) take the
form

M,
Fme = MW = 5262,
4 M,
=M® = o5 (80F %),
24 M,
= M = A4 Mo
m,=M %29 (624 F £7) (60)

since the Dirac masses are defined as nonnegative (a priori, the second op-
tion seems to be more attractive). In this way, from the system of three
equations (60) we obtain in terms of experimental m, and m, the predic-
tions (in two options) for the mass m.,

1783.47 MeV

M = 125 25 (351my £136m.) = { 1776.80 MeV ’ (61)
and for the parameters M, and €2,
86.3629 MeV

4m 62
0= 320 o (9t 4me) = {85.9924 MeV (62)

and 320 0.1

2 320m. _ [0.171590

© T 9m, tam, {0.172329 ' (63)

Let us note an excellent agreement between the predictions (61) for m,
and its experimental value

m, = 1784.112-7 MeV (64)
cited for several years by Particle Data Group [10] or
my = (1776.9+ 0.4 £ 0.3)MeV, m, = (1776.3+ 2.4+ 1.4)MeV  (65)

reported recently by Beijing Electron-Positron Collider Group [11] and AR-
GUS Collaboration [12], respectively.

This supports the phenomenological ansatz (59) operating with the
number N of “algebraic partons” involved in the families N = 1,3,5 and
described by the Dirac bispinor indices as these appear in the Clifford alge-
bras (26) or, more conveniently, (29). The algebraic partons are agents of
the idea of algebraic compositness. In the picture which emerges from our
argument, they are building blocks of fundamental fermions in such a way
that any fundamental fermion with N = 1, 3,5 is composed of one “visible”
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algebraic parton of spin 1/2 and N —1 = 0, 2,4 “hidden” algebraic partons
of spins 1/2, the latter forming relativistic scalars.

Since the hidden bispinor indices correspond to the “relative” Jacobi-
type combinations (28) of v¥, they represent “relative” algebraic degrees of
freedom “inside” fundamental fermions. So, the hidden algebraic partons
of spins 1/2 are excitations of these relative algebraic degrees of freedom.
Similarly, the visible algebraic parton of spin 1/2 is related to the “centre-of-
mass” algebraic degree of freedom represented by the visible bispinor index
corresponding to the “centre-of-mass” Jacobi-type combination (25) of 7.
Of course, the centre-of-mass algebraic degree of freedom coexists with the
particle’s spatial degrees of freedom.
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