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The familiar analogy, appearing in the quantum theory, between the
time evolution of an isolated system and the thermal equilibrium of a
system with a thermostat, is taken at its face value. This leads us to
the phenomenological conjecture that, in reality, the so called isolated
system may remain in a “temporal equilibrium” with the physical space-
time which plays then the role of a “chronostat” defining time equal at
all space points (in a Minkowski frame of reference). Such a conjecture
suggests virtual deviations from this equilibrium and so seems to imply
an extension of the first law of thermodynamics as well as of the state
equation in the quantum theory.

PACS numbers: 05.90. +m, 11.10. Lm, 11.90. +t

1. Introduction

As is well known, a formal analogy appears in the quantum theory
between the time-evolution operator [1] for states of an isolated system,

N exp(-i‘};’-‘) , (1)

and the temperature-distribution operator [2] for states of a nonisolated
system remaining in the thermal equilibrium with a thermostat,

~ exp (—%) . 2)
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In both cases H is the energy operator of the system treated as isolated. This
analogy has suggested in the past the familiar formalism of the temperature
Green functions [3].

In the present note we would like to put forward a bold conjecture that
the above analogy is not only formal. Namely, we conjecture that, in reality,
any so called isolated system (as e.g. a hydrogen atom) is nonisolated: it
always interacts with the physical spacetime and often remains with it in
an equilibrium of a new kind which we will call temporal. We further con-
jecture that in such a temporal equilibrium the physical spacetime (treated
as surroundings of the system) behaves as a chronostat allowing the param-
eter called ttme to be introduced into the description of states of the system
(much like a thermostat allows the parameter called temperature to be used
for the system; however, an important difference is that temperature may
be experimentally fixed, while time is always running).

Thus, in the temporal equilibrium of the system with the physical space-
time (behaving as a chronostat), equal running time ¢ is ascribed to all space
points 7 (in a Minkowski frame of reference): then t = ¢y where 2 is time
running (e.g.) at the space point ¥ = 0. Such a conventional concept of
time has been used, for instance, in the relativistic equal-time many-body
problem of the quantum field theory [4].

2. Time field and thermodynamics

However, one may expect that the physical spacetime cannot always
behave as a chronostat defining time equal at all space points. In fact,
the temporal equilibrium with a chronostat is a concept corresponding to
a special physical situation (like the concept of thermal equilibrium with
a thermostat). Thus, in general, time equal at all space points (like equal
temperature) cannot be defined for the system: the perturbation of the tem-
poral equilibrium caused by the system may be nonnegligible in some cases.
One may imagine that these are the cases when large enough excitations
can occur in the system (as, perhaps, for an energetic cosmic ray colliding
with a heavy nucleus or for colliding beams in the planned Superconducting
Super Collider).

Nevertheless, if processes in the system run not too far from its temporal
equilibrium with the physical spacetime (behaving as a chronostat), one may
define (in place of time equal at all space points) a parameter-valued time
field t(7), such that (e.g.) at ¥ = 0: ¢(0) = to (much like the temperature
field T(+) with T(0) = To; however, an important difference is that ¢(7) is
always running at any 7). Then, in the framework of thermodynamics there
should appear a new Onsager-type flow ;p(i") satisfying, in the simple case
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of a homogeneous matter medium, the transport equation

, k - -
~ifp (7) = —or 7 grad [t71(7) - 5] (3)
analogous to the familiar Fourier law
i@ (7) = —oq kgrad [T(7) — To] (4)

for the heat flow jo() (here, the analogy (it/h < 1/kT) is exploited).
The constant or should be positive like 0g. Note that the flow ;p(i’),
as appearing in Eq. (3), depends (functionally) also on the running time
hypersurface o given by t = t (), so that, in general, 7(¥) = i (7, (7).

In Eq. (3) (as well as further in Eq. (7)) we consider the space points
at which ¢(+) # 0 . As to the time hypersurface t = t(+) one might expect
that it should be space-like within the considered system: | cgrad¢(F) |< 1.
Then, this property would be shared by our time hypersurface with another
running time hypersurface o which took over the role of conventional time
t = const in the Tomonaga-Schwinger state equation for quantum fields
[5]). Since, in contrast to our time hypersurface, the other o can be always
arbitrarily deformed (in particular, made flat: ¢ = const), not contradicting
the motion, the operation of Tomonaga-Schwinger derivative §/§ o(z) is
well-defined during the motion in that case.

In the framework of thermodynamics, the transport equation (3) sug-
gests that the first law of thermodynamics [2]

dU = §W + 6Q (5)
should be now extended to the new form
dU = 6W 4 6Q — 6T (6)

including an imaginary term —i§I'. Here, 6I' is the infinitesimal increase
of a new thermodynamic quantity I whose flow jr () has appeared in
Eq. (3). Such a quantity may be called the energy width transferred to the
system from its surroundings including the physical spacetime (or being the
physical spacetime in the case of a so called isolated system).

Thus, in general, the internal energy of the system, U, is complez. It
becomes real when the system reaches the temporal equilibrium with the
physical spacetime (behaving as a chronostat): then §I' = 0 since t(¥) = ¢o
and, consequently, Jp (¥) = 0 by Eq. (3). Until this equilibrium is reached,
states of the system are not evolved by the operator (1) as they are in the
case of the conventional quantum theory of isolated systems. But, after the
temporal equilibrium is established, this conventional theory works exactly.
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Concluding the second part of this note, we would like to stress that
we avoided to discuss the physical nature of spacetime which should be
connected, to some extent at least, with the theory of gravitation (or su-
pergravitation) and its desired guantization. From the fundamental point
of view, such a quantization would be necessary for the consistency of our
picture (postulating the interaction of matter with physical spacetime), un-
less the gravitation would be a statistical phenomenon of a quantum theory
standing behind it. Instead, in this note, we restricted ourselves to the
rather phenomenological conjecture that, in reality, the so called isolated
system may remain in a temporal equilibrium with the physical spacetime
which plays then the role of a chronostat defining time equal at all space
points (in a Minkowski frame of reference). Such a conjecture suggested vir-
tual deviations from this equilibrium and the phenomenon of transporting
them in space.

3. Chronodynamics in homogeneous matter media

In the third part of this note we will formulate a tentative equation of
motion for our time field ¢ (7) appearing in the transport equation (3) in the
homogeneous matter medium.

To this end, as a first step, let us notice that the flow () = 7r(%, (7))
should correspond to a density pr(7) = pr(7,t(¥)) satisfying, in the simple
case of a homogeneous matter medium, the equation

, h o 1.— -
—ibpr () = cr7 d [t (1) - 5] (7)
analogous to the familiar formula

bpq () = cqk d[T () — To] (8)

for the heat density pg (7) (here, the analogy it/h < 1/kT is used again).
The constant cp should be positive like cg

Since the time field ¢(7) fulfils the boundary condition (e.g.) at 7 =
0: t(0) = to, we can write t(¥) = t_gi‘, tp). Then, in Eqgs. (3) and (7)
7r(7) = Io(AHP) = Tr(F tF ) = Fr(7 te) and pr(7) = pr(7 (7)) =
pr(7,t(7,t0)) = pr(7,to) (in a nonrigorous notation).

As a second step, let us assume for our matter medium that the ther-
modynamic quantity I" contained in a fixed space region V,

Ty (to) = f &7 pr(F, 17, 10)) 9)
v
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(and functionally depending on the time hypersurface o given by t = ¢(7, ;)
with 7 € V') is locally balanced at any space point 7 through the equality

o [ @) = - [ do A ey (o)
v 8(dv)

(except, possibly, isolated points ¥s). Hence we get the local conservation
law :

aivip(r o) + 22EEN) g (1)
0
(at any 7 # Fs), where jp(7 t0) = jr(7\t(7 to)) and pr(7te) =
pr(7, t(fyt0)), and so
. ? . -+ 3;1* dpr _ Opr Ot
divir = dive_greasr + - - gradt, Bt = 0t Big (12)

The three equations (3), (7) and (11) formulate a thermodynamic the-
ory that may be called the chronodynamics in homogeneous matter me-
dia. From these formulae we readily deduce for the parameter-valued field
(T to) = t(Fto) ™ — ¢y ! the conductivity equation playing here the role
of an equation of motion :

(A - iai) $(F,t0) = 0, (13)

Kr Oty

where the new constant xp = or/cp > 0 is an inverse-time conductivity.
Two constants e > 0 and ¢y > 0 characterize in a measure the interaction
of the homogeneous matter medium with the physical spacetime represented
by the time field (¢ is, in addition, proportional to the constant mass
density pps > 0 of the medium). Note that

to

)= T

(14)

In Eq. (13), the field ¢(7,¢o) is required to fulfil the boundary condition
(e.g.) at ¥ = 0: ¢(0,t0) = O, since t(0,t) = to. In the special case
of temporal equilibrium we have ¢(7,%9) = tp and so ¢(7,t5) = 0 , thus
7r(F,t0) = 0 through Eq. (3).

Now, let us observe that making use of the ansatz

#(7to) = do(F) exp(~7rto), (15)
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where yr > 0 is a constant, we obtain from Eq. (13) the oscillatory equation

(A + ;’:-;—“) $o(M) =0. (16)

Hence, as a pedagogical example for ¢¢(7), we may consider its spherical
oscillatory solution

#0(7) = Re®o(7),
#0() = Gre| 7= 7s | exp (1[I0 7= 7s ) (17)

at any ¥ # fg, where ¥g is an arbitrary constant vector and Gpr > 0
a small dimensionless coupling constant. In the solution (17) there is a
singularity at # = 75, which introduces the point-source term —4xG pc§3(7—
7s) exp(—7rte) to the rhs of the conductivity equation (13). Such a source
term may be interpreted as an exponentially waning external perturbation
switched on at g = 0 in our matter medium at the point ¥ = 7s.

We can see from Eqgs. (14), (15) and (17) that ¢(7,%0) =— 0 and hence
t(7,to) =— to for tg — oo at any space point 7 # 7s. So, the homogeneous
matter medium, perturbed at ¢y = 0 (locally in space at ¥ = Fs) tends to
attain at g — oo the temporal equilibriun with the physical spacetime.
Similarly, ¢(7,20) =— 0 and hence ¢(¥,t9) =— to at r =| ¥ |— co. Thus,
in the case of our example for ¢(7,%g), the boundary condition (e.g.) at
¥ = 0: t(0,t9) = tp is replaced by the asymptotic condition at r — oo:
t(f", to) — 1.

Taking pr(7,to) = cr h¢(F,%0) on the base of formula (7), we get from
Egs. (9), (15) and (17) that, in the case of our example, the energy width
I' contained in a fixed space region V of the homogeneous matter medium
is

Ty (te) = crh / d*F ¢(7,to)
v

ZL =
*p |7 Ts] e Mrto

i
= eprGrhcRe /d31'-‘ |#—Fs| e
\ 4

(18)

thus I'y(tg) =— 0 for ¢y — oo (as it should be in the asymptotic temporal
equilibrium at ¢ — o0). For instance, if V is a spherical region of radius
R, centered at ¥ = g, the real part of the integral in Eq. (18) turns out to

be 4x(kr/vr)(zsinz + cosz — 1) , where z = \/yr/kr R, and is positive
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for 0 < R < (7/2)+/kr/7r , though for some larger R it may alternate the
sign (however, the integral =— 27 R? > 0 with xp/7r — oo for any R).
It is easy to check by means of Eqs. (14), (15) and (17) that for t; — oo

a1 dto _
Bty ~ 1+ ¢ty [1 - +¢to)2(1 - 7rto)] =20 (19)
and
|cgradt|=c——t—‘-2’-——||i*’—1"' |"'Re & + ZF—Im¢|——>0<1 (20)
~ T+ #to)? S kp ’

where & = &g exp(—yrto) and ¢ = Red = ¢ exp(—7rto). Thus, in the
case of our pedagogical example for ¢(,tg), we can be sure that, at least
asymptotically at £y — oo, the time field ¢(, o) is growing with ¢ and the
time hypersurface t = t(7, o) is space-like, at any space-point ¥ # 7s. Note
that the smaller the coupling constant G > 0, the larger is the asymptotic
interval of 9 where these conditions are met at a fixed # (in the limit of
Gr — 0 the interval becomes 0 < ty < oo at any 7). At this point it is
worthwhile to remark that, in contrast to time ¢t = ¢y (corresponding to the
temporal equilibrium), the time-field ¢ = ¢(7,¢y) (appearing in the case of a
not-too-large deviation from the temporal equilibrium) is a very important
but essentially approximate notion: the better, the smaller is this deviation
(an analogical situation occurs for the temperature field T = T'(7, Tp)).

Of course, in general, any source term introduced to the rhs of Eq. (13)
perturbs the temporal equilibrium of our matter medium with the physical
spacetime. Then, the same source term multiplied by —ho appears on the
rhs of the local-conservation equation (11) for the thermodynamic quantity
I, spoiling its local and global conservation in the homogeneous matter
medium.

In conclusion of the third part of this note, let us recall that our ar-
gument leading to the field equation (13) is expected to work if processes
in the homogeneous matter medium proceed not too far from its temporal
equilibrium with the physical spacetime. Then, there exists the time field
t(7) = t(7,to) which is running at any space point 7 because ¢¢ runs. Such
a time field provides for our matter medium a part of its thermodynamic
description, much like the temperature field. Let us emphasize that both
fields are not well defined in the general situation, when the system (the
matter medium in our case) is far away from the temporal and thermal
equilibrium with the physical spacetime and a heat reservoir, respectively.
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4. Time field and quantum theory

In the fourth part of this note, a mized theory will be suggested, where
the matter is treated on a quantumn level, while both parameter fields: the
time field as well as the temperature field are described on a thermodynamic
level as, in our case, by the chronodynamic equation (13). Then, in gen-
eral, there are two types of coupling between the quantal matter and both
parameter fields: operator — parameter and operator expectation value
(or material coefficient) — parameter. The case of the conventional quan-
tum theory of isolated systems, interpreted as a theory of so called isolated
quantum systems remaining in the temporal equilibrium with the physical
spacetime, is a trivial example of such a mixed theory. Then, Eq. (1) gives
the time-evolution operator, where t = ¢(, ) = t,.

Looking for such a mixed theory, we would like to make a guess as
to the state equation for so called isolated quantum systems remaining in
no temporal equilibrium with the physical spacetime, but still not too far
from it. Namely, basing on the experience collected from our pedagogical
example, we tentatively propose (in the Schrédinger picture) the following
new form of the state equation for such a system, say, of quantum fields
(e.g. of those considered in QED):

d¥(to)
dtg

ih = [H - i1I'(t0)] ¥(to) , (21)

where 1 stands for the unit operator and

I(to) = arh [ &7 p(7,t0)6(7, 10) (22)

is the total energy width of the system. Here, the parameter field ¢(7,¢g) =
(7 to)"! — t, 1 satisfies the chronodynamic equation

1 a8 - a . ~ctg
— —_— — _— t v
(4= 5mz) #t0) = tmordr [ op(rit) e gie (29)
and the boundary condition at an 7 = 7y (e.g. at ¥ = 0 ): ¢(Fo,%9) = 0 or
t(70,to) = to (as to the form of source term in Eq. (23) — that turns out

to be valid if div 7 = 0 for the current i corresponding to p — ¢f. Appendix
A). In Egs. (22) and (23),

o] -

p(7to) = —(E(to) | J°(7) | ¥(to))av (24)

is the spin-averaged expectation value in the state ¥(¢y) of the operator of
total field density ¢~!J?(#) with J%(7) being the time component of the
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total field-current four-vector (J#(7)) (in the Schrodinger picture). Thus,
Eqs. (21) and (23) for ¥(t9) and ¢(7,t0) are coupled, and together describe
¥(to) and ¢(7,20). In these equations gr > 0 is a small dimensionless
coupling constant, while Ar > 0 is a conductivity constant of the length
dimension.

When constructing such equations, we tentatively conjectured that
or = ap(f,te) = grir cp(,to) as well as er = cp(7,t0) = gr p(7,to),
what results into K = op/cr = Apc. Then. we neglected in Eq. (23) the
terms p~lgradp - gradg and p~1(8p/8ty)¢ (so assuming small changes of
In p in space and time).

Note that for I'(tg) # 0 the operator H — i1 I'(tp) is not Hermi-
tian (but has always a diagonal anti-Hermitian part). This causes that the
Schrodinger picture, in which Eq. (21) is postulated, is not unitary equiv-
alent to the Heisenberg picture where d¥y/dty = 0, though it is unitary
equivalent to the interaction picture in which

ih d!pdlt(to) = [Hilnt(to) — ilI'(to)] !pI(tg) (25)

0
with H = Hfe¢ 4 Hint, On the other hand, unitary equivalent to the
Heisenberg picture is the modified Schrodinger picture or equilibrium picture

where
d¥p (to )
dte

ih = H¥g(to). (26)

Evidently, the relations

!F(to) = exp (_%Hfreeto) Wl(tﬂ) = ﬁE(to)exp [—% / dta F(ta)} (27)
[}

and .
!pg(to) = exp (—';;H to) ¥y (28)
hold.
In the case of our example, where
0 .., —ct Lo
arAr | 5-p(7 to)| exp = = ~Gr c83(F — s) exp(—7r to)
dtg 2\r

represents in Eq. (23) an external point-source and I'(tp) is given as in
Eq. (18), we get

to
/ dtyI(th) = P(0) 75} [L — e~ %] = I(0)ty and =— I'(0)y}"
0
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for tg — 0 and t9 — o0, respectively. In this example, Eq. (23) becomes de-
coupled from Eq. (21), moreover, for t; — oo any influence of this external
source on ¥ (o) disappears since I'(ty) =— 0 in Eq. (21) (for an extension
of our example cf. Appendix B).

As to the coupled equations (21) and (23), it should be stressed that
they have a nonrelativistic form and are valid in a special Minkowski frame
of reference, where the temporal equilibrium of the system with the phys-
ical spacetime is defined by the identity (7, tg) = to or ¢(7,¢0) = 0 (with
¢(7,to) = t(F,t0)! ~ t5 ') which is relativistically noncovariant. Notice,
that a relativistically covariant definition of this equilibrium may be ex-
pressed, in the geometrical language, by the requirement that our time
hypersurface described by t = t(¥,to) has to be then identical with the
Tomonaga—Schwinger time hypersurface o which, not contradicting the mo-
tion, can be arbitrarily deformed at any spacetime point z = (ct, 7), provided
o + 8o remains space-like. This may suggest the following relativistically
covariant definition for the inverse-time field:

¢re1(7-'; to) Ec [n(z) * z]_l —-c [’I’L(ZO) * z0]_] ’

where z = (ct(F,t),7) and 29 = (cto,7o), while n(z) is the unit four-
vector perpendicular to our (space-like) time hypersurface ¢t = t(7,¢g) at
the spacetime point z and directed to the future (for a further discussion
cf. Appendix A).

Observe, by the way, that time ¢ = ¢ running at the point ¥ = 75 may
always be formally extended to the Tomonaga—Schwinger time hypersurface
o = o and then

&r 0’0] . . .
3‘;0—({;5 = Bty if(24,) with I'[o0] = / B p0(240)if(240)
%0

where (5) = (cpr,r), 24, = (cto, ) and 8y, = 8/0z},, while j¥(z4,) =
75 (7 to) = Fp(7 t(F, to)) (in the already used nonrigorous notation). Here,
t = t(F,tp) is our time hypersurface (in general, not in temporal equilib-
rium).

From Eqs. (21), (22) and (24) it follows that the new state equation
(21) is, strictly speaking, nonlinear (and nonlocal) with respect to ¥(to).
However, let p(7,tg) be perturbatively replaced in the zeroth order by

R 1
PO, to) = ;(Wm(to) | 7°(7) | €9 (t0))av » (29)
where #(%)(t,), assumed to be known, corresponds to the temporal equilib-
rium t.e., to ¢(°)(i’, to) = 0, and so satisfies the conventional state equation
., d¥(
i

)
A —;t((;@ = H&#O(1,). (30)
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Then, in the first perturbation order, we obtain from Eqs. (21) and (22)
the following approximate equations :

(1)
hﬂd(t_ﬂ)_) [H le’(l)(to)] (1)(t0) (31)
t
where
r(ty) = gph / &7 p (7, 0)6 (7, to) (32)
and
1 8 8 —ct
LI NFL 6 ) Y- SPu N {3 Vo 0

with p(°)(7, o) as given in Eq. (29). Here, the approximate chronodynamic
equation (33) is independent of ¥{1)(t,), while the approximate state equa-
tion (31), though depending on #)(F, t9), is linear (and local) with respect
to #(1)(ty). Thus, the system of Egs. (31) and (33) may be solved in two
steps, starting from the second equation that can be used to find the inverse-
time field ¢{1)(F,t9) in terms of the matter density p(®)(F,ty), known from
Eq. (29), and of imposed boundary conditions (among these the boundary
condition at an ¥ = 75 : ¢(1)(i’o,to) = 0 or t(7o,t0) = to which defines the
meaning of ty). Then, the energy width I'"(})(t¢) calculated from Eq. (32),
when inserted into the state equation (31), enables us to find readily the
state vector ¥(1)(¢y). In fact, Eq. (27) takes then the form

to
#(1)(ty) = Ep(to) exp [—% / dty r“)(t:,)] , (34)
0

where ¥g(1o) satisfies the exact state equation in the equilibrium picture
(26), identical with Eq. (30) for #(°)(2,). Thus,

Zr(to) = #(0(t) (35)

is known by our perturbative assumption, and such is also #(1)(t,) as given
in Eq. (34).

We can see that the norm of the state ¥(1)(¢,) is, in general, slightly
changing (sometimes jumping up, but most of the time diminishing towards
relaxed values), what is a new, perhaps surprising, effect of our theory of
small deviations from the temporal equilibrium of the so called isolated
systems (for an example cf. Appendix B). In consequence, a tiny unitarity
defect generally occurs for the § matrix.
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In our theory, valid only for not too large deviations from the temporal
equilibrium, the approximation around the temporal equilibrium, leading
to Egs. (31) and (33), would be expected to work excellently in most cases.

On the ground of the chronodynamic equation (23) considered in the
whole space, it can be easily seen that the temporal equilibrium, where
#(7,to) = 0, is necessarily realized if gr = 0 or dp/Uty = 0 (the latter
always occurs for stationary state vectors ¥(tg) = ¥(0) exp(—i Eto/R)),
while ¢(7p,to) = 0 and, in addition, grad¢(7o,t9) = 0 at an ¥ = 7y. Indeed,
in these cases, Eq. (23) reduces to its particular form (13) (with xr = Apc),

8
(A - %25?0') #(7,t0) = 0, (36)

which for ¢(,to) regular everywhere (as implied by gr = 0 or 9p/8to =0 )
shows that ¢(7,tp) = 0 or £(F, o) = to since ¢(7o,t0) =0 and grade(Fo,to) =
0 at ¥ = 7o for any t5. This follows from the fact that in the complete set
of independent solutions to Eq. (36) (all finite at ¢, — o0),

¢v(7-'.7 to) =Re [Av exp (i € Tv T — 7vt0)] (37)
Arc

with | €, |= 1 and v, > 0, all complex amplitudes A, must vanish because
of ¢,(70,t0) = 0 and gradg, (7o, %) = 0.

Obviously, in the temporal equilibrium, where ¢(7,t9) = 0, we get
I'(tp) = 0 from Eq. (22), thus the state equation (21) reduces to its conven-
tional form

., d¥(t)

which implies the time-evolution operator (1). This conventional state equa-
tion may be valid in any Minkowski frame of reference, as it is in the con-
ventional, relativistic quantum field theory.

Concluding the fourth part of this note, we would say that the system
of coupled equations (21) and (23) (or, rather, (31) and (33) ) could show,
how the virtual reality of small deviations from the temporal equilibrium
might be realized.
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APPENDIX A

Relativistic chronodynamic equation
Let us assume the inverse-time field in the relativistically covariant form
suggested in Section 4 :

n(z)-z n(ze)-zo’

¢rel(7_'.a tO) = (Al)
where z = (ct(7,%0),7) and 2¢ = (cto, 7o) with ¢(o,%0) = to, while n(z)
is the unit four-vector perpendicular to our (space-like) time hypersurface
t = (7, 10) at the spacetime point z and directed to the future. Hence,

t‘.'_.1 n(zg) ¥ 7
1+ ¢rel(7-"s tﬂ)c_ln(zo) *To

(A.2)

cIn(z) -z =

is a relativistically covariant time field.
Now, for reasons which will be apparent later, let us consider the mod-
ified inverse-time field

n(zo) - 2o

B (A.3)

Xrel(i'; tO) = ¢rel(ﬁ to) exp

and tentatively impose on it the following relativistic chronodynamic equa-
tion in the coordinates 7, tg:

1 . .
(B + g57) XalFoto) = 4r0rAr 8- iGt0), (A)

where (g, = A — ¢~2(8/819)? and 8y, - j = ¢~ 1850/ to + divj, while
74T t0) = (P(to) | TH(7) | #(t0))av (A.5)

with (J#(7)) being the operator of total matter-current four-vector (in the
Schrédinger picture). Of course, this current is not conserved in the Heisen-
berg picture, since the total number of bosons may change. Notice the
plus sign at (4A%)~! in Eq. (A.4), so the covariant parameter-valued field
Xrel(Ts to) in the free case has a tachyonic character.

The chronodynamic equation (A.4) is really relativistic if j = (j#) =
(cp, ;) as defined in Eq. (A.5) is a true four-vector, what depends on the
actual covariance of the state vector ¥(tg) involved in the definition (A.5).
In order to guarantee this covariance we propose to replace in the state
equation (21) the energy width I'(to), given in Eq. (22), by the following
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actually covariant form (making use of ¢pe1(21y) = Pre1(7s to) and j#(z4,) =
j#(7,to) introduced in Eqs. (A.1) and (A.5)):

I'(t) = gph/dan(z) i (2e5)Prer(21,) - (A.6)

Indeed, its evidently covariant version,

Iioo) = 22 [ doon(a)  i(aio)dralen) (A7)

may be constructed by means of the Tomonaga-Schwinger time hypersur-
face o = o¢ generalizing covariantly the time hyperplane t = tg, where 2y is
time running at the particular space point 5. In Egs. (A.6) and (A.7) the
coordinates of the spacetime point z = (ct(7, tg), 7) in n(z) are expressed by
the coordinates of the spacetime point #¢, = (ctg, ) used in both integra-
tions. Note that the normal four-vector field ng(z¢,) corresponding to o
is time-like but otherwise arbitrary, while the normal four-vector field n(z)
of our time hypersurface t = ¢(7, %), appearing in Eqgs. (A.1) and (A.7), is
dynamically determined.

Then, the state equation (21) with I'(¢y) given in Eq. (A.6) is valid
in any Minkowski frame of reference (of course, in the case of relativistic
quantum field theory). In fact, through the unitary transformation

)
ﬁM(to) = exp (——f:Hto) !p(to) (AS)
to a new modified Heisenberg picture, Eq. (21) transits into the form

d¥pr(t
indTm(to) _ —il(to)ar(to) (A.9)
dte
which is easily seen to be actually covariant. Indeed, due to Eq. (A.7), it
may be presented in the evidently covariant version

ih%w = —@n(z) . j(zto)‘ﬁrel(zto)!pM [0-0] (A.].O)
oo(z¢,) c

by means of the Tomonaga-Schwinger time hypersurface & = o¢. Again,
z in n(z) is expressed through z., lying on o9. Here, j*(z:,) = j*(F,t0)
as defined in Eq. (A.5) involves ¥ps [oo]: j*(24,) = (Iam[oo] | Thp(2e0) |
¥ [00])av With 24, lying on ¢g. The dynamical character of the unit
four-vector n(z) (with z expressed through z;,) makes the covariance of
Eq. (A.10) real. The coupling n(z)-j(21,)@re1(%¢,) in Eq. (A.10) may be also
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rewritten in the form j(z4,)- A4™%(2y,), where A5™%(z4,) = ny(2)drei(1,)
gives us a (parameter-valued) dynamical four-vector of the inverse time.
Defining the noncovariant parameter-valued field

n(zg)-zo — cto
r , (A.11)

¢(1‘, tO) = Xrel(r’ tO) exp = ¢rel(r, tD) exp

2A

we can rewrite Eq. (A.4) in the equivalent form :

AL o 18
Apcatu c? 8t§

-~ o f b _Ct
) &(7,to) = 4 grAr [04y- §(7 t0)] exp o3 L
r

(A.12)
The definitions (A.11) and (A.1) show that for small deviations from the
temporal equilibrium, where £(7,%9) = ¢o, and so n(z) = (1,0,0,0), we have

approximately
1 1

t(F,te) to

Neglecting in Eq. (A.12) the second time derivative ¢c"29%¢/0t2 in com-
parison with the first, we obtain the following nonrelativistic equation for

¢(1-" to) .

1 6 N _ PN —Cto
(A— Ea—) $(F,t0) = 4w grAr [0t (7, t0)] exp IV (A.14)

In Eqs. (A.4), (A.12) and (A.14) the four-divergence on their rhs can
be expressed as follows:

¢(7-"’ tﬂ) = ¢rel(i’.’ tO) =~ (A.13)

By (5 t0) = (B(t0) | 3 [Pus T ()] = 2T (t0)7°(7) | #t0))av » (A1)

where (P,) = (H/c, P) is the operator of total matter-momentum four-
vector (in the Schrddinger picture). In fact,
(@(to) | TH(7) | #(t0))av = (#(0) | X P20 7#(0)e kP 240 | #(0))ay
x e~k Jo® dtoT (), (A.16)
where z;, = (cto,7), while 8;, = (c~18/8t0, 3/ 7).

In the case, when ¥(ty) are eigenstates of the total matter momentum
P, we get from Eq. (A.15)

Busi(7t0) = (F(t0) | = [H J f’)]——-F(to)J°(f')lW(to))u— ‘Zo p(7t0)
(A.17)
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with j% = cp. Thus, inserting Eq. (A.17) into Eq. (A.14) we deduce in
this case our previous nonrelativistic chronodynamic equation (23) for the
field ¢(7,%p) as given in Eq. (A.13) for small deviations from the temporal
equilibrium. Generally, Eq. (23) holds if divy = 0.

When, in addition, ¥(to) are eigenstates of the total matter energy H
(they are stationary states if I'(ty) = 0), we obtain from Eq. (A.17)

O i(Fit0) = e Pl ) = —2T(0)p(Fita),  (A1S)
where

p(7to) = p(7,0) exp [~— [ d e )] (A19)

In general, if 84,- 7(¥,t0) = 0, Eq. (A.4) (with the boundary condition
at an ¥ = 7ot Xrel(To,%0) = 0 and, in addition, gradx;e(o,%) = 0 )
implies the relativistically covariant temporal equilibrium : x;e1(7, ) = 0
or ¢re1(7,to) = 0, and hence n(z).-z = n(2¢)-zo, where z = (c t(7, o), 7). Of
course, in such a temporal equilibrium — in agreement with its definition
in Section 4 — the normal four-vector field n(z) is not determined, so we
can always put n(z) = (1,0,0,0), what gives t(7,%p) = to.

On the base of Eq. (A.14), the perturbative chronodynamic equation
(33) should now be replaced by

¢ty

2Ar
(A 20)

1
—— (1) -(0)
(A py 8to) (7 te) = dxgrir [ato j (",to)]

where

O, ta) = (#O)(t0) | T4(7) | £ (t0))av (A.21)

with the zeroth-order state vector #(®)(t,) satisfying the conventional state
equation (30). Of course, j°(°) = ¢p(°) is the same as given through Eq. (29).
The first-order state vector #(1)(¢y) fulfils Eq. (31) with I'()(¢,) deter-
mined by Eq. (32), and has the form given in Egs. (34) and (35).

APPENDIX B

Time field created by the excitation of a heavy target

Let us consider an extension of our pedagogical example which now is
intended to simulate (on the level of the average matter current (A.5)) the
excitation of a fixed spherical target, centred at the point ¥ = 0, in an act
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of inelastic scattering of a particle at the moment ¢ty = 0. To this end, we
put in the zeroth perturbative order

pO(F,t0) = O(—t0)p\o)(, t0) + O(to) ol (7, ta) (B.1)

and similarly for ;(0)(1"', to), where

o7, t0) = 83(F— Tto), FO(Fto) = 63(F—Tte)  (B.2)
and

psc)(‘l‘,to) AF(r2)exp( 7to)+B63(" _"to), ]sc (1‘ to) 35'63(* -"to)
(B-3)

with some dimensionless constants A > 0 and B > 0. Here, O(tp) =1 or 0

for to > 0 or ty < 0, respectively. The particle momenta and energies are

11
my 5= m'v

A P a— (B.4)

Vi= (/)T 1= (v']ec)?
E = ¢y/p? + (mc)?, E' = c\/p'? + (m'c)?, (B.5)

satisfying the balance E = E' 4+ (M* — M)c? up to the width %y of the
target excited level M*c2.

In order to apply the perturbative chronodynamic equation (A.20), we
calculate the four-divergences:

and

(0)

)
Bto - e = ~5ine + divip) = 0 (B.6)
and
(0) _ 3P§c) (0) _ 2
Ot * 3 + divjse’ = —yAF(r*) exp(—vto) - (B.7)

sc¢ = ao

Thus, from Eq. (A.20) we obtain in the first order
$ (7, t0) = O(~ta)LUF ta) + Ot0) 52" (7, o) (B.8)

(for to # 0 ), where ¢i(rllg(1"‘, to) =0 and

1 o\?
#(F to) = —4mgripyA (A e ) F(r?)exp(-1rte) (B.9)
rc oty
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with yr = v + ¢/2Ar . Inserting

F(r?) =

/ d*F f(k?®) exp(ik - 7) = / k dk f(k?) exp(ikr)

(B.10)
and choosing for the Green function in Eq. (B.9) the Feynman convention
k? — k2 — ic where ¢ — +0, we find taking the real part:

(2x)3 (2 )2 ir

o 1
¢ (7, o) = orAr7A f(vr/Ar¢) - cos(v/yr/Ar e r) exp(-1r ).
(B.11)
Note that f(0) = 1, when the space integral of F(r?) is normalized to 1.
Making use of Eqgs. (B.3) and (B.9) we can calculate from Eq. (32) the
first-order energy width

r(t) = G(to)yrh/ &7 pic) (7, to)dhe (7, to)

= O(to) ghArhy f (,\—z%) et

{[AZ/TdTF(Tz) COS( )] —vto + ABv'L COS( AI' —7° t )}

1]
(B.12)

where g2 is very small.

The result (B.12), when inserted into Eq. (31), determines the state
equation for (1) (¢y), whose solution has the form given in Egs. (34) and
(35).

The formula (B.12) shows that I'1)(ty) — oo at t9 — +0 (though
Ir'D(tg) = 0 for ty < 0), and then I'(¢g) =— 0 with t; — oo . This
means that at the moment of excitation of the matter system (in our case,
in the act of inelastic collision) a time field is created, causing an amount
of energy width (in our case, infinite) to be transferred to the system from
the physical spacetime represented by the time field, perturbing thereby
the temporal equilibrium. Afterwards, in the process of its deexcitation,
the matter system loses its energy width to the physical spacetime still
represented by the time field, tending to the temporal equilibrium.

Though in our case, (1)(to) = 0(g%) and I'D(tg) =— 0 with tg — oo,
the time integral of I'(1)(¢y) from ¢y = 0 to any to > 0, instead of being
very small, is divergent to oo due to the singularity ©(to)/to of I'})(ty)
at tg = 0. This requires a kind of renormalization or other reformulation

-
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of our pedagogical example. Note that such a singularity is caused by the
interaction of the time field of the excited target with the scattered point-like
particle.

It is also seen from Eq. (B.12) that I’(l)(to) — 0 for Ay — 0, what
relates the temporal equilibrium of the system to its quantum-mechanical
stability.

As it was already emphasized, in the mixed theory described in this
note the physical spacetime is represented by the parameter-valued time
field (or inverse-time field) having the status of a thermodynamic quantity,
called chronodynamic in this case.
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