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1. INTRODUCTION

Giant resonances are the nuclear zero sounds. Once excited it takes a few periods
before the oscillation is relaxed. Empirical evidence from excited nuclei testifies to the fact
that the properties of giant dipole resonance (GDR) are remarkably stable with tempera-
ture [1]. In fact, the centroid seems not to chiange with excitation energy, as for a quantity
determined by the mean-field properties, and the same is true for the strength in terms
of the classical sum rule fixed by the number of nucleons in the nucleus. Conspicuous
changes are observed in the total width I" as a function of temperature, but a saturation
at a value of about 10 MeV for excitation energies E*/A> 1 MeV and the mass value A~
100 has been experimentaly established {2]. The strong increase from the zero temperature
value ~ 5 MeV is understood as arising from deformation effects induced by the angular
momentum of the compound nucleus and from the connected thermal flucsuations {3]. The
saturation of the value of the total width seems to imply a mild temperature dependence
of the other contribution to I, that is of the spreading width ''. In what follows, we
will discuss this important feature of the nucleus as a finite many-body system. It will
be concluded that theory provides a simple explanation of the observations based on the
fact the progressive loss of definition of the Fermi surface as a function of temperature is
accompanied by a progressive loss in the definition of the nuclear surface. While the first
phenomenon makes collisions more prolific the second makes each of them less effective.

2. A THEORETICAL FRAMEWORK

A variety of studies have identified the coupling to the nuclear surface as the main
damping mechanism contributing to I'! {4]. Ultimately, this coupling can be traced back to
collisions among the nucleons. However, central questions remain unanswered concerning
the nature of these processes, the most pressing being its temperature dependence, and we
shall address this question in a systematic way, starting from the mean-field physics.
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The Hartree-Fock approximation provides a natural description of the single-particle
motion in atomic nuclei. Its time-dependent extension (TDHF) constitutes a powerful tool
to study collective motion in many-body systems. Also for going beyond the collisionless
regime.

A general formulation of mean-field theories supplemented by collisions has been given
in refs. [5,6], resulting in a set of coupled equations for the one-body density matrix
p(1,1';t) and the two-body correlation function c;(12,1'2';t). Because of technical limita-
tions these equations can, at present, only be solved accurately for small-amplitude nuclear
motion. In this case one can expand both p and c; in terms of single-particle states ¥,
fulfilling the TDHF equations

(ih% - h(1))¢a(1,t) = 0. (1)
according to
ALY ) =D nagtp(l, t)a(l,1) (2)
aB
and
a(L21,2it) = Y Capars (ba(l,e(2 005 (1, 0052, (3)
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The quantity k(i) = t(i) + U(i) is the one-body hamiltonian, i.e. the sum of a kinetic
energy term and the mean field

U(i;t) = Try=z [v(i2) Ai2p(22'; t)). (4)

The quantity p(12) is the two-body interaction acting among nucleons while 4;5 = 1 - P,,,
P;; denotes the permutation operator between nucleons.
The equations of motion for the occupation matrix n,g(t) and Coparp:(t) are

. 0
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represents the lowest order contribution of collisions in the particle-particle channel (Born
approximation), while the term P represents the higher order particle-particle (and hole-
hole) contributions
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The last term
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is the contribution to the equations of motion of collisions in the particle-hole channel,
which we loosely address as density fluctuations. The set of coupled equations (5) and
{(6) provides a non-perturbative description of nuclear motion, known as Time-Dependent-
Density-Matrix (TDDM) theory, which takes into account collisions among nucleons to all
orders in the interaction, and therefore effectively takes into account the coupling to the
surface collective vibrations. In more general terms, we are considering a truncation of the
BBGKY hierarchy [7} on the two-body level. Examples of the contributing processes are
illustrated by the diagrams of Fig. 1. We note that the theory fulfills the conservation of
particle number, momentum and energy.

The interaction v appearing in the mean-field potential of eq. (4) may be approximated
by a Skyrme-type force and we use v(12)=V(é(r; —r;) for the residual interaction appear-
ing in eq. (7-9). In keeping with the fact that the matrix elements of v(1,2) at full density
are very small due to Pauli blocking - therefore making the nuclear surface the main source
of damping of giant resonances - the strength of the interaction Vi has been determined
from the strength of the used Skyrme force calculated at density p = po/2 ~ 0.08fm 3. In
modifying the strength of V4 by 30 % we did not find any significant change in the results
presented below.

The coupled equations (5) and (6) have been solved for the case of the isovector
dipole and the isoscalar quadrupole vibrations in the nuclei !*0 and *°Ca as a function
of temperature {8]. The correlated ground state is boosted at a certain time (typically
after 0.2-107%!s) by applying appropriate phase factors proportional to a strength factor
a. In this way the system acquires a well defined collective energy proportional to a?. In
the case of isoscalar quadrupole motion we have used the BKN [9] force in the calculation
of the self-consistent field, eq. (4), and V(=-300 MeV for the strength of the interaction
v responsible for collisions. In the description of the isovector dipole motion the SK2 (9]
interaction was adopted in eq. {4) and V=-420 MeV. The set of single-particle levels used
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Fig. 1. Examples of processes contributing to the damping of giant resonances (wavy
lines) in TDDM.
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in the calculations includes the 1s, 1p, 25 and 1d in the case of 1°0 and 1s, 1p, 25, 1d, 2p
and 1f in the case of *°Ca.

The evolution of the system, both in TDHF and in TDDM, is followed in time by
calculating the mean-square radius, the quadrupole moment Q3(t) and the dipole moment
@1(2) of the system. The total energy and number of particles are found to be conserved
within 7 % and 1 % respectively. The reason for this is to be found in the fact that the
single-particle basis used in the calculation has been truncated. In fact, decreasing the
energy given to the system in the boosting process, the conservation of energy and particle
number are better satisfied. On the other hand, as long as the response of the system is
linear, the properties extracted from it concerning giant resonances, are independent on
the value of the boosting parameter [8]. To carry out calculations at finite temperature, we
replace the initial occupation numbers by appropriate Fermi distributions and propagate
the system in time to build up its correlations before applying the collective boost of
interest. The temperature is no dynamical constraint but merely enters as a parameter for
the initial conditions in the equations of motion which are solved at constant energy.

In Fig. 2a are shown the time-dependent evolution of the dipole moment of 4°Ca
calculated at T=0 in TDHF and TDDM approximations, while in 2b the result for the
two temperatures (T=0 and T=4 MeV) are directly compared in the full TDDM theory.
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Fig. 2a. The dipole moment @,(¢) in *°Ca at T=0 in the limits TDHF (solid line) and
TDDM (dashed line). Fig. 2b. The dipole moment Q,(t) in *°Ca in the limit TDDM at
temperature T=0 (solid line) and T=4 MeV (dashed line).
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Two cospicuous features emerge from simple inspection of these results. First, the
vibration displays a single frequency mode which is strongly damped already in TDHF,
the inclusion of fluctuations and collisions essentially not affecting this behaviour. Conse-
quently the relaxation of the giant dipole resonance of *°Ca seems to be determined both
by the decay into single-particle motion (like Landau damping in infinite systems) and by
the coupling to the continuum, the so-called escape width I'’. Second, the properties of
the resonance are uneffected by temperature. This is a natural consequence of the fact
that damping is in this case controlled by mean-field effects.

Fitting the main frequency with a damped oscillator whose coordinate is parametrized
according to

Qtest(t) = Agsin(w - 1) - e TR (10)

one obtains a width I' = 2y which in all cases is about 4 MeV to be compared with
the experimental value of 5 MeV. Similar results are obtained in the case of }*O where
the calculated width is I' = 5 MeV essentially independent of the temperature or of the
presence of collisions (cf. Table 1).

T=0 MeV T=4 MeV
TDHF p-p p-h TDDM TDHF p-p p-h TDDM
2+ 4°Ca  0.80 1.86 5.60 5.50 0.52 1.97 2.02 2.89
17 *°Ca  3.56 / / 4.12 4.37 / / 4.33
1~ %0  6.00 / / 5.53 5.00 / / 4.90

Table 1. Theoretical values for the width of quadrupole and dipole modes as extracted
(as in eq. 10) from the decay constant relative to the first three maxima. The columns
p-p and p-h contain the results obtained respectively by putting H = 0 and P = 0 in eq.
{6) as discussed in the text. The corresponding columns in the case of the dipole motion
are left free as the corresponding damping arizes manly from mean field effects.

In Fig. 3 the time dependent evolutions of the quadrupole moment associated with
40Ca calculated in mean field and including fluctuations and collisions are shown for two
temperatures {T=0 and T=4 MeV) for TDHF (a), H =0 (b), P = 0 (c) and TDDM. A
simple inspection allows to extract the main features of the results. The giant quadrupole
resonance (GQR) corresponds in TDHF (Fig. 3a) to a single mode which is only slightly
damped and whose properties are independent on temperature. The presence of collisions
and fluctuations changes this picture in a qualitative way by producing a strongly damped
vibration which now displays a complicated beating pattern, pointing to the existence of a
variety of normal modes. These effects are mainly controlled by fluctuations (cf. Fig 3(c})
while collisions in the particle-particle and hole-hole channels (Fig. 3(b)) play a minor role.
In any case, the role of these channels cannot be neglected in a quantitative description of
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Fig. 3. The quadrupole moment Q;(¢) in *°Ca in the limits TDHF (a); TDHF plus
residual "two-body collisions”, H = 0, (b); TDHF plus fluctuations, P = 0, (c); and
TDDM (d) at temperatures T = 0 (solid lines) and T = 4 MeV (dashed lines).
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the damping processes, because of the interference with the particle-hole channel (cf. Fig
3(d)).

Making use of a fit as in eq. (10) for the main peak, representative damping widths
for the GQR in *°Ca were obtained. The results are displayed in Table 1. We have also
studied the collective dipole and quadrupole response of 0 and 32S obtaining results
which are consistent with those of 4°Ca.

We conclude that the giant dipole and quadrupole resonances of light nuclei provide
textbook examples of the workings of the main relaxation mechanisms found in many-
body systems, namely: escaping of particles in the continuum, Landau damping and the
collisional damping arizing from density fluctuations and particle collisions. The first two
damping mechanism are found not to vary with temperature, as expected for mean-field
phenomena. Remarkably, the last mechanism is also found to be essentially independent
on temperature. This is be¢ause temperature leads to a simultaneous and progressive
smearing of the Fermi surface (thus enhancing the role of collisions by neutralizing the
limitations imposed by the Pauli principle) as weil as of the nuclear surface (thus making
the role of collisions, which essentially all take place at low density, less effective). The
empirically found almost total cancellation between these two effects does not appear
necessary, and some temperature dependence may occasionally be found for other nuclei
or collective modes. Only the first effect is included in the approach of ref. [10], and a
strong temperature dependence of I' is obtained.

This calculation is fully microscopic, without an a-priori choice of the doorway states
for the damping mechanism (4], but the resulting physics agrees with what was obtained
in heavy nuclei in the surface coupling model of ref. [11]. This is intimately connected
with the finite size of the atomic nucleus and the special role that the nuclear surface plays
in the relaxation processes.

We may now consider the role in the damping of the compound nucleus many particle-
many hole states. Recently it has been pointed out that, in the regime of chaotic intrinsic
dynamics, this contribution to I'! is independent of temperature and equal to few times
a typical matrix element of the residual eflective interaction, coupling mean field states
{12]. The key assumption is to consider a "democratic” wave function for the compound
nucleus states |a > in terms of unperturbed mean-field states |k > belonging to a certain
exciton class (number of p — h excitations), that is

la >=Y"Cplk > (11)
*

All the mixing amplitudes C{* are expected to be of the order of magnitude N ~!/? where
N is the dimension of the exciton space. The actual value of N is not important for
later discussion, only that N >> 1. This is an alternative formulation of an assumption of
chaotic dynamics when the components of a complicated state cover uniformly the available
domain of the Hilbert space and the memory of the original p — h structure of individual
states is smeared away. Then, typical matrix elements of the residual interaction between
the chaotic states |a > are smaller than the matrix elements between the simple states
[k > by a random walk factor N~1/2, As a consequence, applying the Fermi golden rule
a contribution to I'* independent of the level density (of temperature) and equal to few
times a typical matrix element of the residual effective is found.
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3. SUMMARY

Summing up, the results presented above answer a longstanding problem found in

the study of collective motion in hot nuclei, answer which can be summarized simply as
follows: the damping width I'! of giant resonances associated with quantal small-amplitude
fluctuations is independent of the temperature of the system. As explained in [1], this result
may be also related to the experimental features of the multiplicity and angular distribution
of the GDR gamma rays as a function of the excitation energy of the compound nucleus.
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