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A relatively simple analytical formula is derived for the energy spec-
trum of W boson in top quark decays ¢ — Wb including O(a,) radiative
corrections, We discuss the accuracy of this formula and compare it to
a more general albeit more complicated one derived in (A. Czarnecki, M.
Jezabek, J.H. Kithn, Acta Phys. Pol. B20, 961 (1989); (E) B23, 173
(1992)). A Monte Carlo algorithm for generation of W energy spectrum
is briefly described.

PACS numbers: 12.15. Ji

1. Introduction and summary

Radiative QCD corrections to the energy distribution of ff' int — bff'
and t — bgff' decays have been calculated some time ago [1]. In the mean-
time the lower limit for top quark mass m, has been pushed up by CDF and
DO collaborations well above the threshold for ¢ — bW channel. Although
the results of [1] are applicable also in this regime it seems reasonable and
useful to derive a new formula assuming dominance of decays into real W.
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Grants 203809101 and 223729102, and by EEC Coniract ERB-CIPA-CT-92-
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Such a formula, albeit less general than that given in [1], can be very useful
in studies of top quark physics at future ete™ colliders [2].

Our present approach is based on an appropriately modified narrow
width (I,, = 0) approximation, where I, is the width of W boson. In
contrast to [1], where the rates are manifestly infrared finite, we introduce an
explicit infrared cutoff A on the effective mass squared of the system b quark
+ gluon. Thus the formula for O(a,) contribution from virtual gluons also
depends on A. This apparent failure turns out to be an advantage in Monte
Carlo simulations, which are indispensable for a precise determination of
the strong coupling constant a, and m; from the total o(ete™ — #t) and
differential cross sections [3-6]. We wrote a Monte Carlo program based on
the results of the present article and found a very good agreement with the
formulae given in [1].

We have checked also that massless b approximation which is known
to be a satisfactory one for the total decay rate and m; above 120 GeV [7,
8], cannot be used in calculations of W energy distribution. One reason
is purely kinematical: Born distribution in the narrow width approxima-
tion has a Dirac delta shape, i.e. the energy of W is fixed by two body
kinematics. A shift from realistic m, = 4.7 GeV to my = 0 results in a
non-negligible shift in this energy. We attempted to correct the massless
formula (see Appendix A) for this trivial effect but the result was still a
rather poor approximation. Thus, we conclude that for realistic top and
bottom masses one has to use the complete O(a,) result rather than its
massless approximation.

Our article is organized as follows. In Section 2 we derive our formula
for the enegy of W distribution in the narrow width approximation. In
Section 3 we include a non-zero W width and describe our Monte Carlo
program based on our calculations. Then, we compare the results of this
program with those of [1]. In Appendix A our formulae for m; — 0 are
given.

2. Energy of W distribution in narrow width approximation

We use throughout the same notation as in [9]. We stay in the top quark
rest frame and some variables are expressed in units of m;. In particular y
— effective mass squared of ff’ system, z — the mass squared of bg system
and € = my/my. We define also the energy of W :

E 1
‘w=7v:=§(1+y-z), (1)
which for twobody Born decay mode t — bW is replaced by
- E 1 2
2W=—n;v:i=§(1+y—e), (2)
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and z,, < Z, . In general “barred” quantities are evaluated at z = 2.

Other useful variables are:
w3 = z%v—yz.:—,v A1,9,2), (3)

Ay, v,w) = v? + v + w? - 2(uv + uw + vw) (4)

the lenght of W momentum?, which is equal to
P33 = zi —2Z (5)
the momentum of bg system of energy z; = 1—=2,,, the light cone variables

wy =2z, T w;,

P+ =2zptps3, (6)
and rapidities
w
Yy = %ln -,
P+

In the narrow width approximation y = I',, /m,, — 0 one can replace
a factor resulting from W propagator by Dirac delta function

1 Yo
*(y—%)? + 7125

— 8(y — o), (8)

where yo = (m,, /m¢)?. Thus, when the decay through real W dominates
the effective mass is close to ,/yp . In this section we consider y as fixed

and give the formula for the differential rate r—d L_| . Then, in Section 3 we
Zw

relax this assumption using (8). For fixed y the energy distribution of W
including O(a,) corrections can be written as follows:

dr | _Gemi [, _ _2a,
dzy |, 8v2r [6(2 ) (F° 3 g’(y’A))
T TR IRV P %) I )

! In unpolarized case discussed here we choose z-axis in the direction of W.
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where z is fixed through (1),

Fo(y,e) = %V ’\(1’ y,52)00(y’5) ’ (10)

Coly,e) = 4[(1 - €2)? + (1 +€%) — 247]. (11)

G1 =91Co(¥,€)Z 1 + 92Co(y, €)Ps + g3ZnDs + gabs + 95¥p + g6
g1 =4Yp2 - 2Li2(fl’)o) + 4Liy (lfl-/ﬂ!.{.)

. [(P-w— . > o
4Li, (ﬁ+11')+) + 2Liz(w4) — 8Y,pYe
+4Y,(2lne -In XA +2In(1 - 5_/p4+) —Iny)
g2 =4—6lne +4n)
g3 =24(1 - ¢*)Ine
94 =8 (-14+2e? —e* —y—e?y+29%)
A
2 2 2
— []_86 (2y —y—1)+4e Co(y,e)]m
gs =4 (~1+e?+et —ef —3y+2e2y—3efy+ 92 +96%y? - 54°)
1
ge =[9 (2 -y-1)+ 252(,'0(31,5)] 1%5 In (14 A/e?) -

[7 (20 -y —1) +2Co(w:e)] (1-y) In (1+2/eP) (12)
and
g1 =2a1p3(2) +4a2Yy(z) - %—0:%’;-)2 p3(z) + Mg—%’-ﬁl Yp(2)
2

a1 =i—2 [-9+ 1562 —8¢e* — y(9 + 7e? — 18y)]

+ % [-7 + &% (20 — 5¢? — 11y) + Ty (2y — 1)]

+ 2y - 3(1 4 €?)
az =2+¢e2(e2-5)-2y(2y - 1)+ (1 + % +2y) z. (13)

In the above formulae A denotes an infrared cutoff on the effective mass
z > €% + X. Let us sketch now the derivation of Eq. (9): The contri-
bution resulting from real gluon radiation (@-piece) is obtained by direct
integration of the fully differential decay rate, whereas the (Born + soft)
contribution (§-piece) is derived from the requirement that integrating (9)
over z,, one obtains the narrow width limit of the expression for the total
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rate given in [7]; see also (16) in the following section. The formula (9)
simplifies considerably in the limit m;, — 0, ¢f. Appendix A. However, for
realistic b quark masses this is a rather poor approximation.

3. Finite W width and results

We generalize now the results of the previous section and include a
nonzero W width. Let us note that y is not fixed for ¥ # 0. The double
differential distribution

dr _ l Yo dr
dzy dy 7 (y-w)? +7%y5dzy |

(14)

is, however, closely related to the narrow width result (9), ¢f. (8). We use
the standard model result for I, :

_ Gpm,,? a,
Ly = =7 (9+6>). (15)

Integrating (14) over z,, we obtain of course the standard model result for
dr'/dy [7,8)

dr _ GFthS (

a, 1 2a,
-d—; = W 9 + 6—") [Fo(yﬁe) - EW_Fl(y1€)] b

7/ (1-y/y)? +7?
(16)
0<y<(1-¢)?, where Fy is defined in (10) and
Fa(3,¢) =3Co(y, €)(1 + € — y) [222/3 + 4Liz (usy) — 4Liz ()

— 4Liz (uquw) — 4lnugln(l — uy)

—2muy,lnu, +Inylnu, + 21nelnuw]
~ 2Fo(y,€) lIny + 31ne — 2In A(1, y,€?)]
+41-€)[1 - +y(1 + %) - 4y*] lnu,
+ [8 % +11e* — € + y(6 — 1262 + 2¢%)
—y% (21 + 56?) + 12¢°] Iny,

+ 6\//\(1,y,52)(1 - 62)(1 +e2 - y)Ine
+ /AL, 9,€2) [-5 + 22¢% — 5¢* — 9y(1 + €2) + 69%] , (17)

# we derived (9) using this condition.
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where _
= P=

ug = =
17 py

(18)

Uy =

e'ls.
£

We can also integrate (14) over y. In this way we obtain a new formula
for

ar
r
de,, / dy dz,, dy’ (19)
1]

We compared (19) with the result of [1] and found a perfect numerical
agreement for small A. For A = 108 the relative error is 10~8.

The formulae (9) and (16) can be also used as a starting point for Monte
Carlo simulations. A key observation is that (16) gives the distribution of y
for 0 < y < (1 — €)? whereas (9) gives relative probabilities for z,,, at fixed
y. The distribution (14) can be generated as follows: y is generated first
according to (16). Then, for given y, 2, is generated according to (9). Both
steps can be performed by a standard combination of importance sampling
and von Neumann rejection. The only difficulty is to find the value of the
infrared cutoff A such that )\ is small enough and the §-piece in (9) remains
positive. This well known difficulty limits relative accuracy of our Monte
Carlo to about 1%.

In Fig. 1 we show the normalized distribution I'~1 dI'/ dz,, for m; =
120 GeV obtained from (19) for A = 10~%. The curve obtained using the
result from [1] is identical up to the resolution of the plot.
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Fig. 1. Normalized energy distribution of W: I'"'dI'/dz,, for m; = 120 GeV
evaluated from (19).

In Fig. 2 we compare the analytical result (19) (A = 1078) with our
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Monte Carlo program for A = 3-10~%. We plot the ratio (in percent)

dr/dz,, |

T,

(20)

where the subscript “n” refers to the Monte Carlo and “a” to the result
obtained from (19).
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Fig. 2. Comparison of Monte Carlo for infrared cutoff A = 3. 10~* and analytic
result (19) for A = 10~8. The ratio (20) is shown as function of z,,.

APPENDIX A

In this Appendix we give the limit of (9) for m; — 0. These formulae
can be used for ¢ — s or t — u transitions. It would be, however, a rather
poor approximation to use these formulae for the dominant ¢ — b transition.
For ¢ — 0 (9) is replaced by

dr _Gpmt"’ 2a,

P y = 8\/§1r {5(7—) Fy [1 - Gl(ya /\)]
2"" 20~ 1) 0 (2 ~ V) 92, y)} . (21)
Fo=201-y) (2y+1). (22)

+2Liz(y) + 4 In?(1 - 9) — 7 In(1 — y) + In?(1)

5+4y
1+2y

2 5
G](‘y, A) =— 772 + 5

+ = ln(A) [7-8In(1-y)]+ —— In(1 -y). (23)
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o(:,9) =pa(2) [2 2 - 9) - 14 (1= 9)2y + 1) ]
taga e e+ 2] e

Then, integrating the double differential distribution (14) over y one obtains
dI'/dz,, in the massless limit m; = 0.
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