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1. INTRODUCTION

1 want to tell you about an improved Thomas-Fermi method for calculating shell-
averaged nuclear properties, such as density distributions, binding energies, etc. (Ref. 1).
A shell-averaged statistical theory is useful as the macroscopic component of
microscopic-macroscopic theories of nuclei, such as the Strutinsky method, as well as in
theories of nuclear matter in the bulk, relevant in astrophysical applications.

In nuclear physics, as well as in atomic and molecular problems, the following
question often has to be answered: you are given a potential well, say a deformed
Woods-Saxon potential, into which you put N quantized fermions into the lowest N
eigenstates, up to a “Fermi energy” T,. You square the wave functions of the particles
and add them up to get the total density p:

N 2
p(F) =Y |vil
i

Schematically the result looks something like Fig. 1.

QUESTION: Is there some simple way of estimating p(r)without going through the
misery of numerically solving N partial differential Schrdinger equations for the N
particles?

2. THE STANDARD THOMAS-FERMI METHOD

The standard Thomas-Fermi method (e.g., Ref. 2) developed in the twenties for
atomic problems and used extensively also in nuclear physics, gives an astonishingly
simple answer:

(7)o depth of potential with 312
Prr respect to Fermi energy ’

ie.,
3/2
._p_z(ILUJ ::(1—u)3/2
Po T,

where u = U/T,, and p, is the central density. The quality of this approximation is
illustrated in Fig. 2, which compares the exact (circles) and Thomas-Fermi (solid curve)
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Fig. 1. A schematic illustration of wave functions in a potential well given by U(F) or
V(7), and of the resulting total density p(7).
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Fig. 2. The relative density p/p, in a semi-infinite Woods-Saxon potential u = U/ T,
where U(x) = 56 MeV(1 + ¢-/0.6fm)~!,
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densities in the surface region of a very large (semi-infinite) Woods-Saxon potential of
depth 56 MeV filled with nucleons up to T, = 37.76 MeV (Ref. 3).
NOTE:
a) The Thomas-Fermi density has no wiggles (no Friedel oscillations).
More important:

b) The Thomas-Fermi surface profile is not very good, in particular prr cuts off to
zero at the classical turning point of the top particle, where T, — U turns negative and
(T, — U )32 becomes imaginary.

Thus: NO QUANTAL HALOQ in standard Thomas-Fermi. This is a fairly serious
shortcoming since, in typlcal nuclei, of the order of 10% of the nuclear matter sits in the

classically forbidden region. So: Thomas-Fermi js a fair approximation but needs
improvement.

The topic of my talk is an improved Thomas-Fermi method which does give a quantal
halo and a pretty accurate account of the surface profile (but still no wiggles).

3. THE MODIFIED THOMAS-FERMI METHOD

I give you at once the modified Thomas-Fermi equation for the density, and in the
remainder of the time will describe as much of the physics and derivation as I can.

(1- u)3/2 for ;}2— 20.87

Modified T.F. £ = °
Po  |Geulc-C, for £-<0.87
Po

Here the constants C;, C5, ¢ depend on the value of the separation energy S. (More
precisely, on the dimensionless parameter of the problem, o= $/T,.) This dependence is
given by simple algebraic equations and is presented in Table I. The other curve in Fig. 2
shows how good the improved surface profile is.

4. THE PHYSICS OF THE MODIFIED METHOD

To explain the physics of the new scheme I have to remind you first of the physics of
the standard Thomas-Fermi method. The key assumption of this method is that the
kinetic energy of the quantized particles in the potential well can be written as an integral
over all space of a kinetic energy density t, and that this ¢ is proportional to the five-thirds
power of the density p:

¢ oc p5/3

As is readily verified, this is the relation between ¢ and p for a very large, constant
potential well, i.e., for a very large box with a flat bottom filled with particles up to a
Fermi momentum P, say.

PRQOF: In momentum space the occupied quantum states fill a Fermi sphere of radius
P,. For a box of given size the density p is proportional to the total number of particles,
which is proportional to the volume of the Fermi sphere:
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p o< Py

The energy per particles is proportional to P,2 (in fact equal to (3/5)(P,2/2m) where m is
the nucleon mass). Hence
t = energy density = (energy per particle o< P 2)(density o P,3) o< P> .

tmpSlB , QED

Let me write this as ¢ = (3/5) Cp5/3, where C is a known constant, equal to
(3h3/167)23/2m for standard nuclear matter.

In order to predict the T.F. density in a given potential V(r) one now makes the total
energy E stationary with respect to particle-preserving density variations 8p:

dr
5E = jd3x(v + -d—p-)8p =0 .

-

change in change in
potential energy Kkinetic energy

This leads to the Euler-Lagrange equation

V + Cp2/3 = constant Lagrange multiplier
= — separation energy §

Referring to Fig. 1 we find

3/2 3712
G (22 v o

Po 0—S, T,

So, the Thomas Fermi method is based on pretending that at each point the potential (and
" density) are flat, which leads to

£ oc pS/3
In the past 60 years countless papers have appeared on how to improve T.F. by going

away from the flatness assumption, e.g., adding corrections to ¢, considered as an
expansion in the derivatives of p:

= 3cpss 4 (Lgrad p) P)
5 p

" Weizsicker correction”

This leads to so-called “Extended Thomas-Fermi Methods.” These types of theories have
been extremely successful, giving excellent systematic approximations to shell-averaged
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nuclear properties. Nevertheless, they have one practical drawback: one still needs to
solve a (partial) differential equation to find p(7) (because of the grad p in 1(p)).

The modification I will describe takes a different tack: without introducing any
gradients, it changes the function ¢ e« p5/3 to something else, on physical grounds. The
motivation is very simple: _ the function p5/3 is always positive, and that is obvious
nonsense in the low-density tail of a nuclear surface, where one is in the classically
forbidden region. A particle in the classically forbidden reglon has a negative kinetic
energy, so if one wants to capture the physics of that region one should make t(p)
negative for small p. Moreover, for vety low p it is a trivial matter to write down the
correct expression for #(p). This is because the extreme density tail is dominated by the
particles with the longest quantal tails, i.e., the particles at the top of the Fermi
distribution, whose kinetic energy in the forbidden region is ~S. It follows that the kinetic
energy density there is —-Sp. Elementary! Thus

for p—>0 .

just by common sense. So we have this qualitative picture of #(p): p = (3/5)Cp5/3 for
P = Po, and t(p) — —Sp for p— 0. The question is then how to interpolate?

S. HOW TO INTERPOLATE?
I asked myself the following question: what function #(p) would I need to insert in

d
OE = jd3x(v + Ld(;i)ap =0

if I wanted to reproduce the exact (Durand et al.) density profile in Fig. 2? The function
p373 gives the poor T.F. profile, but if I change p5/3 to something else, can I get the exact
profile? The answer is yes, and it turns out that there is an elegant graphical construction
which directly generates this #(p) from the given pex,c(x), at least apart from the Friedel
wiggles, say for p/ py < 0.87 (Ref. 1). The result is shown in Fig. 3. The upper curve is
the T.F. kinetic energy density, the lower is the modified one that reproduces peyac for
P/ po <0.87 and joins on smoothly to ryr at p/ pp = 0.87. There is a cute log-type
parameterization of this curve:

- l x+C (¢}
=Tt=y+cd (G +7)]

PoTo

designed so that when #(p) is inserted in the variational equation 6E = 0, it leads to the
following simple equation for the density

L - qgevic g, .

Po
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Fig. 3. The relative kinetic energy density 7 (= 1/p,T)) is shown as a function of the
relative density (= p/po). The Thomas-Fermi curve is given by (3/5)x3/3. The
slightly modified energy density given by the lower curve (tending to -0y near
the origin), when inserted in the Euler-Lagrange equation, leads to a close
representation of the exact density profile in a typical surface potential.
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The three parameters Cj, Cy, ¢ are determined uniquely by the three requirements that
1(p) should be equal to trs(p) in value and slope at p/p, =x; = 0.87, and that #(p) should
approach zero with slope S (i.e.,t = -Sp for p = 0).

These three requirements can be shown to lead to the following algorithm relating Cy,
C, and ¢ to o (= S/T,): pick a value of C, and define B as y;/C,, where 13 = 0.87. Then

213 f11- -m—(lT;'—B—)] o follows as cIn(1+B) - 7;%3 and C;

cis givenby c¢=(2/5);
follows as Cqe (+6¥  These equations have been used to generate Table I for Cq, Cs,
and c in their dependence on 0.

Since the kinetic energy density is also given by a simple function of p, the energy of
the system is also readily calculable.

This is only a little more laborious than the primitive T.F. scheme (no differential
equations!), but gives a much better description of the surface profile, in particular it
takes account of the classically forbidden region, the quantal halo.

6. AN APPLICATION

By glancing at Fig. 2 you will see that the principal effect of the modified method is
to shift matter from the middle part of the surface profile, where the kinetic energy is
positive, to the tail, where it is negative. This has a considerable effect on the kinetic
energy contribution to the calculated surface energy, and even more on the kinetic energy
part of the curvature correction to the surface energy. Thus if we were to write the total
energy as

E=alA+a2A2/3 +a3A1/3+.‘.
=(aIPE+01KE)A+(0{E+¢§E)A2/3+(G§E+0§E)A“3+'”

with each coefficient split into contributions from the potential and kinetic energies, then
from the example of Fig. 2 one can deduce (Ref. 1) that

afE = %(37. 76) = 22.66 MeV
E =_1815 MeV (OLD) — -26.89 MeV (NEW), i.e., Aay =-8.74 MeV

a,fE =+45.9 MeV (OLD) — -11.0 MeV (NEW), i.e., 4a3;=-16.9 MeV .

This tendency of the quantal halo to lower a3 drastically is a candidate for solving the so-
called “curvature energy puzzle,” i.e., the puzzle that many theoretical estimates
(including standard T.F.) tend to predict a3 = 10 MeV, whereas empirical evidence
suggests a3 =~ 0 MeV (Ref. 4).

To see whether this is indeed the answer we need to calculate a{% in the old and
new versions. Bill Myers and I are currently working on this problem.

236



ACKNOWLEDGMENTS

I would like to thank Bill Myers for preparing Table I and the organizers of the
Zakopane School for a memorable scientific and social experience.

This work was supported by the Director, Office of Energy Research, Division of
Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098.

REFERENCES

W.J. Swiatecki, Nuclear Physics A542 (1992) 195.
P. Ring and P. Schuck, The nuclear many-body problem (Springer, New York, 1980).

M. Durand, P. Schuck and X. Viiias, On the curvature energy of finite Fermi systems,
preprint IN2P3-CNRS5, Grenoble, 1991.

W. Stocker, J. Bartel, J.R. Nix and.A.J. Sierk, Nucl. Phys. A489 (1988) 252.

> W=

237



