Vol. 24(1993) ACTA PHYSICA POLONICA B No 10-11

PROBLEMS OF PARTICLE INTERFEROMETRY*

R.LEDNICKY

Institute of Physics, Czech Academy of Sciences
Na Slovance 2, 18040 Prague 8, Czech Republic

(Received June 17, 1993)

The problems of particle interferometry arising from the finite size of
the particle sources, various types of the sources, resonances, final state
interactions, rescattering and absorption effects are discussed.
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1. Introduction

The particle interferometry is understood as the measurement of the
space-time characteristics of the production process with the help of nar-
row particle correlations. Thus in astronomy the two-photon interferometry
(HBT effect [1]) is used to measure angular radii of stars. In this case the
interference correlations appear solely due to the effect of quantum statis-
tics (QS), i.e. due to the identity of photons. The interferometry in parti-
cle physics is more complicated due to the effect of final state interactions
(FSI). On the other hand, this effect allows one to measure the space-time
characteristics of the production process even with the help of nonidentical
particles. Both the effects of QS and FSI have been widely used to mea-
sure space-time dimensions of the production region of various particles and
nuclear fragments in multiparticle processes (see, e.g., reviews [2-4]).

It should be noted that there is a principal difference between interfer-
ometry in astronomy and in particle physics. In astronomy the dependence
of the coincidence rate on the distance between the photon detectors is mea-
sured (space-time variant) while in particle physics the momentum-energy
variant is realized. The interference QS effect in particle physics was first ob-
served in pp annihilations as an enhanced production of the pairs of identical
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charged pions with small opening angles (GGLP effect [5]). The interpre-
tation problems prevented however this method to be widely used as a tool
for particle interferometry. The situation changed in early seventieth when
Kopylov and Podgoretsky [2,6,7] observed the analogy between interferom-
etry in astronomy and particle physics, suggested to study the interference
effect in terms of the correlation function (similar to astronomy, where the
coincidence rate is normalized with the help of single detector counts to get
rid of the unknown gain of the apparatus) and presented a simple space-
time parametrization of the correlation function. The K-P method is now
commonly used in particle interferometry. The simplicity of this approach
is however partly lost due to the delicate problems with the reference dis-
tribution required to construct the correlation function, especially in the
processes characterized by relatively small space-time parameters (e.g., in
ete™ annihilations at LEP [8-10]).

Below we consider some other problems of particle interferometry re-
lated to the finite size of the particle sources, various types of the sources,
resonances, FSI, rescattering and absorption effects.

2. Finite-size one-particle sources

In the original K-P model the noninteracting identical particles were as-
sumed to be emitted independently by heavy one-particle point-like sources
distributed in some space-time region. For the correlation function of two
identical pions, defined as the ratio of the differential production cross sec-
tion to the one which would be observed in the case of no interference effects,
this model yields the well-known result [2]:

R(p1,p2) =1+ / W(z 4,2zB) cos(qz) d‘zA d"zB =1+ (cos(qz)) . (1)

Here ¢ = {90,3} = p1 —p2 and 2z = {t,Z7} = 24 — zg are the differences
of the pion 4-momenta and the 4-coordinates of the emission points and
W(z4,2B) = w(z4)w(zp) is the normalized distribution of these points.
Note that in the case of identical particles with nonzero spin the sign of the
interference term is positive (negative) for even (odd) total spin S of the
pair.

The characteristic feature of the correlation function (1) is the presence
of the interference maximum at small |g| changing to a horizontal plateau
at sufficiently large |g|. E.g., assuming that

g 4
w(zy;p) x exp 303 22 (2)
0
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effectively describes the space and time limitation of the production process,
we get R(p1,pz) = 1+ exp(—r3§? — 1342). It is quite possible that the
particles are emitted by two or more types of the sources characterized
by different space-time parameters [11]; a special case is the admixture of
multiparticle sources [12] (emitting particles in one and the same quantum
state and thus not interfering with each other; similar effect results from
the so called “coherent states” [13]). In the presence of very “wide” or very
“narrow” sources, the parametrization of the correlation function with one
set of the space-time parameters would lead to an effective suppression of
the interference effect. This can be taken into account by an additional
parameter A (sometimes called “degree of incoherence”) multiplying the
interference term.

If three or more identical pions are produced, the symmetrization over
all pion 4-momenta leads to a large number of the interference terms [2, 12,
14, 15]. E.g., the correlation function of three identical pions emitted by
the sources of the same type contains four interference terms, the three
of them reducing to the usual pair correlations, while the fourth one is of
specific three-particle origin (it is substantial only if all pions have nearby
momenta). It is easy to see that at sufficiently high energies, when the
typical distance between pions in momentum space is much larger than
the width of the interference region, the difference between the two-pion
correlation functions in the multi-pion and two-pion events is small and
vanishes with the increasing mean energy of relative motion of the pions.
In such situation the simple two-particle K-P approach is justified.

Consider now the effect of a finite size of the source. Assume that a
heavy source excited at a space-time point z : with lifetime 7 and velocity

f emits a pion with 4-momentum p = {w, 7'} at the point z 4 = {t4, '31(40) +
- - —4(0)
B(ta —tf:))} according to the emission amplitude T(sz); B) exp (—- i“—zr—t,f-)

x0(ta — tf:))u(p; B)e?=A, where v is the Lorentz factor of the source. The
function u(p; ﬁ) = a[p*(p; ﬁ)], taking into account a finite size of the source,
depends on the velocity ﬁ through the Lorentz transformation p — p* to the
source rest frame. Usually the characteristic space and time distances be-

tween the emission points are much larger than the characteristic coherence
length L ~ 1/(|P|) and time T ~ 1/(w) (see, however, [16]),

(IZ)> L, (o) >T. ()

It is easy to show that, in this case, the correlation function can be again
written in the form (1), but now the distribution of the emission points gen-
erally depends on the pion pair 4-momentum 2p = p; +p2: W(z4,zB;p) =



1806 R. LEDNICKY

w(z 4; p)w(zB; p),

= 2 ty—t) .
w(zaip) « [ B exp(~A A (e - t3)
o 12 .
X IT[tS{’),fA —- B(ta - tf.f));ﬂ] . dt% d*3. (4)

Though obtained in the model of heavy one-particle sources, the result (1),
with the momentum-dependent distribution of the emission points (gen-
erally not factorized), is of general validity provided that condition (3) is
fulfilled. E.g., this result can be proved with the help of general formalisms
of space-time density matrix [17] or Wigner functions [18].

It follows from Eq. (4) that the correlation between 4-coordinates of
the emission points and particle 4-momenta arises from the averaging of
the one-particle spectrum over the source velocities. Thus in the case of
substantial relative motion of the sources and limited emission momenta
(due to finite size of the sources or kinematical constraints) the interfering
particles with nearby velocities are mainly produced at nearby space-time
points (sources-resonances [6, 19-22], hydrodynamical expansion [18, 23-
26], colour string {27, 28]). In such a case the correlation function depends
mainly on the invariant variable Q% = —¢% = §% — ¢2 = §*2.

3. Sources-resonances

Since pions in high energy multiparticle processes are mainly produced
through decays of light resonances, the consideration of their role is espe-
cially important for pion interferometry. Consider the model “resonance 4
particle” in which one of the two identical pions with 4-momenta p; and p,
is produced together with a particle 3 (or a group of particles) in the reso-
nance decay R — 1+ 3 and the other pion and the resonance are emitted
at points zg and z 4 by finite size moving sources. On condition (3) and at
sufficiently large energy release in the decay: M — m; —m3 > I'/2 (M and
I’ are the resonance mass and width), we get the following expression for
the correlation function at small values of Q < 1/I* [6, 20-22] R(p1,p2) =
(1 + Re[e9% (1 — iy)]), where y = (ka)/(MT) = (lg) = ~I*G, k = p+ ps
(I* = pp/(mxI") is the resonance decay length in the c.m.s. of identical
pions, pp is the decay momentum; [* = 3.3 fm for p). This approximation
corresponds to the treatment of the resonance as a classical heavy source
with the proper lifetime 1/I", often used in Monte Carlo simulations (see,
e.g., [29-31]). Note that it overestimates the tail of the correlation function
(by ~ 15% in the case of “p + 7" model at z = 0 [22]). Using this approx-
imation and averaging over the spatial coordinates of the emission points
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in the c.m.s. of pion pair according to the gaussian with dispersion r? and
over the angle between the vectors I* and @, we get [20-22]

R(p1,p2) ~ 1+ ™9 arctan(I*Q)/(I"Q) - (5)

We see that the finite resonance decay length {* enlarges the radius of the
production region. Fortunately, it substantially influences the slope of the
correlation function only at small Q@ < v/3/I*. In fact, it is this circumstance
which allows one to determine the size of the “direct” particle production
region, despite the extremely small fraction of the pairs of “directly” pro-
duced pions. On the other hand, the fit of such correlation function by a

single gaussian: 1 + xe~"9” would overestimate the value of ro and lead
to the suppression factor A < 1. Thus, such a fit of the two-pion correlation
data obtained at ISR yields A = 0.45 £ 0.02 and ro = 0.88 &+ 0.04fm with
rather bad value of x2/NDF ~ 2 [22,32]. The description of this data is
substantially improved (x?/NDF ~ 1.3) in the case of a two-gaussian fit
(the smaller of the fitted radii can be identified with rq), or — when a su-
perposition of the formulae of the type (5) is used; in both cases the same
ro-value of 0.55 £ 0.08fm is obtained. The fraction of the “direct” pions is
estimated to be 0.17 4 0.09 {22].

Sometimes the effect of two slopes is effectively parametrized by an ex-
ponential: R(p3,p2) = 1 + Ae” "2 or by a more refined parametrization,
taking into account the contribution of a multiparticle source (“coherent
states”). Thus the recent UA1 data [33] on the correlations of two, three,
four and five identical charged pions have been successfully described with
approximately the same parameters  and ) in the model with an admix-
ture of the “coherent states”. This result was interpreted in Ref. [34] as
a strong evidence in favour of the existence of such states. One can get
convinced however that the simple model, introducing only an admixture
of very “narrow” or very “wide” sources, also well describes this data on
correlations of various order with approximately universal parameters r and
A. In fact, the two models substantially differ only in the small-Q region,
where the correlation functions are not measured with sufficient accuracy.
The UA1l data on multipion correlations thus confirms the selfconsistency
of the interferometry approach (found also in other studies) but not more.

4. FSI, rescattering and absorption

For pions the correlation function is mainly determined by the effect
of QS, while for nucleons and nuclear fragments the effect of FSI usually
dominates. First it was calculated numerically by Koonin {35] for the case
of two nonrelativistic protons, while analytical formulae, valid for arbitrary
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particles produced at sufficiently large distances compared with the range
of their strong interaction, were obtained in Ref. [36] (see also [4, 17, 37]).
Usually it is assumed that the energy of the relative motion of the multipar-
ticle system is sufficiently large so that the correlation of two particles with
a small relative velocity is influenced by their mutual FSI only. The FSI
correction AT to the nonsymmetrized production amplitude of two nonin-
teracting particles Tp uA(pl;54)113(})2;53)&“”“”’8 is determined
by the integral over the 4-momenta of the propagating virtual particles. If
the momentum dependence of the functions u 4 and u g is sufficiently smooth
so that they can be taken out of the integral, the role of FSI is reduced to the
substitution of the plane wave in the amplitude Ty by the Bethe-Salpeter
amplitude in the continuous spectrum [17, 37, 38]. At equal emission times
t* =t} —tp = 0 in the c.m.s. of the two particles this amplitude coincides
up to a phase factor with a stationary solution of the scattering problem
11)(_?_ (*) (E* = §/2) having at large |Z*| the asymptotics of superposi-
tion of the plane and diverging spherical waves. It can be shown that the
Bethe-Salpeter amplitude can be substituted by this solution on condition
[36] 7o <« myprg, where the parameters rq, 79 characterize the distribution
of the production points according to Eq. (2), p? = r2 + (v7o)?, v and 7 are
the pair velocity and Lorentz factor, m is the reduced mass. This condition
is usually satisfied for heavy particles. But even for pions, the use of the
equal-time approximation at ry = erg = 1fm and v = 1 overestimates the
FSI contribution by less than 20% [36]. If further the characteristic distance
between the particles in their c.m.s. is larger than the radius of their strong
interaction (~ 1/m, for pions), the solution ¥(*) can be substituted by its
asymptotics and the FSI contribution AR to the correlation function can
be calculated analytically. Neglecting the effect of the Coulomb interaction,
we get, e.g., for two pions at k* = 0 [36]:

1+
AR(p,p) = ﬁ;’p{

’ VTA 4 pet 4A,Ref(0
[ © ]‘ro—m e'f(k—*')']"' 2 ef() H
(6)

where A4; = %a.rc sinu, 42 = %—;lnii_:f, u = %\/73-{-1'3, f(k*) is the

nonsymmetrized s-wave scattering amplitude, = 1(0) for identical (non-
identical) pions. The derivative term represents the first order correction
to the spherical wave approximation. For 7+~ and #%x° systems a small
contribution from the transition #t7~ «— 7%7° should be added to AR
in Eq. (6). In the case of particles with nonzero spin, the contributions
corresponding to various values of the total spin should be summed up with
the respective weights. We see that AR decreases with increasing the par-
ticle velocities and the space-time dimensions of the production region. For

£(0)

To




Problems of Particle Interferometry 1809

pions |f| < r, so that AR decreases with the volume V ~ r® as V—1/3,
For nucleons, as usual |f| > r and AR ~ V~2/3, Eg, at v = 0.7c,
ro = c¢1p = 1.5fm, we have AR(Q = 0) = —0.07, 0.13, 0.16 and 15 for the
systems 7tx® x%%x% xtx— and nn, respectively. Thus the FSI effect on
the correlations of identical charged pions is practically negligible while it
dominates in nucleon correlations, unless the effective distance between the
nucleon production points in their c.m.s. is much larger than their s-wave
scattering lengths.

In the case when one of the interfering pions comes from the decay of a
resonance, the production amplitude T contains the resonance propagator
which cannot be taken out of the integral in AT, so that the effect of FSI no
more factorizes in the Bethe-Salpeter amplitude. The FSI correction AT
in the model “resonance + particle” was recently calculated in Ref. [17].
It was shown that in the case of a small space-time distance between the
resonance and particle production points, this correction reduces to the
well-known logarithmic singularity of the corresponding triangular diagram
(39, 40]. This singularity enhances the FSI effect so that, despite the large
effective parameter yvry = I* (3.3fm for p), AR at Q = 0 is rather large
(~ 0.3 for 77~ in the “p + #” model).

Concerning the role of the Coulomb interaction, it is important only in
the region of small momenta k* < 27/a. (~ 3(22) MeV/c for two charged
pions (two protons); the Bohr radius a. is ~ 388 (58)fm). If the character-
istic distance (|Z*|) between two particles in their c.m.s. is much smaller
than their Bohr radius, the effect of the Coulomb interaction practically
factorizes in the function A.(k*), representing the modulus squared of the
Coulomb wave function at Z* = 0, i.e. R(p1,p2) = Ac(k*)R(p1,p2), Where
R corresponds to to the correlation function of the “neutral” particles. At
k* — 0 the Coulomb repulsion (attraction) forces the correlation function
to 0 (o0o). It should be stressed that the factorization of the Coulomb effects
does not take place at (|Z*|) comparable or larger than the Bohr radius,
e.g., in the case when particles are produced in the decays of long lived
resonances (7,7') or in the evaporation processes. In such situation, the
correlation function tends to 1 and not to the Coulomb factor A.(k*) [37].

It can be shown that at {|Z*|) > a. and k* not too close to the classical
boundary (a.(|Z*|))~1/2, the conditions of the applicability of the classical
approach are fulfilled. Thus, e.g., for particles produced in the evapora-
tion processes, the classical trajectory calculations can be used to study the
three-body problem of the particle interaction in the Coulomb field of the
residual nucleus. Such calculations were recently performed and compared
with the two-body quantum ones and the experimental data on pp and pd
correlations in the reaction Ar + Ag at 44 MeV/A [41]. The influence of
the residual nucleus on the correlation function is found to be of minor im-
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portance despite the one-particle spectra are substantially affected. In this
context, it would be interesting to select particles in the region of low mo-
menta in which the three body effects should become more important. At
present the data from the precise experiment recently performed at GANIL
are analyzed to further clarify this problem. Sometimes the effect of the
Coulomb field of the residual nucleus is taken into account by the quasi-
classical shift of the particle momenta (see, e.g., {42]). Since this shift is
typically several tens of MeV /¢, it could strongly influence correlations of
particles with different mass or electric charge (pd,pn,...). Such a proce-
dure seems however incorrect since QS and FSI (coherently including the
effect of residual nucleus) affect the dependence of the production amplitude
on the final (measured) particle momenta.

The considered approach to FSI cannot be directly applied to the par-
ticles produced inside a dense system, e.g., in heavy ion collisions. In this
case, the particle interaction with a substantial momentum transfer can be
localized, so that we can consider it as the usual scattering, independent
of the previous production process. It can be shown that such scattering
just reduces to the redistribution of the space-time production points [43].
It means that the interference correlations of the interacting particles are
sensitive only to the final production points, distributed near the surface of
the dense system. The correlations can be also influenced by the absorption
effects [44]. Since the absorption probability is smaller for particles moving
towards the nearest boundary of the dense systems, the azimuthal corre-
lations can arise and, as a result, the low-Q correlations can be enhanced.
Both these effects have been recently observed [45, 46].

5. Conclusion

The particle interferometry represents an important tool allowing one to
study the space-time development of the particle production process (a sort
of the space-time “nuclear microscope”). It can be also used as a sensitive
measure distinguishing between various models providing the space-time
coordinates of the particle production points.

The space-time measurement is however done indirectly, with the help
of the correlation function in momentum space. Besides the problems of
the reference distribution and the model dependence of the space-time
parametrization of the correlation function (e.g., different types of the
sources, including resonances), the complications arise due to various effects
distorting the correlation function, such as final state interactions, rescat-
tering and absorption. At the same time, these distortions, being dependent
on the characteristic distance between the particle production points, also
yield the information about the space-time development of the production
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process. In particular, the nonidentical particle interferometry is possible
due to the effect of final state interactions.

It should be stressed that the particle interferometry is of practical
interest provided that the characteristic coherence length and time (related
to the space-time size of the particle sources) are much smaller than the
space and time dimensions of the particle production region, and that the
mean energy of the relative motion of the produced multiparticle system
is substantial to ensure the validity of the adiabatic approximation in the
treatment of the final state interactions (the factorization of the final state
interaction between the particles with a small relative velocity).
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