ENERGY OF W DISTRIBUTION IN TOP QUARK DECAYS*

M. JEŻABEK

Institute of Nuclear Physics, Kawiory 26a, PL-30055 Cracow, Poland and

Institut f. Theoretische Teilchenphysik, Universität Karlsruhe D-76128 Karlsruhe, Germany

CH. JÜNGER

Institut f. Theoretische Teilchenphysik, Universität Karlsruhe D-76128 Karlsruhe, Germany

(Received August 4, 1993)

A relatively simple analytical formula is derived for the energy spectrum of W boson in top quark decays $t \to Wb$ including $\mathcal{O}(\alpha_s)$ radiative corrections. We discuss the accuracy of this formula and compare it to a more general albeit more complicated one derived in (A. Czarnecki, M. Jeżabek, J.H. Kühn, *Acta Phys. Pol.* B20, 961 (1989); (E) B23, 173 (1992)). A Monte Carlo algorithm for generation of W energy spectrum is briefly described.

PACS numbers: 12.15. Ji

1. Introduction and summary

Radiative QCD corrections to the energy distribution of $\bar{f}f'$ in $t \to b\bar{f}f'$ and $t \to bg\bar{f}f'$ decays have been calculated some time ago [1]. In the meantime the lower limit for top quark mass m_t has been pushed up by CDF and D0 collaborations well above the threshold for $t \to bW$ channel. Although the results of [1] are applicable also in this regime it seems reasonable and useful to derive a new formula assuming dominance of decays into real W.

^{*} Work partly supported by the Polish Committee for Scientific Research (KBN) Grants 203809101 and 223729102, and by EEC Contract ERB-CIPA-CT-92-2077.

Such a formula, albeit less general than that given in [1], can be very useful in studies of top quark physics at future e⁺e⁻ colliders [2].

Our present approach is based on an appropriately modified narrow width $(\Gamma_W = 0)$ approximation, where Γ_W is the width of W boson. In contrast to [1], where the rates are manifestly infrared finite, we introduce an explicit infrared cutoff λ on the effective mass squared of the system b quark + gluon. Thus the formula for $\mathcal{O}(\alpha_s)$ contribution from virtual gluons also depends on λ . This apparent failure turns out to be an advantage in Monte Carlo simulations, which are indispensable for a precise determination of the strong coupling constant α_s and m_t from the total $\sigma(e^+e^- \to \bar{t}t)$ and differential cross sections [3–6]. We wrote a Monte Carlo program based on the results of the present article and found a very good agreement with the formulae given in [1].

We have checked also that massless b approximation which is known to be a satisfactory one for the total decay rate and m_t above 120 GeV [7, 8], cannot be used in calculations of W energy distribution. One reason is purely kinematical: Born distribution in the narrow width approximation has a Dirac delta shape, i.e. the energy of W is fixed by two body kinematics. A shift from realistic $m_b = 4.7$ GeV to $m_b = 0$ results in a non-negligible shift in this energy. We attempted to correct the massless formula (see Appendix A) for this trivial effect but the result was still a rather poor approximation. Thus, we conclude that for realistic top and bottom masses one has to use the complete $\mathcal{O}(\alpha_s)$ result rather than its massless approximation.

Our article is organized as follows. In Section 2 we derive our formula for the energy of W distribution in the narrow width approximation. In Section 3 we include a non-zero W width and describe our Monte Carlo program based on our calculations. Then, we compare the results of this program with those of [1]. In Appendix A our formulae for $m_b \to 0$ are given.

2. Energy of W distribution in narrow width approximation

We use throughout the same notation as in [9]. We stay in the top quark rest frame and some variables are expressed in units of m_t . In particular y— effective mass squared of $\bar{f}f'$ system, z— the mass squared of bg system and $\varepsilon = m_b/m_t$. We define also the energy of W:

$$x_W = \frac{E_W}{m_t} = \frac{1}{2}(1 + y - z),$$
 (1)

which for twobody Born decay mode $t \to bW$ is replaced by

$$\overline{x}_{W} = \frac{E_{W}}{m_{t}} = \frac{1}{2}(1 + y - \varepsilon^{2}), \qquad (2)$$

and $x_W \leq \bar{x}_W$. In general "barred" quantities are evaluated at $z = \varepsilon^2$. Other useful variables are:

$$w_3 = \sqrt{x_W^2 - y} = \frac{1}{2}\sqrt{\lambda(1, y, z)},$$
 (3)

$$\lambda(u, v, w) = u^{2} + v^{2} + w^{2} - 2(uv + uw + vw)$$
 (4)

the lenght of W momentum¹, which is equal to

$$p_3 = \sqrt{x_h^2 - z} \tag{5}$$

the momentum of bg system of energy $x_h = 1 - x_w$, the light cone variables

$$w_{\pm} = x_W \pm w_3,$$

 $p_{\pm} = x_h \pm p_3,$ (6)

and rapidities

$$Y_W = \frac{1}{2} \ln \frac{w_+}{w_-},$$

$$Y_p = \frac{1}{2} \ln \frac{p_+}{p_-}.$$
(7)

In the narrow width approximation $\gamma = \Gamma_W/m_W \to 0$ one can replace a factor resulting from W propagator by Dirac delta function

$$\frac{1}{\pi} \frac{\gamma y_0}{(y-y_0)^2 + \gamma^2 y_0^2} \longleftrightarrow \delta(y-y_0), \qquad (8)$$

where $y_0 = (m_W/m_t)^2$. Thus, when the decay through real W dominates the effective mass is close to $\sqrt{y_0}$. In this section we consider y as fixed and give the formula for the differential rate $\frac{d\Gamma}{dx_W}\Big|_y$. Then, in Section 3 we relax this assumption using (8). For fixed y the energy distribution of W including $\mathcal{O}(\alpha_s)$ corrections can be written as follows:

$$\frac{\mathrm{d}\,\Gamma}{\mathrm{d}\,x_W}\Big|_{y} = \frac{\mathrm{G}_F m_t^3}{8\sqrt{2}\pi} \left[\delta(z - \varepsilon^2) \left(\mathrm{F}_0 - \frac{2\alpha_s}{3\pi} \tilde{\mathcal{G}}_1(y, \lambda) \right) + \frac{2\alpha_s}{3\pi} \Theta(z - \varepsilon^2 - \lambda) \Theta(x_W - \sqrt{y}) \, \tilde{g}_1(y, z) \right], \tag{9}$$

¹ In unpolarized case discussed here we choose z-axis in the direction of W.

where z is fixed through (1),

$$F_0(y,\varepsilon) = \frac{1}{2} \sqrt{\lambda(1,y,\varepsilon^2)} C_0(y,\varepsilon), \qquad (10)$$

$$C_0(y,\varepsilon) = 4[(1-\varepsilon^2)^2 + y(1+\varepsilon^2) - 2y^2]. \tag{11}$$

$$\tilde{\mathcal{G}}_{1} = g_{1}C_{0}(y,\varepsilon)\bar{x}_{h} + g_{2}C_{0}(y,\varepsilon)\bar{p}_{3} + g_{3}\bar{x}_{h}\bar{p}_{3} + g_{4}\bar{p}_{3} + g_{5}\bar{Y}_{p} + g_{6}$$

$$g_{1} = 4\bar{Y}_{p}^{2} - 2\text{Li}_{2}(\bar{w}_{0}) + 4\text{Li}_{2}(\bar{w}_{-}/\bar{w}_{+})$$

$$- 4\text{Li}_{2}\left(\frac{\bar{p}_{-}\bar{w}_{-}}{\bar{p}_{+}\bar{w}_{+}}\right) + 2\text{Li}_{2}(\bar{w}_{+}) - 8\bar{Y}_{p}\bar{Y}_{w}$$

$$+ 4\bar{Y}_{p}\left(2\ln\varepsilon - \ln\lambda + 2\ln\left(1 - \bar{p}_{-}/\bar{p}_{+}\right) - \ln y\right)$$

$$g_{2} = 4 - 6\ln\varepsilon + 4\ln\lambda$$

$$g_{3} = 24(1 - \varepsilon^{2})\ln\varepsilon$$

$$g_{4} = 8\left(-1 + 2\varepsilon^{2} - \varepsilon^{4} - y - \varepsilon^{2}y + 2y^{2}\right)$$

$$- \left[18\varepsilon^{2}\left(2y^{2} - y - 1\right) + 4\varepsilon^{2}C_{0}(y,\varepsilon)\right]\frac{\lambda}{\varepsilon^{2}\left(\varepsilon^{2} - \lambda\right)}$$

$$g_{5} = 4\left(-1 + \varepsilon^{2} + \varepsilon^{4} - \varepsilon^{6} - 3y + 2\varepsilon^{2}y - 3\varepsilon^{4}y + 9y^{2} + 9\varepsilon^{2}y^{2} - 5y^{3}\right)$$

$$g_{6} = \left[9\varepsilon^{2}\left(2y^{2} - y - 1\right) + 2\varepsilon^{2}C_{0}(y,\varepsilon)\right]\frac{1 + y}{1 - y}\ln\left(1 + \lambda/\varepsilon^{2}\right) - \left[7\left(2y^{2} - y - 1\right) + 2C_{0}(y,\varepsilon)\right]\left(1 - y\right)\ln\left(1 + \lambda/\varepsilon^{2}\right),$$

$$(12)$$

and

$$\tilde{g}_{1} = 2 a_{1} p_{3}(z) + 4 a_{2} Y_{p}(z) - \frac{4 \varepsilon^{4} C_{0}(y, \varepsilon)}{z^{2}(z - \varepsilon^{2})} p_{3}(z) + \frac{4 \bar{x}_{h} C_{0}(y, \varepsilon)}{z - \varepsilon^{2}} Y_{p}(z)
a_{1} = \frac{\varepsilon^{2}}{z^{2}} \left[-9 + 15 \varepsilon^{2} - 8 \varepsilon^{4} - y (9 + 7 \varepsilon^{2} - 18y) \right]
+ \frac{1}{z} \left[-7 + \varepsilon^{2} (20 - 5\varepsilon^{2} - 11y) + 7y (2y - 1) \right]
+ 2y - 3(1 + \varepsilon^{2})
a_{2} = 2 + \varepsilon^{2} (\varepsilon^{2} - 5) - 2y (2y - 1) + (1 + \varepsilon^{2} + 2y) z.$$
(13)

In the above formulae λ denotes an infrared cutoff on the effective mass $z \geq \varepsilon^2 + \lambda$. Let us sketch now the derivation of Eq. (9): The contribution resulting from real gluon radiation (Θ -piece) is obtained by direct integration of the fully differential decay rate, whereas the (Born + soft) contribution (δ -piece) is derived from the requirement that integrating (9) over x_W one obtains the narrow width limit of the expression for the total

rate given in [7]; see also (16) in the following section. The formula (9) simplifies considerably in the limit $m_b \to 0$, cf. Appendix A. However, for realistic b quark masses this is a rather poor approximation.

3. Finite W width and results

We generalize now the results of the previous section and include a nonzero W width. Let us note that y is not fixed for $\gamma \neq 0$. The double differential distribution

$$\frac{\mathrm{d}\,\Gamma}{\mathrm{d}\,\boldsymbol{x}_{\boldsymbol{W}}\,\mathrm{d}\,\boldsymbol{y}} = \frac{\gamma}{\pi} \frac{y_0}{(y-y_0)^2 + \gamma^2 y_0^2} \frac{\mathrm{d}\,\Gamma}{\mathrm{d}\,\boldsymbol{x}_{\boldsymbol{W}}}\bigg|_{\boldsymbol{y}} \tag{14}$$

is, however, closely related to the narrow width result (9), cf. (8). We use the standard model result for Γ_w :

$$\Gamma_{W} = \frac{G_{F}m_{W}^{3}}{6\sqrt{2}\pi} \left(9 + 6\frac{\alpha_{s}}{\pi}\right). \tag{15}$$

Integrating (14) over x_w we obtain of course the standard model result for $\mathrm{d} \Gamma/\mathrm{d} y$ [7,8]²

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}y} = \frac{\mathrm{G}_F^2 m_t^5}{192\pi^3} \left(9 + 6\frac{\alpha_s}{\pi}\right) \frac{1}{(1 - y/y_0)^2 + \gamma^2} \left[\mathrm{F}_0(y,\varepsilon) - \frac{2\alpha_s}{3\pi} \mathrm{F}_1(y,\varepsilon)\right],\tag{16}$$

 $0 \le y \le (1 - \varepsilon)^2$, where F_0 is defined in (10) and

$$F_{1}(y,\varepsilon) = \frac{1}{2}C_{0}(y,\varepsilon)(1+\varepsilon^{2}-y)\left[2\pi^{2}/3 + 4\text{Li}_{2}(u_{w}) - 4\text{Li}_{2}(u_{q}) - 4\text{Li}_{2}(u_{q}u_{w}) - 4\ln u_{q}\ln(1-u_{q})\right]$$

$$- 2\ln u_{w}\ln u_{q} + \ln y\ln u_{q} + 2\ln\varepsilon\ln u_{w}$$

$$- 2F_{0}(y,\varepsilon)\left[\ln y + 3\ln\varepsilon - 2\ln\lambda(1,y,\varepsilon^{2})\right]$$

$$+ 4(1-\varepsilon^{2})\left[(1-\varepsilon^{2})^{2} + y(1+\varepsilon^{2}) - 4y^{2}\right]\ln u_{w}$$

$$+ \left[3-\varepsilon^{2} + 11\varepsilon^{4} - \varepsilon^{6} + y(6-12\varepsilon^{2} + 2\varepsilon^{4})\right]$$

$$- y^{2}(21+5\varepsilon^{2}) + 12y^{3}\ln u_{q}$$

$$+ 6\sqrt{\lambda(1,y,\varepsilon^{2})}(1-\varepsilon^{2})(1+\varepsilon^{2}-y)\ln\varepsilon$$

$$+ \sqrt{\lambda(1,y,\varepsilon^{2})}\left[-5 + 22\varepsilon^{2} - 5\varepsilon^{4} - 9y(1+\varepsilon^{2}) + 6y^{2}\right], (17)$$

² we derived (9) using this condition.

where

$$u_q = \frac{\bar{p}_-}{\bar{p}_+} \qquad u_w = \frac{\bar{w}_-}{\bar{w}_+}.$$
 (18)

We can also integrate (14) over y. In this way we obtain a new formula for

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}x_W} = \int_0^{(1-\varepsilon)^2} \mathrm{d}y \; \frac{\mathrm{d}\Gamma}{\mathrm{d}x_W \; \mathrm{d}y} \,. \tag{19}$$

We compared (19) with the result of [1] and found a perfect numerical agreement for small λ . For $\lambda = 10^{-8}$ the relative error is 10^{-6} .

The formulae (9) and (16) can be also used as a starting point for Monte Carlo simulations. A key observation is that (16) gives the distribution of y for $0 \le y \le (1-\varepsilon)^2$ whereas (9) gives relative probabilities for x_W at fixed y. The distribution (14) can be generated as follows: y is generated first according to (16). Then, for given y, x_W is generated according to (9). Both steps can be performed by a standard combination of importance sampling and von Neumann rejection. The only difficulty is to find the value of the infrared cutoff λ such that λ is small enough and the δ -piece in (9) remains positive. This well known difficulty limits relative accuracy of our Monte Carlo to about 1%.

In Fig. 1 we show the normalized distribution $\Gamma^{-1} d\Gamma/dx_W$ for $m_t = 120$ GeV obtained from (19) for $\lambda = 10^{-8}$. The curve obtained using the result from [1] is identical up to the resolution of the plot.

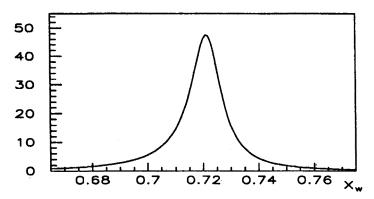


Fig. 1. Normalized energy distribution of $W: \Gamma^{-1} d\Gamma/dx_w$ for $m_t = 120 \text{ GeV}$ evaluated from (19).

In Fig. 2 we compare the analytical result (19) ($\lambda = 10^{-8}$) with our

Monte Carlo program for $\lambda = 3 \cdot 10^{-4}$. We plot the ratio (in percent)

$$1 - \frac{\mathrm{d}\Gamma/\mathrm{d}x_W|_n}{\mathrm{d}\Gamma/\mathrm{d}x_W|_a},\tag{20}$$

where the subscript "n" refers to the Monte Carlo and "a" to the result obtained from (19).

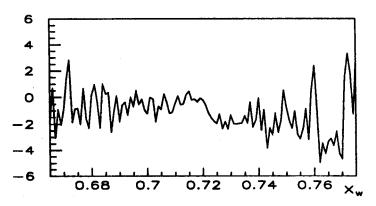


Fig. 2. Comparison of Monte Carlo for infrared cutoff $\lambda = 3 \cdot 10^{-4}$ and analytic result (19) for $\lambda = 10^{-8}$. The ratio (20) is shown as function of x_w .

APPENDIX A

In this Appendix we give the limit of (9) for $m_b \to 0$. These formulae can be used for $t \to s$ or $t \to u$ transitions. It would be, however, a rather poor approximation to use these formulae for the dominant $t \to b$ transition. For $\varepsilon \to 0$ (9) is replaced by

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}x_{W}}\bigg|_{y} = \frac{G_{F}m_{t}^{3}}{8\sqrt{2}\pi} \left\{ \delta(z) F_{0} \left[1 - \frac{2\alpha_{s}}{3\pi} G_{1}(y,\lambda) \right] + \frac{2\alpha_{s}}{3\pi} \Theta(z-\lambda) \Theta\left(x_{W} - \sqrt{y}\right) g(z,y) \right\}. \tag{21}$$

$$F_0 = 2(1-y)^2 (2y+1). (22)$$

$$G_1(y,\lambda) = \frac{2}{3}\pi^2 + \frac{5}{2} + 2\operatorname{Li}_2(y) + 4\ln^2(1-y) - 7\ln(1-y) + \ln^2(\lambda) + \frac{1}{2}\ln(\lambda)\left[7 - 8\ln(1-y)\right] + \frac{5+4y}{1+2y}\ln(1-y).$$
 (23)

$$g(z,y) = p_3(z) \left[2(2y-3) - 14(1-y)(2y+1) \frac{1}{z} \right]$$

$$+ 4Y_p(z) \left[(2y+1)(2-2y+z) + \frac{F_0}{z} \right].$$
 (24)

Then, integrating the double differential distribution (14) over y one obtains $d\Gamma/dx_w$ in the massless limit $m_b = 0$.

REFERENCES

- A. Czarnecki, M. Jeżabek, J.H. Kühn, Acta Phys. Pol. B20, 961 (1989). (E)
 B23 (1992) 173
- [2] P.M. Zerwas (ed.), e⁺e⁻ Collisions at 500 GeV: The Physics Potential, DESY Orange Report DESY 92-123A, Hamburg 1992.
- [3] J.M. Strassler, M.E. Peskin, Phys. Rev. D43, 1500 (1991).
- [4] Y. Sumino, K. Fujii, K. Hagiwara, H. Murayama, C.-K. Ng, Phys. Rev. D47, 56 (1992).
- [5] M. Jeżabek, J.H. Kühn, T. Teubner, Z. Phys. C56, 653 (1992); M. Jeżabek,
 T. Teubner, Z. Phys. C (1993) in print; Karlsruhe Univ. preprint TTP 93-11.
- [6] M. Martinez et al., in: Proceedings of the Workshop on Physics and Experiments at Linear e⁺e⁻ Colliders, Waikoloa, Hawaii, April 1993.
- [7] M. Jeżabek, J.H. Kühn, Nucl. Phys. B314, 1 (1989).
- [8] M. Jeżabek, J.H. Kühn, Phys. Rev. D, (Rapid Commun.) (1993) in print; Karlsruhe Univ. preprint TTP 93-4.
- [9] M. Jeżabek, J.H. Kühn, Nucl. Phys. B320, 20 (1989).